Skip to main content

Biodegradation and Bioremediation of Halogenated Organic Compounds

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

Halo-organic compounds are among the most problematic pollutants. The relatively great electronegativity of halogens often confers chemical stability to halo-organic compounds, thereby making these compounds recalcitrant to biodegradation. Halogen substituents can increase the hydrophobicity of organic compounds, increasing their tendency to bioaccumulate in food chains as well as to sorb to soil. Finally, halogen substituents can contribute to harmful biological effects of organic compounds, increasing their toxicity, mutagenicity and other detrimental capacities. This chapter will focus on types of halo-organic compounds that have become important soil pollutants and that have the potential, demonstrated or theoretical, to be bioremediated. Generally, the potential for bioremediation requires that a halo-organic compound can be biodegraded, partly or completely destroyed by metabolism. Despite the metabolic challenges posed by halo-organic compounds, microorganisms have demonstrated a remarkable capacity to biodegrade such compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson DT, McDade JM, Hughes JB (2003) Inoculation of DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37: 2525–2533

    Article  CAS  Google Scholar 

  • Apajalahti JA, Salkinoja-Salonen MS (1984) Absorption pf pentachlorophenol ( PCP) by bark chips and its role in microbial PCP degradation. Microb Ecol 10: 359–367

    Google Scholar 

  • Arnett CM, Parales JV, Haddock JD (2000) Influence of chlorine substituents on rates of oxidation of chlorinated biphenyls by the biphenyl dioxygenase of Burkholderia sp. Strain LB400. Appl Environ Microbiol 66: 2928–2933

    Article  CAS  Google Scholar 

  • Arp DJ (1995) Understanding the diversity of trichloroethene co-oxidations. Curr Opin Biotechnol 6: 352–358

    Article  CAS  Google Scholar 

  • Barriault D, Sylvestre M (1993) Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can J Microbiol 39: 594–602

    Article  CAS  Google Scholar 

  • Beaudette LA, Ward OP, Pickard MA, Fedorak PM (2000) Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett Appl Microbiol 30: 155–160

    Article  CAS  Google Scholar 

  • Bedard DL, Quensen III JF (1995) Microbial reductive dechlorination of polychlorinated biphenyls. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 127–216

    Google Scholar 

  • Beeman RE, Shoemaker SH, Howell JE, Salazar EA, Buttram JR (1994) A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Boca Raton, pp 14–27

    Google Scholar 

  • Billingsley KA, Backus SM, Juneson C, Ward OP (1997) Comparison of the degradation patterns of polychlorinated biphenyl congeners in Aroclors by Pseudomonas strain LB400 after growth on various carbon sources. Can J Microbiol 43: 1172–1179

    Article  CAS  Google Scholar 

  • Boyer JD, Ahlert AC, Kosson DS (1988) Pilot plant demonstration of in-situ biodegradation of 1,1,1-trichloroethane. J Water Pollut Control Fed 60: 1843–1849

    CAS  Google Scholar 

  • Brokamp A, Schmidt FRJ (1991) Survival of Alcaligenes xylosoxidans degrading 2,2dichloropropionate and horizontal transfer of its halidohydrolase gene in a soil microcosm. Curr Microbiol 22: 299–306

    Article  CAS  Google Scholar 

  • Brühlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63: 544–551

    Article  Google Scholar 

  • Buchanan RJ Jr, Ellis DE, Odom JM, Mazierski PF, Lee MDSRA (1995) Intrinsic and accelerated anaerobic biodegradation of perchloroethylene in groundwater. In: Hinchee RE, Wilson, JT, Downey DC (eds) Intrinsic bioremediation. Batelle, Columbus, OH, pp 245–252

    Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4chlorophenyl)ethane] by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53: 2001–2008

    CAS  Google Scholar 

  • Cai M, Xun LY (2002) Organization and regulation of pentachlorophenoldegrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184: 4672–4680

    Article  CAS  Google Scholar 

  • Chebrou H, Hurtubise Y, Barriault D, Sylvestre M (1999) Heterologous expression and characterization of the purified oxygenase component of Rhodococus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. J Bacteriol 181: 4805–4811

    CAS  Google Scholar 

  • Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25: 261–265

    Article  CAS  Google Scholar 

  • Dai SD, Vaillancourt FH, Maaroufi H, Drouin HM, Neau DB, Snieckus V, Bolin JT, Eltis LD (2002) Identification and analysis of a bottleneck in PCB biodegradation. Nat Struct Biol 9: 934–939

    Article  CAS  Google Scholar 

  • Dietrich D, Hickey WJ, Lamar RT (1995) Degradation of 4,4’-dichlorobiphenyl, 3,3’, 4,4’tetrachlorobiphenyl and 2,2’, 4,4’, 5,5’-hexachlorobiphenyl by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61: 3904–3909

    CAS  Google Scholar 

  • Donnelly PK, Hedge RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981–988

    Article  Google Scholar 

  • Erickson BD, Mondello FJ (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59: 3858–3862

    CAS  Google Scholar 

  • Fathepure BZ, Youngers GA, Richter DL, Downs CE (1995) In situ bioremediation of chlorinated hydrocarbons under field aerobic-anaerobic environments. In: Hinchee RE, Wilson, JT, Downey DC (eds) Intrinsic bioremediation. Batelle, Columbus, OH, pp 169–186

    Google Scholar 

  • Focht DD, Brunner W (1985) Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl Environ Microbiol 50: 1058–1063

    CAS  Google Scholar 

  • Fulthorpe RR, Wyndham RC (1991) Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem. Appl Environ Microbiol 57: 1546–1553

    CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol 63: 1933–1938

    CAS  Google Scholar 

  • Gilmartin N, Ryan D, Sherlock O, Dowling D (2003) BphK shows dechlorination activity against 4-chlorobenzoate, an end product of bph-promoted degradation of PCBs. FEMS Microbiol Lett 222: 251–255

    Article  CAS  Google Scholar 

  • Gribble GW (1994) The natural production of chlorinated compounds. Environ Sci Technol 28: 310–319

    Google Scholar 

  • Haddock JD, Horton JR, Gibson DT (1995) Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J Bacteriol 177: 20–26

    CAS  Google Scholar 

  • Hickey WJ, Fuster DJ, Lamar RT (1994) Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem 26: 1665–1671

    Article  CAS  Google Scholar 

  • Hill DL, Phelps TL, Palumbo AV, White DC (1989) Bioremediation of polychlorinated biphenyls. Degradation capabilities in field lysimeters. Appl Biochem Biotechnol 20–21: 233–243

    Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22: 383–398

    Article  CAS  Google Scholar 

  • Hooker BS, Skeen RS, Truex MJ, Johnson CD, Peyton BM (1998) In situ bioremediation of carbon tetrachloride: field test results. Bioremed J 1: 181–182

    Article  CAS  Google Scholar 

  • Hurtubise Y, Barriault D, Sylvestre M (1998) Involvement of the terminal oxygenase beta subunit in the biphenyl dioxygenase reactivity pattern toward chlorobiphenyls. J Bacteriol 180: 5828–5835

    CAS  Google Scholar 

  • Jaspers CJ, Ewbank G, McCarthy AJ, Penninckx MJ (2002) Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. J Appl Microbiol 92: 127–133

    Article  CAS  Google Scholar 

  • Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM, Lal R (1998) Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnol Lett 120: 885–889

    Article  Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white-rot fungus Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56: 2347–2353

    CAS  Google Scholar 

  • Komancova M, Jurcova I, Kochankova L, Burkhard J (2003) Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere 50: 537–543

    Article  CAS  Google Scholar 

  • Kuipers B, Cullen WR, Mohn WW (2003) Reductive dechlorination of weathered Aroclor 1260 during anaerobic biotreatment of Arctic soils. Can J Microbiol 49: 9–14

    Article  CAS  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphneyl dioxygenase. Nat Biotechnol 16: 663–666

    Article  CAS  Google Scholar 

  • Laine MM, Jorgensen KS (1997) Effective and safe composting of chlorophenolcontaminated soil in pilot scale. Environ Sci Technol 31: 371–378

    Article  CAS  Google Scholar 

  • Lee MD, Odom JM, Buchanan RJ (1998) New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field. Annu Rev Microbiol 52: 423–452

    Google Scholar 

  • Lin JE, Wang HY, Hickey RF (1990) Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. In: Hinchee RE, Wilson JT, Downey DC (eds) Intrinsic Bioremediation, Batelle, Columbus, OH, pp 1125–1134

    Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64: 1270–1275

    CAS  Google Scholar 

  • Major D, Cox E, Edwards E, Hare P (1995) Intrinsic dechlorination of trichloroethene to ethene in a bedrock aquifer. In: Hinchee RE, Wilson, JT, Downey DC (eds) Intrinsic Bioremediation, Batelle, Columbus, OH, pp 197–203

    Google Scholar 

  • Master ER, Lai W-M, Kuipers B, Cullen WR, Mohn WW (2001) Seqeuntial anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36: 100–103

    Article  Google Scholar 

  • Maymó-Gatell X, ChienY-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1567–1571

    Google Scholar 

  • Michel FC Jr, Reddy CA, Forney LJ (1995) Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during composting of yard trimmings. Appl Environ Microbiol 61: 2566–2571

    CAS  Google Scholar 

  • Michel FC, Quensen J, Reddy CA (2001) Bioremediation of a PCB-contaminated soil via composting. Comp Sci Util 9: 274–284

    Google Scholar 

  • Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54: 2885–2889

    CAS  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for yhexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotech 23: 380–390

    Article  CAS  Google Scholar 

  • Neidleman SL, Geigert J (1986) Biohalogenation. Principles, basic roles and applications. Ellis Horwood, Chichester

    Google Scholar 

  • Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata M, Mitsui Y, Takagi M (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC 39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459: 395–398

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57: 20–33

    Article  CAS  Google Scholar 

  • Pulliam Holoman TR, Elberson MA, Cutter LA, May HD, Sowers KR (1998). Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl Environ Microbiol 64: 3359–3367

    Google Scholar 

  • Ryoo D, Shim H, Canada K, Barbieri P, Wood TK (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18: 775–778

    Article  CAS  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treat- ment of soils contaminated with organic pollutants. Environ Pollut 112: 269–283

    Article  CAS  Google Scholar 

  • Semprini L, Hopkins GD, Roberts PV, McCarty PL (1992) In situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ Sci Technol 26: 2454–2461

    Article  CAS  Google Scholar 

  • Spuij F, Alphenaar A, de Wit H, Lubbers R, van der Brink K (1997) Full-scale application of in situ bioremediation of PCE-contaminated soil. 4th International In Situ and On Site Bioremediation Symposium, New Orleans, LA. Battelle, Columbus, OH

    Google Scholar 

  • Suenaga H, Nishi A, Watanabe T, Sakai M, Furukawa K (1999) Engineering a hybrid pseudomonad to acquire 3,4-dioxygenase activity for polychlorinated biphenyls. J Biosci Bioeng 87: 430–435

    Article  CAS  Google Scholar 

  • Tiedje JM, Quensen III JF, Chee-Sanford J, Schimel JP, Boyd SA (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4: 231–240

    Article  CAS  Google Scholar 

  • Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42: 199–208

    Article  CAS  Google Scholar 

  • Valo R, Salkinoja-Salonen MS (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25: 68–75

    Article  CAS  Google Scholar 

  • van Hylckama Vlieg JET, Poelarends GJ, Mars AE, Janssen DB (2000) Detoxification of reactive intermediates during microbial metabolism of halogenated compounds. Curr Opin Microbiol 3: 257–262

    Article  Google Scholar 

  • Vyas BRM, Sasek V, Matucha M, Bubner M (1994) Degradation of 3,3’,4,4’tetrachlorobiphenyl by selected white-rot fungi. Chemosphere 28: 1127–1134

    Article  CAS  Google Scholar 

  • Wackett LP (1995) Bacterial co-metabolism of halogenated organic compounds. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 217–241

    Google Scholar 

  • Witt ME, Klecka GM, Lutz EJ, Ei TA, Grosso NR, Chapelle FH (2002) Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry. J Contam Hydrol 57: 61–80

    Article  CAS  Google Scholar 

  • Wu Q, Watts JEM, Sowers KR, May HD (2002) Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Environ Microbiol 68: 807–812

    Article  CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol 59: 2904–2908

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohn, W.W. (2004). Biodegradation and Bioremediation of Halogenated Organic Compounds. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics