Skip to main content

Anaerobic Biodegradation of Hydrocarbons

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

Hydrocarbons are a generic group of compounds composed exclusively of hydrogen and carbon. They represent one of the most important groups of chemicals to mankind because of their natural abundance, their industrial importance, their extensive use as a primary energy source throughout the world, and their toxicity. Benzene, for example, has a broad range of industrial uses and represents one of the top 20 production volume chemicals produced in the United States, which represents 35% of the worldwide production. In addition to use in petroleum-based fuels, benzene is used for the manufacture of a diversity of other chemicals, rubbers, lubricants, dyes, detergents, drugs, and pesticides. Alternative sources, including volcanoes, forest fires, and cigarette smoke, also contribute significantly to benzene in the environment. Benzene is considered one of the most prevalent organic contaminants in groundwater (Anderson and Lovley 1997) and poses a significant health risk due to its toxicity and relatively high solubility. It is ranked fifth on the US National Priorities List (NPL), and has been found in more than 50% of the 1428 current or former NPL sites (URL: http://www.atsdr.cdc.gov/cxcx3.html). Benzene is highly toxic and is a known human carcinogen and the United States Environmental Protection Agency (EPA) has set the maximum permissible level of 5µgl−1 of benzene in drinking water with an ultimate goal of zero tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach LA, Coates JD (2000) Disparity between bacterial phylogeny and physiology. ASM Newsl 66: 714–716

    Google Scholar 

  • Achenbach LA, Bruce RA, Michaelidou U, Coates JD (2001) Dechloromonas agitata N.N. gen., sp. nov. and Dechlorosoma suillum N.N. gen., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51: 527–533

    Google Scholar 

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156: 5–14

    CAS  Google Scholar 

  • Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170: 361–369

    CAS  Google Scholar 

  • Al-Bashir B, Cseh T, Leduc R, Samson R (1990) Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. Appl Microbiol Biotechnol 34: 414–419

    CAS  Google Scholar 

  • Anders H, Kaetzke A, Kaempfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K-172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45: 327–333

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv Microbial Ecol 15: 289–350

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (1999) Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Biorem J 3: 121–135

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (2000) Biogeochemistry: hexadecane decay by methanogenesis. Nature 404: 722–723

    CAS  Google Scholar 

  • Anderson RT, Rooney-Varga J, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32: 1222–1229

    CAS  Google Scholar 

  • Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66: 5329–5333

    CAS  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68: 852–858

    CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45: 180–209

    CAS  Google Scholar 

  • Atlas RM (1995) Petroleum biodegradation and oil spill remediation. Mar Pollut Bull 31: 178–182

    CAS  Google Scholar 

  • Ball HA, Johnson HA, Reinhard M, Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol 178: 5755–5761

    CAS  Google Scholar 

  • Bauer JE, Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl Environ Microbiol 50: 81–90

    CAS  Google Scholar 

  • Bauer JE, Capone DG (1988) Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl Environ Microbiol 54: 1649–1655

    CAS  Google Scholar 

  • Bedessem ME, Swoboda-Colberg NG, Colberg PJS (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 152: 213–218

    CAS  Google Scholar 

  • Beller HR (2000) Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation 11: 125–139

    CAS  Google Scholar 

  • Beller HR, Ding W-H, Reinhard M (1995) Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ Sci Technol 29: 2864–2870

    CAS  Google Scholar 

  • Beller HR, Spormann AM (1997a) Anaerobic activation of toluene and O-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179: 670–676

    CAS  Google Scholar 

  • Beller HR, Spormann AM (1997b) Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOLI. Appl Environ Microbiol 63: 3729–3731

    CAS  Google Scholar 

  • Beller HR, Spormann AM (1999) Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol Lett 178: 147–153

    CAS  Google Scholar 

  • Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol 62: 1188–1196

    CAS  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238: 661–668

    CAS  Google Scholar 

  • Birch L, Bachofen R (1988) Microbial production of hydrocarbons. Biotechnology. VCH, Weinheim

    Google Scholar 

  • Bruce RA, Achenbach LA, Coates JD (1999) Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ Microbiol 1: 319–331

    CAS  Google Scholar 

  • Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65: 529–533

    CAS  Google Scholar 

  • Caldwell ME, Garrett RM, Prince RC, Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 37: 2191–2195

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368

    CAS  Google Scholar 

  • Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67: 4471–4478

    CAS  Google Scholar 

  • Coates JD (2003) Bacteria that respire oxyanions of chlorine. Bergey’s manual of systematic bacteriology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Coates JD, Lovley DR (2003) Genus Geobacter. Bergey’s manual of systematic bacteriology, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Coates JD, Anderson RT, Lovley DR (1996a) Anaerobic oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol 62: 1099–1101

    CAS  Google Scholar 

  • Coates JD, Anderson RT, Woodward JC, Phillips EJP, Lovely DR (1996b) Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ Sci Technol 30: 2784–2789

    CAS  Google Scholar 

  • Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovley DR (1996c) Isolation of Geobacter species from a variety of sedimentary environments. Appl Environ Microbiol 62: 1531–1536

    CAS  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63: 3589–3593

    CAS  Google Scholar 

  • Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65: 5234–5241

    CAS  Google Scholar 

  • Coates JD, Bhupathiraju V, Achenbach LA, McInerney MJ, Lovley DR (2001a) Geobacter hydrogeaophilus, Geobacter chapellei, and Geobacter grbiciae - three new strictly anaerobic dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51: 581–588

    Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (200 lb) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411: 1039–1043

    Google Scholar 

  • Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation–a new era. Res Microbiol 153: 621–628

    CAS  Google Scholar 

  • Coschigano PW (1999) Transcriptional analysis of the tutEtutFDGH gene cluster from the denitrifying bacterium Thauera aromatica strain Ti. Appl Environ Microbiol 66: 1147–1151

    Google Scholar 

  • Coschigano PW, Young LY (1997) Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain Tl. Appl Environ Microbiol 63: 652–660

    CAS  Google Scholar 

  • Davis JB, Yarbrough HF (1966) Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem Geol 1: 137–144

    Google Scholar 

  • Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 134: 336–341

    Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Cano Lara J, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45: 116–123

    Google Scholar 

  • Edwards EA, Wills LE, Reinhard M, Grbic-Galic D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl Environ Microbiol 58: 794–800

    CAS  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173: 58–64

    CAS  Google Scholar 

  • Elshahed MS, Gieg LM, McInerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35: 682–689

    CAS  Google Scholar 

  • Evans PJ, Mang DT, Kim KS, Young LY (199la) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57: 1139–1145

    Google Scholar 

  • Evans PJ, Mang DT, Young LY (199 lb) Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures. Appl Environ Microbiol 57: 450–454

    Google Scholar 

  • Flyvbjerg J, Arivn E, Jensen BK, Olsen SK (1993) Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions. J Contam Hydrol 12: 133–150

    CAS  Google Scholar 

  • Fries MR, Zhou J, Chee-Sanford J, Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60: 2802–2810

    CAS  Google Scholar 

  • Galushko A, Minz D, Schink B and Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulfate-reducing bacterium. Environ Microbiol 1: 1–23

    Google Scholar 

  • Grbic-Galic D, Vogel T (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53: 254–260

    CAS  Google Scholar 

  • Griffin WM, Traxler RW (1981) Some aspects of hydrocarbon metabolism by Pseudomonas. Dev Ind Microbiol 22: 425–435

    CAS  Google Scholar 

  • Hambrick GA, DeLaune RD, Patrick Jr WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40: 365–369

    CAS  Google Scholar 

  • Haner A, Hohener P, Zeyer J (1995) Degradation of p-xylene by a denitrifying enrichment culture. Appl Environ Microbiol 61: 3185–3188

    CAS  Google Scholar 

  • Harms G, Rabus R, Widdel F (1999a) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol 172: 303–312

    CAS  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999b) Anaerobic oxidation of o-xylene and m-xylene and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65: 999–1004

    CAS  Google Scholar 

  • Hayes LA, Lovley DR (2002) Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Microbial Ecol 43: 134–145

    CAS  Google Scholar 

  • Hayes LA, Nevin KP, Lovley DR (1999) Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30: 937–945

    CAS  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22: 459–473

    CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1987) Effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environ Toxicol Chem 6: 535–546

    CAS  Google Scholar 

  • Heitkamp MA, Freeman JP, Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53: 129–136

    CAS  Google Scholar 

  • Herbes S (1981) Rates of microbial transformation of polycylic aromatic hydrocarbons in water and sediments in the vicinity of a coal-coking wastewater discharge. Appl Environ Microbiol 41: 20–28

    CAS  Google Scholar 

  • Hess A, Zarda B, Hahn D, Haner A, Stax D, Hohener P, Zeyer J (1997) In situ analysis of denitrifying toluene-and m-xylene degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 65: 2136–2141

    Google Scholar 

  • Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183: 4536–4542

    CAS  Google Scholar 

  • Kane SR, Beller HR, Legler TC, Anderson RT (2002) Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. Biodegradation 13: 149–154

    CAS  Google Scholar 

  • Kazumi J, Caldwell ME, Suflita JM, Lovley DR, Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31: 813–818

    CAS  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants I. A perspective view. Environ Sci Technol 13: 416–423

    Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glockner F, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69: 760–768

    CAS  Google Scholar 

  • Krieger CJ (1999) Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoatcus sp. strain T. J Bacteriol 181: 6403–6410

    CAS  Google Scholar 

  • Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66: 5393–5398

    CAS  Google Scholar 

  • Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol 54: 490–496

    CAS  Google Scholar 

  • Langenhoff AAM, Brouwers-Ceiler DL, Engelberting JHL, Quist JJ, Wolkenfelt JGPN, Zehnder AJB, Schraa G (1997) Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol Ecol 22: 119–127

    CAS  Google Scholar 

  • Leduc R, Samson R, Al-Bashir B, Al-Hawari J, Cseh T (1992) Biotic and abiotic disappearance of four PAH compounds from flooded soil under various redox conditions. Water Sci Technol 26: 51–60

    CAS  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Horth P, Haehnel W, Schultz E, Schagger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28: 615–628

    CAS  Google Scholar 

  • Lonergan DJ, Lovley DR (1991) Microbial oxidation of natural and anthropogenic aromatic compounds coupled to Fe(III) reduction. In: Baker RA (ed) Organic substances and sediments in water. Lewis, Chelsea, MI, pp 327–338

    Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56: 1858–1864

    CAS  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297–299

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128–131

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Woodward JC, Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl Environ Microbiol 61: 953–958

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1996) Rapid anaerobic benzene degradation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62: 288–291

    CAS  Google Scholar 

  • Madsen EL, Winding A, Malachowsky K, Thomas CT, Ghiorse WC (1992) Contrasts between subsurface microbial communities and their metabolic adaptation to polycyclic aromatic hydrocarbons at a forested and an urban coal-tar disposal site. Microb Ecol 24: 199–213

    CAS  Google Scholar 

  • Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Lollar BS (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69: 191–198

    CAS  Google Scholar 

  • McElroy AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 2–39

    Google Scholar 

  • McNally DL, Mihelcic JR, Lueking DR (1998) Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ Sci Technol 32: 2633–2639

    CAS  Google Scholar 

  • Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177: 67–73

    CAS  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66: 2743–2747

    CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988a) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol 54: 1182–1187

    CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988b) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl Environ Microbiol 54: 1188–1198

    CAS  Google Scholar 

  • Novelli GD, Zobell CE (1944) Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J Bacteriol 47: 447–448

    Google Scholar 

  • Pelz O, Chatzinotas A, Zarda-Hess A, Wolf-Rainer A, Zeyer J (2001) Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiol Ecol 38: 123–131

    CAS  Google Scholar 

  • Phelps CD, Kazumi J, Young LY (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol Lett 145: 433–437

    CAS  Google Scholar 

  • Rabus R, Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch Microbiol 170: 377–384

    CAS  Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163: 96–103

    CAS  Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59: 1444–1451

    CAS  Google Scholar 

  • Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183: 1707–1715

    CAS  Google Scholar 

  • Rabus R, Kube A, Beck F, Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbNl. Arch Microbiol 178: 506–516

    CAS  Google Scholar 

  • Ridgeway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer. Appl Environ Microbiol 56: 3565–3575

    Google Scholar 

  • Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66: 1595–1601

    CAS  Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458

    CAS  Google Scholar 

  • Schocher RJ, Seyfried B, Vazquez F, Zeyer J (1991) Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch Microbiol 157: 7–12

    CAS  Google Scholar 

  • Shiaris MP (1989) Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a] pyrene in surficial estuarine sediments. Appl Environ Microbiol 55: 1391–1399

    CAS  Google Scholar 

  • Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201–222

    CAS  Google Scholar 

  • So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium strain Hxd3. Appl Environ Microbiol 69: 3892–3900

    CAS  Google Scholar 

  • So CM, Young LY (1999a) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl Environ Microbiol 65: 5532–5540

    CAS  Google Scholar 

  • So CM, Young LY (1999b) Isolation and characterization of a sulfate-reducing bacterium that anaerobially degrades alkanes. Appl Environ Microbiol 65: 2969–26876

    CAS  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11: 85–105

    CAS  Google Scholar 

  • Stone RW, Zobell CE (1952) Bacterial aspects of the origin of petroleum. Ind Eng Chem 44: 2564–2567

    CAS  Google Scholar 

  • Sullivan ER, Zhang X, Phelps C, Young LY (2001) Anaerobic mineralization of stableisotope-labeled 2-methylnaphthalene. Appl Environ Microbiol 67: 4353–4357

    CAS  Google Scholar 

  • Swain HM, Somerville HJ, Cole JA (1978) Denitrification during growth of Pseudomonas aeruginosa on octane. J Gen Microbiol 107: 103–112

    CAS  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Traxler RW, Bernard JM (1969) The utilization of n-alkanes by Pseudomonas aeroginosa under conditions of anaerobiosis. 1. Preliminary observations. Int Biodetn Bull 5: 21–25

    Google Scholar 

  • Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 5: 92–102

    CAS  Google Scholar 

  • Urbansky ET (1998) Perchlorate chemistry: implications for analysis and remediation. Bioremediation J 2: 81–95

    CAS  Google Scholar 

  • Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52: 200–202

    CAS  Google Scholar 

  • Weiner J, Lovley DR (1998a) Anaerobic benzene degradation in petroleum-contaminated sediments after inoculation with a benzene-oxidizing enrichment. Appl Environ Microbiol 64: 775–778

    CAS  Google Scholar 

  • Weiner J, Lovley DR (1998b) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64: 1937–1939

    CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer Berlin Heidelberg New York, pp 3353–3378

    Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Op Biotechnol 12: 259–276

    CAS  Google Scholar 

  • Zengler K, Heider J, Rossello-Mora R, Widdel F (1999a) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172: 204–212

    CAS  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999b) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269

    CAS  Google Scholar 

  • Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of napthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63: 4759–4764

    CAS  Google Scholar 

  • Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11: 117–124

    CAS  Google Scholar 

  • Zhou J, Fries MR, Chee-Sandford JC, Tiedje JM (1995) Phylogenetic analysis of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 45: 500–506

    CAS  Google Scholar 

  • Zobell CE (1945) The role of bacteria in the formation and transformation of petroleum hydrocarbons. Science 102: 364–369

    CAS  Google Scholar 

  • Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10: 1–49

    CAS  Google Scholar 

  • Zobell CE (1949) Part played by bacteria in petroleum formation. Am J Bot 36: 832–832

    Google Scholar 

  • Zobell CE (1950) Assimilation of hydrocarbons by microorganisms. Adv Enzymol Relat Subj Biochem 10: 443–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coates, J.D. (2004). Anaerobic Biodegradation of Hydrocarbons. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics