Skip to main content

Heat Shock Proteins and the Stress Response

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

The heat shock response is a molecular reaction to stressful, but sublethal, temperature, and is characteristic of all organisms, including bacteria, fungi, plants, and animals. When these organisms or cells are subjected to high temperatures, they rapidly redirect gene expression to maximize synthesis of a distinct group of proteins. These heat shock proteins are beneficial to cells, helping them adapt to the inducing temperature or survive exposure to higher, otherwise lethal, temperatures. During the initial stage of the heat shock response, normal activities of transcription and translation are drastically reduced, but may resume after sufficient quantities of the heat shock proteins have been produced and their expression has declined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas-Terki T, Donze O, Briand P-A, Picard D (2001) Hsp104 interacts with Hsp90 cochaperones in respiring yeast. Mol Cell Biol 21:7569–7575

    Article  PubMed  CAS  Google Scholar 

  • Aligue R, Akhavan-Niak H, Russel P (1994) A role for Hsp90 in cell cycle control: Weel tyrosine kinase activity requires interaction with Hsp90. EMBO J 13:6099–6106

    PubMed  CAS  Google Scholar 

  • Amin J., Anathan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 88:3761–3769

    Google Scholar 

  • Ang D, Liberek K, Skowyra D, Zylicz M, Georgopoulos C (1991) Biological role and regulation of the universally conserved heat shock proteins. J Biol Chem 266:24233–24236

    PubMed  CAS  Google Scholar 

  • Arnason T, Ellison MJ (1994) Stress resistance in Saccha-romyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14:7876–7883

    PubMed  CAS  Google Scholar 

  • Atencio DP, Yaffe MP (1992) MAS5, a yeast homolog of DnaJ involved in mitochondrial protein import. Mol Cell Biol 12:283–291

    PubMed  CAS  Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263

    Article  PubMed  CAS  Google Scholar 

  • Baxter BK, James P, Evans T, Craig EA (1996) SSII encodes a novel Hsp70 of the Saccharomyces cerevisiae endoplasmic reticulum. Mol Cell Biol 16:6444–6456

    PubMed  CAS  Google Scholar 

  • Becker J, Walter W, Yan W, Craig EA (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16:4378–4386

    PubMed  CAS  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van Der Zee P, Wiemken A (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209: 951–959

    Article  PubMed  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  PubMed  CAS  Google Scholar 

  • Blumberg H, Silver PA (1991) A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast. Nature 349:627–630

    Article  PubMed  CAS  Google Scholar 

  • Bolliger L, Deloche O, Glick BS, Georgopoulos C, Jeno P, Kronidou N, Horst M, Morishima N, Schatz G (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J 13:1998–2006

    PubMed  CAS  Google Scholar 

  • Bonner JJ, Heyward S, Fackenthai DL (1992) Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol Cell Biol 12:1021–1030

    PubMed  CAS  Google Scholar 

  • Bonner JJ, Ballou C, Fackenthal DL (1994) Interactions between DNA-bound trimers of the yeast heat shock factor. Mol Cell Biol 14:501–508

    PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990) Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J 9:2543–2553

    PubMed  CAS  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    PubMed  CAS  Google Scholar 

  • Brinker A, Scheufler C, von der Mulbe F, Fleckenstein B, Herrmann C, Jung G, Moarefi I, Hartl FU (2002) Ligand discrimination by the TPR domains: relevance and selectivity of EEVD-recognition in Hsp70-Hop-Hsp90 complexes. J Biol Chem 277:19265–19275

    Article  PubMed  CAS  Google Scholar 

  • Brown JA, Li D, Alic M, Gold MH (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol 59:4295–4299

    PubMed  CAS  Google Scholar 

  • Brunt SA, Silver JC (1991) Molecular cloning and characterization of two distinct hsp85 sequences from the steroid responsive fungus Achlya ambisexualis. Curr Genet 19:383–388

    Article  PubMed  CAS  Google Scholar 

  • Brunt SA, Riehl R, Silver JC (1990) Steroid hormone regulation of the Achlya ambisexualis 85-kilodalton heat shock protein, a component of the Achlya steroid receptor complex. Mol Cell Biol 10:273–281

    PubMed  CAS  Google Scholar 

  • Brunt SA, Perdew GH, Toft DO, Silver JC (1998) Hsp90-containing multiprotein complexes in the eukary-otic microbe Achlya. Cell Stress Chaperones 3:44-56

    Article  PubMed  CAS  Google Scholar 

  • Bulman AL, Hubl ST, Nelson HCM (2001) The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains. J Biol Chem 276:40254–40262

    PubMed  CAS  Google Scholar 

  • Caplan AJ, Douglas MG (1991) Characterization of YDJ1: a yeast homologue of the bacterial dnaj protein. J Cell Biol 114:609–621

    Article  PubMed  CAS  Google Scholar 

  • Caplan AJ, Cyr DM, Douglas MG (1992a) YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71: 1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Caplan AJ, Tsai J, Casey PJ, Douglas MG (1992b) Farnesy-lation of YDJlp is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J Biol Chem 267:18890–18895

    PubMed  CAS  Google Scholar 

  • Carver LA, Jackiw V, Bradfield CA (1994) The 90kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. J Biol Chem 269:30109–30112

    PubMed  CAS  Google Scholar 

  • Chary P, Natvig DO (1989) Evidence for three differentially regulated catalase genes in Neurospora crassa: effects of oxidative stress, heat shock, and development. J Bacteriol 171:2646–2652

    PubMed  CAS  Google Scholar 

  • Chang H-CJ, Nathan DF, Lindquist S (1997) In vivo analysis of the Hsp90 cochaperone Stil (p60). Mol Cell Biol 17:318–325

    PubMed  CAS  Google Scholar 

  • Cheng JY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Hartl F-U, Horwich AL (1990) The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348:455–458

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi +]. Science 268:880–884

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 19:8103–8112

    PubMed  CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810

    Article  PubMed  CAS  Google Scholar 

  • Choder M, Young RA (1993) A portion of RNA polymerase II molecules has a component essential for stress responses and stress survival. Mol Cell Biol 13: 6984–6991

    PubMed  CAS  Google Scholar 

  • Chung K-S, Hoe K-L, Kim K-W, Yoo H-S (1998) Isolation of a novel heat shock protein 70-like gene, pss1 + of Schizosaccharomyces pombe homologous to hsp110/SSE subfamily. Gene 210:143–150

    Article  PubMed  CAS  Google Scholar 

  • Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (1990) Molecular cloning and expression of a hexa-meric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Mallory MJ, Smith JB, Strich R (1997) Stress and developmental regulation of the yeast C-type cyclin Ume3p (Srb11p/Ssn8p). EMBO J 16:4665–4675

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Mallory MJ, Strich R (1999) Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 19:3338–3348

    PubMed  CAS  Google Scholar 

  • Coote PJ, Cole MB, Jones MV (1991) Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J Gen Microbiol 137:1701–1708

    PubMed  CAS  Google Scholar 

  • Craig EA, Jacobsen K (1984) Mutations of the heat-inducible 70 kilodalton genes of yeast confer temperature-sensitive growth. Cell 38:841–849

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Jacobsen K (1985) Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Mol Cell Biol 5:3517–3524

    PubMed  CAS  Google Scholar 

  • Craig EA, Kramer J, Kosic-Smithers J (1987) SSCI, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc Natl Acad Sci USA 84:4156–4160

    Article  PubMed  CAS  Google Scholar 

  • Craven RA, Egerton M, Stirling CJ (1996) A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J 15:2640–2650

    PubMed  CAS  Google Scholar 

  • Cruz AK, Terenzi HF, Jorge JA, Terenzi HF (1988) Cyclic AMP-dependent, constitutive thermotolerance in the adenylate cyclase-deficient cr-1 (crisp) mutant of Neurospora crassa. Curr Genet 13:451–454

    Article  PubMed  CAS  Google Scholar 

  • Cyr DM, Lu X, Douglas MG (1992) Regulation of hsp70 function by a eukaryotic dnaJ homolog. J Biol Chem 267:20927–20931

    PubMed  CAS  Google Scholar 

  • Davenport KR, Sohaskey M, Kamada Y, Levin DE, Gustin MC (1995) A second osmosensing signal transduction pathway in yeast: hypotonic shock activates the Pkc1 protein kinase-regulated cell integrity pathway. J Biol Chem 270:30157–30161

    Article  PubMed  CAS  Google Scholar 

  • Davis ES, Becker A, Heitman J, Hall MN, Brennan MB (1992) A yeast cyclophilin gene essential for lactate metabolism at high temperature. Proc Natl Acad Sci USA 89:11169–11173

    Article  PubMed  CAS  Google Scholar 

  • Derkx PM, Madrid SM (2001) The Aspergillus niger cypA gene encodes a cyclophilin that mediates sensitivity to the immunosuppressant cyclosporin A. Mol Genet Genom 266:527–536

    Article  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Piper P, Boller T, Wiemken A (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp104 and in the absence of protein synthesis. FEBS Lett 288:86–90

    Article  PubMed  Google Scholar 

  • De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast, I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  PubMed  Google Scholar 

  • Dolinski K, Muir S, Cardenas M, Heitman J (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Dolinski K, Cardenas ME, Heitman J (1998) CNS1 encodes an essential p60/Stil homolog in Saccharomyces cerevisiae that suppresses cyclophilin 40 mutations and interacts with Hsp90. Mol Cell Biol 18:7344–7352

    PubMed  CAS  Google Scholar 

  • Donze O, Picard D (1999) Hsp90 binds and regulates the ligand-inducible a subunit of eukaryotic translation initiation factor kinase Gen2. Mol Cell Biol 19: 8422–8432

    PubMed  CAS  Google Scholar 

  • Dubaquie Y, Looser R, Funfschilling U, Jeno P, Rospert S (1998) Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J 17:5868–5876

    Article  PubMed  CAS  Google Scholar 

  • Duchniewicz M, Germaniuk A, Westermann B, Neupert W, Schwarz E, Marszalek J (1999) Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 19:8201–8210

    PubMed  CAS  Google Scholar 

  • Duina AA, Chang H-CJ, Marsh JA, Lindquist S, Gaber RF (1996) A cyclophilin function in Hsp90-dependent signal transduction. Science 274:1713–1715

    Article  PubMed  CAS  Google Scholar 

  • Eaglestone SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Erkine AM, Magrogan SF, Sekinger EA, Gross DS (1999) Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Mol Cell Biol 19:1627–1639

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Fliss AE, Rao J, Caplan AJ (1998) SBA1 encodes a yeast Hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol Cell Biol 18:3727–3734

    PubMed  CAS  Google Scholar 

  • Felix CF, Moreira CC, Oliveira MS, Sola-Penna M, Meyer-Fernandez JR, Scofano HM, Ferreira-Pereira A (1999) Protection against thermal denaturation by trehalose on the plasma membrane H+-ATPase from yeast: synergistic effect between trehalose and phospholipid environment. Eur J Biochem 266:660–664

    Article  PubMed  CAS  Google Scholar 

  • Fernandez F, Jannatipour M, Hellman U, Rokeach LA, Parodi AJ (1996) A new stress protein: synthesis of Schizosaccharomyces pombe UDP-Glc:glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability. EMBO J 15:705–713

    PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroche M-K, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermola-bility of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Spitz DR, Meredith MJ (1990) Does heat shock enhance oxidative stress? Studies with ferrous and ferric iron. Radiat Res 124:288–293

    Article  PubMed  CAS  Google Scholar 

  • Gallo GJ, Schuetz TJ, Kingston RE (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 11:281–288

    PubMed  CAS  Google Scholar 

  • Gallo GJ, Prentice H, Kingston RE (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13:749–761

    PubMed  CAS  Google Scholar 

  • Garreau H, Hasan RN, Renault G, Estruch F, Boy-Marcotte E, Jacquet M (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146:2113–2120

    PubMed  CAS  Google Scholar 

  • Germaniuk A, Liberek K, Marszalek J (2002) A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J Biol Chem 277:27801–27808

    Article  PubMed  CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hspl04, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Goeckeler JL, Stephens A, Lee P, Caplan AJ, Brodsky JL (2002) Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1–151 thermosensitivity and restores Hsp90-dependent activity. Mol Biol Cell 13:2760–2770

    Article  PubMed  CAS  Google Scholar 

  • Goes FS, Martin J (2001) Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mikl, Weel and Swel. Eur J Biochem 268: 2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Grably MR, Stanhill A, Tell O, Engelberg D (2002) HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 44:21–35

    Article  PubMed  CAS  Google Scholar 

  • Gray RE, Grasso DG, Maxwell RJ, Finnegan PM, Nagley P, Devenish RJ (1990) Identification of a 66-KDa protein associated with yeast mitochondrial ATP synthase as heat shock protein hsp60. FEBS Lett 268:265–268

    Article  PubMed  CAS  Google Scholar 

  • Gray JV, Ogas JP, Kamada Y, Stone M, Levin DE, Herskowitz I (1997) A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16:4924–4937

    Article  PubMed  CAS  Google Scholar 

  • Gounalaki N, Thireos G (1994) Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 13:4036–4041

    PubMed  CAS  Google Scholar 

  • Gu J, Emerman M, Sandmeyer S (1997) Small heat shock protein suppression of Vpr-induced cytoskeletal defects in budding yeast. Mol Cell Biol 17:4033–4042

    PubMed  CAS  Google Scholar 

  • Habel D, Plesofsky-Vig N, Brambl R (1991) The respiratory response to heat shock in Neurospora crassa. FEMS Microbiol Lett 81:317–322

    Article  Google Scholar 

  • Hahn J-S, Thiele DJ (2002) Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284

    Article  PubMed  CAS  Google Scholar 

  • Halladay JT, Craig EA (1995) A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Mol Cell Biol 15:4890–4897

    PubMed  CAS  Google Scholar 

  • Hallstrom TC, Katzmann DJ, Torres RJ, Sharp WJ, Moye-Rowley WS (1998) Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol Cell Biol 18:1147–1155.

    PubMed  CAS  Google Scholar 

  • Hamilton TG, Flynn GC (1996) Cer1p, a novel Hsp70-related protein required for posttranslational endoplasmic reticulum translocation in yeast. J Biol Chem 271:30610–30613

    Article  PubMed  CAS  Google Scholar 

  • Harrison CJ, Bohm AA, Nelson HCM (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263:224–227

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  PubMed  CAS  Google Scholar 

  • Hazell BW, Nevalainen H, Attfield PV (1995) Evidence that the Saccharomyces cerevisiae CIF1 (GGS/TPS1) gene modulates heat shock response positively. FEBS Lett 377:457–460

    Article  PubMed  CAS  Google Scholar 

  • Hettema EH, Ruigrok CCM, Koerkamp MG, van den Berg M, Tabak HF, Distel B, Braakman I (1998) The cytoso-lic DnaJ-like protein Djp1p is involved specifically in peroxisomal protein import. J Cell Biol 142:421–434

    Article  PubMed  CAS  Google Scholar 

  • Hohfeld J, Jentsch S (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  CAS  Google Scholar 

  • Hoj A, Jakobsen BK (1994) A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J 13:2617–2624

    PubMed  CAS  Google Scholar 

  • Holden DW, Kronstad JW, Leong SA (1989) Mutation in a heat-regulated hsp70 gene of Ustilago may dis. EMBO J 8:1927–1934

    PubMed  CAS  Google Scholar 

  • Hon T, Lee HC, Hach A, Johnson JL, Craig EA, Erdjument-Bromage H, Tempst P, Zhang L (2001) The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Mol Cell Biol 21:7923–7932

    Article  PubMed  CAS  Google Scholar 

  • Horst M, Oppliger W, Rospert S, Schonfeld H-J, Schatz G, Azem A (1997) Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–1849

    Article  PubMed  CAS  Google Scholar 

  • Horton LE, James P, Craig EA, Hensold JO (2001) The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes. J Biol Chem 276:14426–14433

    PubMed  CAS  Google Scholar 

  • Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E (2002) The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci USA 99:4203–4208

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson EG, Tichelaar W, Hofhaus G, Weiss H, Leonard KR (1989) Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria. EMBO J 8:1485–1490

    PubMed  CAS  Google Scholar 

  • Iida H, Yahara I (1985) Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature 315:688–690

    Article  CAS  Google Scholar 

  • Imai J, Yahara I (2000) Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol Cell Biol 20:9262–9270

    Article  PubMed  CAS  Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen BK, Pelham HRB (1988) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 8:5040–5042

    PubMed  CAS  Google Scholar 

  • Jakobsen BK, Pelham HRB (1991) A conserved heptapep-tide restrains the activity of the yeast heat shock transcription factor. EMBO J 10:369–375

    PubMed  CAS  Google Scholar 

  • James P, Pfund C, Craig EA (1997) Functional specificity among Hsp70 molecular chaperones. Science 275: 387–389

    Article  PubMed  CAS  Google Scholar 

  • Jang Y-J, Park S-K, Yoo H-S (1996) Isolation of an HSP12-homologous gene of Schizosaccharomyces pombe suppressing a temperature-sensitive mutant allele of cdc4. Gene 172:125–129

    Article  PubMed  CAS  Google Scholar 

  • Jannatipour M, Rokeach LA (1995) The Schizosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J Biol Chem 270:4845–4853

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Craig EA (2000) A role for the Hsp40 Ydj1 in repression of basal steroid receptor activity in yeast. Mol Cell Biol 20:3027–3036

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Craig EA (2001) An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 152:851–856

    Article  PubMed  CAS  Google Scholar 

  • Johnston GC, Singer RA (1980) Ribosomal precursor RNA metabolism and cell division in the yeast Saccharomyces cerevisiae. Mol Gen Genet 178:357–360

    Article  PubMed  CAS  Google Scholar 

  • Jung G, Jones G, Masison DC (2002) Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermo-tolerance. Proc Natl Acad Sci USA 99:9936–9941

    Article  PubMed  CAS  Google Scholar 

  • Kabani M, Beckerich J-M, Gaillardin C (2000) Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol 20:6923–6934

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9:1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N (1990) Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348:137–143

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M, Sveenivasan GM (1988) The heat shock response of Neurospora crassa: stress-induced ther-motolerance in relation to peroxidase and superoxide dismutase levels. Biochem Biophys Res Commun 156: 1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M, Curie CA, Runham C (1995) The hsp70 gene family of Neurospora crassa: cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member. J Bacteriol 177:212–221

    PubMed  CAS  Google Scholar 

  • Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki L, Wysong D, Diamond R, Aguirre J (1997) Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 179:3284–3292

    PubMed  CAS  Google Scholar 

  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1990) Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87:6550–6554

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13:248–256

    PubMed  CAS  Google Scholar 

  • Knight SAB, Sepuri NBV, Pain D, Dancis A (1998) Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J Biol Chem 273:18389–18393

    Article  PubMed  CAS  Google Scholar 

  • Krimmer T, Rassow J, Kunau W-H, Voos W, Pfanner N (2000) Mitochondrial protein import motor: the ATPase domain of matrix Hsp70 is crucial for binding to Tim44, while the peptide binding domain and the carboxy-terminal segment play a stimulatory role. Mol Cell Biol 20:5879–5887

    Article  PubMed  CAS  Google Scholar 

  • Kroh HE, Simon LD (1990) The ClpP component of Clp protease is the s32-dependent heat shock protein F21.5. J Bacteriol 172:6026–6034

    PubMed  CAS  Google Scholar 

  • Kurtz S, Lindquist S (1984) Changing patterns of gene expression during sporulation in yeast. Proc Natl Acad Sci USA 81:7323–7327

    Article  PubMed  CAS  Google Scholar 

  • Kurtz S, Rossi J, Petko L, Lindquist S (1986) An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 321: 1154–1157

    Article  Google Scholar 

  • Kusakabe T, Koga K, Sugimoto Y (1994) Isolation and characterization of cDNA and genomic promoter region for a heat shock protein 30 from Aspergillus nidulans. Biochim Biophys Acta 1219:555–558

    Article  PubMed  CAS  Google Scholar 

  • Kusukawa N, Yura T, Ueguchi C, Akiyama Y, Ito K (1989) Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 8:3517–3521

    PubMed  CAS  Google Scholar 

  • Laloraya S, Gambill BD, Craig EA (1994) A role for a eukaryotic GrpE-related protein, Mgelp, in protein translocation. Proc Natl Acad Sci USA 91:6481–6485

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Kobayashi GS, Painter A, Medoff G (1983) Possible relationship of morphogenesis in pathogenic fungus, Histoplasma capsulatum, to heat shock response. Nature 303:806–808

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Sherman MY, Goldberg AL (1996) Involvement of the molecular chaperone Ydjl in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol Cell Biol 16:4773–4781

    PubMed  CAS  Google Scholar 

  • Lee HC, Hon T, Zhang L (2002) The molecular chaperone Hsp90 mediates heme activation of the yeast transcriptional activator Hapl. J Biol Chem 277:7430–7437

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt SA, Fearon K, Danese PN, Mason TL (1993) HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol 13:6304–6313

    PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HRB (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70-kd heat shock protein. EMBO J 4:3137–3143

    PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HRB (1990) The sequence of the Kluyveromyces lactis BiP gene. Nucleic Acids Res 18:6438

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Martin F, Guiard B, Pfanner N, Voos W (2001) The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation. EMBO J 20:941–950

    Article  PubMed  CAS  Google Scholar 

  • Lin WS, Kapoor M (1992) Increase in superoxide production by heat-shocked cells of Neurospora crassa, demonstrated by a fluorometric assay. Int J Biochem 24:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1981) Regulation of protein synthesis during heat shock. Nature 293:311–314

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Liu X-D, Liu PCC, Santoro N, Thiele DJ (1997) Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J 16:6466–6477

    Article  PubMed  CAS  Google Scholar 

  • Liu X-D, Morano KA, Thiele DJ (1999) The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem 274:26654–26660

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liang S, Tartakoff AM (1996) Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export. EMBO J 15:6750–6757

    PubMed  CAS  Google Scholar 

  • Liu ZM, Kolattukudy PE (1998) Identification of a gene product induced by hard-surface contact of Colletotrichum gloeosporioides conidia as a ubiquitin-conjugating enzyme by yeast complementation. J Bacteriol 180:3592–3597

    PubMed  CAS  Google Scholar 

  • Lopez N, Halladay J, Walter W, Craig EA (1999) SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes. J Bacteriol 181:3136–3143

    PubMed  CAS  Google Scholar 

  • Loubradou G, Begueret J, Turcq B (1997) A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. Genetics 147:581–588

    PubMed  CAS  Google Scholar 

  • Louvion J-F, Warth R, Picard D (1996) Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. Proc Natl Acad Sci USA 93:13937–13942

    Article  PubMed  CAS  Google Scholar 

  • Louvion J-F, Abbas-Terki T, Picard D (1998) Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 9:3071–3083

    PubMed  CAS  Google Scholar 

  • Lubben TH, Gatenby AA, Donaldson GK, Lorimer GH, Viitanen PV (1990) Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc Natl Acad Sci USA 87:7683–7687

    Article  PubMed  CAS  Google Scholar 

  • Luke MM, Sutton A, Arndt KT (1991) Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaj proteins. J Cell Biol 114:623–638

    Article  PubMed  CAS  Google Scholar 

  • Lupashin VV, Kononova SV, Ratner YN, Tsiomenko AB, Kulaev IS (1992) Identification of a novel secreted glycoprotein of the yeast Saccharomyces cerevisiae stimulated by heat shock. Yeast 8:157–169

    Article  PubMed  CAS  Google Scholar 

  • Lutz T, Westermann B, Neupert W, Herrmann JM (2001) The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J Mol Biol 307:815–825

    Article  PubMed  CAS  Google Scholar 

  • Mai B, Breeden L (1997) Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol 17:6491–6501

    PubMed  CAS  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    PubMed  CAS  Google Scholar 

  • Marsh JA, Kalton HM, Gaber RF (1998) Cns1 is an essential protein associated with the Hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7A cells. Mol Cell Biol 18:7353–7359

    PubMed  CAS  Google Scholar 

  • Martin J, Horwich AL, Hartl F-U (1992) Prevention of protein denaturation under heat stress by the chaperonin hsp60. Science 258:995–998

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Matouschek A, Rospert S, Schmid K, Glick BS, Schatz G (1995) Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci USA 92:6319–6323

    Article  PubMed  CAS  Google Scholar 

  • McClanahan T, McEntee K (1986) DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol Cell Biol 6:90–96

    PubMed  CAS  Google Scholar 

  • McDaniel D, Caplan AJ, Lee M-S, Adams CC, Fishel BR, Gross DS, Garrard WT (1989) Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element. Mol Cell Biol 9:4789–4798

    PubMed  CAS  Google Scholar 

  • McMullin TW, Hallberg RL (1988) A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol Cell Biol 8:371–380

    PubMed  CAS  Google Scholar 

  • Medoff G, Painter A, Kobayashi GS (1987) Mycelial- to yeast-phase transitions of the dimorphic fungi Blastomyces dermatitidis and Paracoccidiodes brasiliensis. J Bacteriol 169:4055–4060

    PubMed  CAS  Google Scholar 

  • Minchiotti G, Gargano S, Maresca B (1991) The intron-containing hsp82 gene of the dimorphic pathogenic fungus Histoplasma capsulatum is properly spliced in severe heat shock conditions. Mol Cell Biol 11:5624–5630

    PubMed  CAS  Google Scholar 

  • Minchiotti G., Gargano S, Maresca B (1992) Molecular cloning and expression of hsp82 gene of the dimorphic pathogenic fungus Histoplasma capsulatum. Biochim Biophys Acta 1131:103–107

    Article  PubMed  CAS  Google Scholar 

  • Mizumura H, Shibata T, Morishima N (1999) Stable association of 70-kDa heat shock protein induces latent multisite specificity of a unisite-specific endonuclease in yeast mitochondria. J Biol Chem 274:25682–25690

    Article  PubMed  CAS  Google Scholar 

  • Morano KA, Thiele DJ (1999) The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo. EMBO J 18:5953–5962

    Article  PubMed  CAS  Google Scholar 

  • Morano KA, Santoro N, Koch KA, Thiele DJ (1999) A tows-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol 19:402–411

    PubMed  CAS  Google Scholar 

  • Moriyama H, Edskes HK, Wickner RB (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hspl04 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 20:8916–8922

    Article  PubMed  CAS  Google Scholar 

  • Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Mukai H, Kuno T, Tanaka H, Hirata D, Miyakawa T, Tanaka C (1993) Isolation and characterization of SSE1 and SSE2, new members of the yeast HSP70 multigene family. Gene 132:57–66

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Pain D, Blobel G (1988) 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol 107:2051–2057

    Article  PubMed  CAS  Google Scholar 

  • Mrsa V, Seidl T, Gentzsch M, Tanner W (1997) Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Nadeau K, Das A, Walsh CT (1993) Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268:1479–1487

    PubMed  CAS  Google Scholar 

  • Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA 94:12949–12956

    Article  PubMed  CAS  Google Scholar 

  • Neves MJ, Jorge JA, Francois JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neuro-spora crassa. FEBS Lett 283:19–22

    Article  PubMed  CAS  Google Scholar 

  • Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic interactions between yeast chap-erones Hspl04 and Hsp70 in prion curing. Mol Cell Biol 19:1325–1333

    PubMed  CAS  Google Scholar 

  • Nguyen N, Shiozaki K (1999) Heat shock-induced activation of stress Map kinase is regulated by threonine-and tyrosine-specific phosphatases. Genes Dev 13: 1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Nicolet CM, Craig EA (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 9:3638–3646

    PubMed  CAS  Google Scholar 

  • Nieto-Sotelo J, Wiederrecht G, Okuda A, Parker CS (1990) The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807–817

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Endo T (1997) The yeast JEM1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J Biol Chem 272:12889–12892

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Yano R, Dodd J, Carles C, Nomura M (1993) Gene RRN4 in Saccharomyces cerevisiae encodes the A 12.2 subunit of RNA polymerase I and is essential only at high temperatures. Mol Cell Biol 13:114–122

    PubMed  CAS  Google Scholar 

  • Normington K, Kohno K, Kozutsumi Y, Gething M-J, Sambrook J (1989) S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Noventa-Jordao MA, Couto RM, Goldman MHS, Aguirre J, Iyer S, Caplan A, Terenzi HF, Goldman GH (1999) Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology 145:3229–3234

    PubMed  CAS  Google Scholar 

  • Noventa-Jordao MA, do Nascimento AM, Goldman MH, Terenzi HF, Goldman GH (2000) Molecular characterization of ubiquitin genes from Aspergillus nidulans: mRNA expression on different stress and growth conditions. Biochim Biophys Acta 1490:237–244

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Kopp M, Burgert M, Deuchler I, Kienle I, Holzer H (1994) Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Lett 344:225–228

    Article  PubMed  CAS  Google Scholar 

  • Obermann WMJ, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  PubMed  CAS  Google Scholar 

  • Ohki M, Uchida H, Tamura F, Ohki R, Nishimura S (1987) The Escherichia coli dnaj mutation affects biosynthesis of specific proteins, including those of the lac Operon. J Bacteriol 169:1917–1922

    PubMed  CAS  Google Scholar 

  • Oppermann H, Levinson W, Bishop JM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci USA 78:1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Ostermann J, Horwich AL, Neupert W, Hartl F-U (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Ostermann J, Voos W, Kang PJ, Craig EA, Neupert W, Pfanner N (1990) Precursor proteins in transit through mitochondrial contact sites interact with hsp70 in the matrix. FEBS Lett 277:281–284

    Article  PubMed  CAS  Google Scholar 

  • Ota IM, Varshavsky A (1992) A gene encoding a putative tyrosine phosphatase suppresses lethality of an N-end rule-dependent mutant. Proc Natl Acad Sci USA 89:2355–2359

    Article  PubMed  CAS  Google Scholar 

  • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    PubMed  CAS  Google Scholar 

  • Panaretou B, Piper PW (1992) The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 206:635–640

    Article  PubMed  CAS  Google Scholar 

  • Park H-O, Craig EA (1989) Positive and negative regulation of basal expression of a yeast HSP70 gene. Mol Cell Biol 9:2025–2033

    PubMed  CAS  Google Scholar 

  • Park S-K, Chon S-K, Yoo H-S (1995) A cDNA of Schizosac-charomyces pombe encoding a homologue of DnaJ-like protein. Biochim Biophys Acta 1262:87–90

    Article  PubMed  Google Scholar 

  • Parsell DA, Sanchez Y, Stitzel JD, Lindquist S (1991) Hspl04 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353:270–273

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  • Partaledis JA, Berlin V (1993) The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci USA 90: 5450–5454

    Article  PubMed  CAS  Google Scholar 

  • Patriarca EJ, Maresca B (1990) Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Exp Cell Res 190:57–64

    Article  PubMed  CAS  Google Scholar 

  • Pedruzzi I, Burckert N, Egger P, de Virgilia C (2000) Saccharomyces cerevisiae Ras-cAMP pathway controls post-diauxic-shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19: 2569–2579

    Article  PubMed  CAS  Google Scholar 

  • Petko L, Lindquist S (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45:885–894

    Article  PubMed  CAS  Google Scholar 

  • Pfund C, Huang P, Lopez-Hoyo N, Craig EA (2001) Divergent function properties of the ribosome-associated molecular chaperone Ssb compared with other Hsp70s. Mol Cell Biol 12:3773–3782

    CAS  Google Scholar 

  • Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Armstrong J (1992) Analysis of the BiP gene and identification of an ER retention signal in Schizosaccharomyces pombe. EMBO J 11:1583–1591

    PubMed  CAS  Google Scholar 

  • Pillar TM, Bradshaw RE (1991) Heat shock and stationary phase induce transcription of the Saccharomyces cerevisiae iso-2 cytochrome c gene. Curr Genet 20:185–188

    Article  PubMed  CAS  Google Scholar 

  • Piper PW, Curran B, Davies MW, Lockheart A, Reid G (1986) Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock. Eur J Biochem 161:525–531

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky N, Brambl R (1999) Glucose metabolism in Neurospora is altered by heat shock and by disruption of HSP30. Biochim Biophys Acta 1449:73–82

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky N, Brambl R (2002) Analysis of interactions between domains of a small heat shock protein, Hsp30 of Neurospora crassa. Cell Stress Chaperones 7:374–386

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky N, Gardner N, Lill R, Brambl R (1999) Disruption of the gene for Hsp30, an α-crystallin-related heat shock protein of Neurospora crassa, causes defects in import of proteins into mitochondria. Biol Chem 380:1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1987) Two developmental stages of Neurospora crassa utilize similar mechanisms for responding to heat shock but contrasting mechanisms for recovery. Mol Cell Biol 7:3041–3048

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1990) Gene sequence and analysis of hsp30, a small heat shock protein of Neurospora crassa which associates with mitochondria. J Biol Chem 265:15432–15440

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1995) Disruption of the gene for hsp30, an α-crystallin-related heat shock protein of Neurospora crassa, causes defects in thermotolerance. Proc Natl Acad Sci USA 92:5032–5036

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1998) Characterization of an 88-kDa heat shock protein of Neurospora crassa that interacts with Hsp30. J Biol Chem 273:11335–11341

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Paulson A, Hill EP, Glaser L, Brambl R (1992a) Heat shock gene expression in germinating ascospores of Neurospora tetrasperma. FEMS Microbiol Lett 90:117–122

    Article  CAS  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992b) Phylogeny of the a-crystallin-related heat shock proteins. J Mol Evol 35:537–545

    Article  PubMed  CAS  Google Scholar 

  • Powell MJ, Watts FZ (1990) Isolation of a gene encoding a mitochondrial HSP70 protein from Schizosaccharomyces pombe. Gene 95:105–110

    Article  PubMed  CAS  Google Scholar 

  • Praekelt UM, Meacock PA (1990) HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223:97–106

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C, Siligardi G, O’Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratri-copeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C, Panaretou B, Chohan S, Siligardi G, O’Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH (2000) The ATPase cycle of Hsp90 drives a molecular “clamp” via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392

    Article  PubMed  CAS  Google Scholar 

  • Raitt DC, Bradshaw RE, Pillar TM (1994) Cloning and characterisation of the cytochrome c gene of Aspergillus nidulans. Mol Gen Genet 242:17–22

    PubMed  CAS  Google Scholar 

  • Rassow J, Mohrs K, Koidl S, Barthelmess IB, Pfanner N, Tropschug M (1995) Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. Mol Cell Biol 15:2654–2662

    PubMed  CAS  Google Scholar 

  • Reading DS, Hallberg RL, Myers AM (1989) Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337:655–659

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro MJ, Reinders A, Boller T, Wiemken A, de Virgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25:571–581

    Article  PubMed  CAS  Google Scholar 

  • Riehl RM, Sullivan WP, Vroman BT, Bauer VJ, Pearson GR, Toft DO (1985) Immunological evidence that the non-hormone binding component of avian steroid receptors exists in a wide range of tissues and species. Biochemistry 24:6586–6591

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Rose MD, Misra LM, Vogel JP (1989) KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Rosenheck S, Choder M (1998) Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro. J Bacteriol 180:6187–6192

    PubMed  CAS  Google Scholar 

  • Rospert S, Junne T, Glick BS, Schatz G (1993) Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett 335:358–360

    Article  PubMed  CAS  Google Scholar 

  • Rospert S, Looser R, Dubaquie Y, Matouschek A, Glick BS, Schatz G (1996) Hsp60-independent protein folding in the matrix of yeast mitochondria. EMBO J 15:764–774

    PubMed  CAS  Google Scholar 

  • Rossi JM, Lindquist S (1989) The intracellular location of yeast heat-shock protein 26 varies with metabolism. J Cell Biol 108:425–439

    Article  PubMed  CAS  Google Scholar 

  • Rothblatt JA, Deshaies RJ, Sanders SL, Daum G, Schekman R (1989) Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J Cell Biol 109:2641–2652

    Article  PubMed  CAS  Google Scholar 

  • Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA (1993) Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Sac-charomyces cerevisiae. Mol Cell Biol 13:1034–1041

    PubMed  CAS  Google Scholar 

  • Rowley N, Prip-Buus C, Westermann B, Brown C, Schwarz E, Barrell B, Neupert W (1994) Mdj1p, a novel chaper-one of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77:249–259

    Article  PubMed  CAS  Google Scholar 

  • Russo P, Kalkkinen N, Sareneva H, Paakkola J, Makarow M (1992) A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci USA 89:3671–3675

    Article  PubMed  CAS  Google Scholar 

  • Russo P, Simonen M, Uimari A, Teesalu T, Makarow M (1993) Dual regulation by heat and nutrient stress of the yeast HSP150 gene encoding a secretory glycoprotein. Mol Gen Genet 239:273–280

    PubMed  CAS  Google Scholar 

  • Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  PubMed  CAS  Google Scholar 

  • Sadler I, Chiang A, Kurihara T, Rothblatt J, Way J, Silver P (1989) A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J Cell Biol 109:2665–2675

    Article  PubMed  CAS  Google Scholar 

  • Saltsman KA, Prentice HL, Kingston RE (1999) Mutations in the Schizosaccharomyces pombe heat shock factor that differentially affect responses to heat and cadmium stress. Mol Gen Genet 261:161–169

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    PubMed  CAS  Google Scholar 

  • Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW (1992) Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–365

    Article  PubMed  CAS  Google Scholar 

  • Saris N, Holkeri H, Craven RA, Stirling CJ, Makarow M (1997) The Hsp70 homologue Lhs1p is involved in a novel function of the yeast endoplasmic reticulum, refolding and stabilization of heat-denatured protein aggregates. J Cell Biol 137:813–824

    Article  PubMed  CAS  Google Scholar 

  • Scherer PE, Krieg UC, Hwang ST, Vestweber D, Schatz G (1990) A precursor protein partly translocated into yeast mitochondria is bound to a 70-kd mitochondrial stress protein. EMBO J 9:4315–4322

    PubMed  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of the TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101:199–210

    Article  PubMed  CAS  Google Scholar 

  • Schilke B, Forster J, Davis J, James P, Walter W, Laloraya S, Johnson J, Miao B, Craig E (1996) The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA. J Cell Biol 134:603–613

    Article  PubMed  CAS  Google Scholar 

  • Schirmer EC, Ware DM, Queitsch C, Kowal AS, Lindquist SL (2001) Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci USA 98:914–919

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M, Neupert W, Langer T (1995) Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. EMBO J 14:3434–3444

    PubMed  CAS  Google Scholar 

  • Schneider H-C, Westermann B, Neupert W, Brunner M (1996) The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import. EMBO J 15:5796–5803

    PubMed  CAS  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    PubMed  CAS  Google Scholar 

  • Schwimmer C, Masison DC (2002) Antagonistic interactions between yeast [PSI+] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 22:3590–3598

    Article  PubMed  CAS  Google Scholar 

  • Sebastian J, Kraus B, Sancar GB (1990) Expression of the yeast PHR1 gene is induced by DNA-damaging agents. Mol Cell Biol 10:4630–4637

    PubMed  CAS  Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9:543–550

    PubMed  CAS  Google Scholar 

  • Shearer G, Birge CH, Yuckenberg PD, Kobayashi GS, Medoff G (1987) Heat-shock proteins induced during the mycelial-to-yeast transitions of strains of Histoplasma capsulatum. J Gen Microbiol 133:3375–3382

    PubMed  CAS  Google Scholar 

  • Shin D-Y, Matsumoto K, Iida H, Uno I, Ishikawa T (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7:244–250

    PubMed  CAS  Google Scholar 

  • Shiozaki K, Akhavan-Niaki H, McGowan CH, Russell P (1994) Protein phosphatase 2C, encoded by ptc1 +, is important in the heat shock response of Schizosaccharomyces pombe. Mol Cell Biol 14:3742–3751

    PubMed  CAS  Google Scholar 

  • Shirayama M, Kawakami K, Matsui Y, Tanaka K, Tohe A (1993) MSB, a multicopy suppressor of mutants hyperactivated in the RAS-cAMP pathway, encodes a novel HSP70 protein of Saccharomyces cerevisiae. Mol Gen Genet 240:323–332

    PubMed  CAS  Google Scholar 

  • Silar P, Butler G, Thiele DJ (1991) Heat shock transcription factor activates transcription of the yeast metalloth-ionein gene. Mol Cell Biol 11:1232–1238

    PubMed  CAS  Google Scholar 

  • Silberstein S, Schlenstedt G, Silver PA, Gilmore R (1998) A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol 143: 921–933

    Article  PubMed  CAS  Google Scholar 

  • Silver JC, Brunt SA, Kyriakopoulou G, Borkar M, Nazarian-Armavil V (1993) Regulation of two different hsp70 transcript populations in steroid hormone-induced fungal development. Dev Genet 14:6–14

    Article  PubMed  CAS  Google Scholar 

  • Silver PA, Way JC (1993) Eukaryotic DnaJ homologs and the specificity of hsp70 activity. Cell 74:5–6

    Article  PubMed  CAS  Google Scholar 

  • Simons JF, Ebersold M, Helenius A (1998) Cell wall 1,6-β-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17:396–405

    Article  PubMed  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  PubMed  CAS  Google Scholar 

  • Slater MR, Craig EA (1987) Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:1906–1916

    PubMed  CAS  Google Scholar 

  • Smith DA, Toone WM, Chen D, Bahler J, Jones N, Morgan BA, Quinn J (2002) The Srk1 protein kinase is a target for the Styl stress-activated MAPK in fission yeast. J Biol Chem 277:33411–33421

    Article  PubMed  CAS  Google Scholar 

  • Sondermann H, Ho AK, Listenberger LL, Siegers K, Moarefi I, Wente SR, Hartl FU, Young JC (2002) Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae. J Biol Chem 277:33220–33227

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer N, Lopez N, Craig EA, Lindquist S (2001) The role of Sis1 in the maintenance of the [RAQ +] prion. EMBO J 20:2435–2442

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855–864

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Nelson HCM (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Lewis MJ, Pelham HRB (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81–84

    Article  PubMed  CAS  Google Scholar 

  • Squires CL, Pedersen S, Ross BM, Squires C (1991) ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol 173:4254–4262

    PubMed  CAS  Google Scholar 

  • Stanhill A, Schick N, Engelberg D (1999) The yeast ras/cyclic AMP pathway induced invasive growth by suppressing the cellular stress response. Mol Cell Biol 19:7529–7538

    PubMed  CAS  Google Scholar 

  • Staples RC, Hoch HC, Freve P, Bourett TM (1989) Heat shock-induced development of infection structures by bean rust uredospore germlings. Exp Mycol 13: 149–157

    Article  CAS  Google Scholar 

  • Stemmann O, Neidig A, Kocher T, Wilm M, Lechner J (2002) Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore. Proc Natl Acad Sci USA 99:8585–8590

    Article  PubMed  CAS  Google Scholar 

  • Strub A, Rottgers K, Voos W (2002) The Hsp70 peptide-binding domain determines the interaction of the ATPase domain with Tim44 in mitochondria. EMBO J 21:2626–2635

    Article  PubMed  CAS  Google Scholar 

  • Susek RE, Lindquist SL (1989) Hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function. Mol Cell Biol 9:5265–5271

    PubMed  CAS  Google Scholar 

  • Swoboda RK, Bertram G, Budge S, Gooday GW, Gow NAR, Brown AJP (1995) Structure and regulation of the HSP90 gene from the pathogenic fungus Candida albicans. Infect Immun 63:4506–4514

    PubMed  CAS  Google Scholar 

  • Sykes K, Gething M-J, Sambrook J (1993) Proline iso-merases function during heat shock. Proc Natl Acad Sci USA 90:5853–5857

    Article  PubMed  CAS  Google Scholar 

  • Taccioli GE, Grotewold E, Aisemberg GO, Judewicz ND (1989) Ubiquitin expression in Neurospora crassa: cloning and sequencing of a polyubiquitin gene. Nucleic Acids Res 17:6153–6165

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Astumi S, Shioda R, Ueno M, Uritani M, Ushimaru T (2002) A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. J Biol Chem 277:22140–22146

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  PubMed  CAS  Google Scholar 

  • Tamai KT, Liu X, Silar P, Sosinowski T, Thiele DJ (1994) Heat shock transcription factor activates yeast metalloth-ionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 14:8155–8165

    PubMed  CAS  Google Scholar 

  • Tanaka K, Matsumoto K, Tohe A (1988) Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J 7:495–502

    PubMed  CAS  Google Scholar 

  • Taricani L, Feilotter HE, Weaver C, Young PG (2001) Expression of hsp16 in response to nucleotide depletion is regulated via spc1 MAPK pathway in Schizosac-charomyces pombe. Nucleic Acids Res 29:3030–3040

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    PubMed  CAS  Google Scholar 

  • Thornalley PJ, Vasak M (1985) Possible role for metalloth-ionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    Article  PubMed  CAS  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    Article  PubMed  CAS  Google Scholar 

  • Tohe A, Yasunaga S, Nisogi H, Tanaka K, Oguchi T, Matsui Y (1993) Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9:481–494

    Article  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Kohno K (1992) Purification and characterization of BiP/Kar2 protein from Saccharomyces cerevisiae. J Biol Chem 267 17553–17559

    PubMed  CAS  Google Scholar 

  • Trotter EW, Kao CM-F, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277:44817–44825

    Article  PubMed  CAS  Google Scholar 

  • Tuite MF, Bentley NJ, Bossier P, Fitch IT (1990) The structure and function of small heat shock proteins: analysis of the Saccharomyces cerevisiae Hsp26 protein. Antonie Leeuwenhoek 58:147–154

    Article  PubMed  CAS  Google Scholar 

  • Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210

    Google Scholar 

  • Varela JCS, van Beekvelt C, Planta RJ, Mager WH (1992) Osmostress-induced changes in yeast gene expression. Mol Microbiol 6:2183–2190

    Article  PubMed  CAS  Google Scholar 

  • Vassilev A, Plesofskv-Vig N, Brambl R (1992) Isolation, partial amino acid sequence, and cellular distribution of heat-shock protein hsp98 from Neurospora crassa. Biochim Biophys Acta 1156:1–6

    Article  PubMed  CAS  Google Scholar 

  • Viaud MC, Baihadere PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930

    Article  PubMed  CAS  Google Scholar 

  • Voisine C, Cheng YC, Ohlson M, Schilke B, Hoff K, Beinert H, Marszalek J, Craig EA (2001) Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98:1483–1488

    Article  PubMed  CAS  Google Scholar 

  • Wagner I, Arlt H, van Dyck L, Langer T, Neupert W (1994) Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 13:5135–5145

    PubMed  CAS  Google Scholar 

  • Warmka J, Hanneman J, Lee J, Amin D, Ota I (2001) Ptc1, a type 2C Ser/Thr phosphatase inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hogl. Mol Cell Biol 21:51–60

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Creanor J, Fantes P (1996) A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock-inducible 40kDa cyclophilin-like protein. EMBO J 15:447–456

    PubMed  CAS  Google Scholar 

  • Weitzel G, Pilatus U, Rensing L (1987) The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Exp Cell Res 170:64–79

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7:2568–2577

    PubMed  CAS  Google Scholar 

  • Westermann B, Neupert W (1997) Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast Saccharomyces cerevisiae. J Mol Biol 272:477–483

    Article  PubMed  CAS  Google Scholar 

  • Westermann B, Prip-Buus C, Neupert W, Schwarz E (1995) The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria. EMBO J 14:3452–3460

    PubMed  CAS  Google Scholar 

  • Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13: 3481–3486

    PubMed  CAS  Google Scholar 

  • Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853

    Article  PubMed  CAS  Google Scholar 

  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266:12406–12411

    PubMed  CAS  Google Scholar 

  • Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, Millar JB, Jones N (1996) The Atf1 transcription factor is a target for the Styl stress activated MAP kinase pathway in fission yeast. Genes Dev 10: 2289–2301

    Article  PubMed  CAS  Google Scholar 

  • Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryotic Cell 1:163–173

    Article  PubMed  CAS  Google Scholar 

  • Winkler K, Kienle I, Burgert M, Wagner J-C, Holzer H (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett 291:269–272

    Article  PubMed  CAS  Google Scholar 

  • Wolschek MF, Kubicek CP (1997) The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes tpsA and tpsB. J Biol Chem 272:2729–2735

    Article  PubMed  CAS  Google Scholar 

  • Wotton D, Freeman K, Shore D (1996) Multimerization of Hsp42p, a novel heat shock protein of Saccharomyces cerevisiae, is dependent on a conserved carboxyl-terminal sequence. J Biol Chem 271:2717–2723

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  PubMed  CAS  Google Scholar 

  • Yaglom JA, Goldberg AL, Finley D, Sherman MY (1996) The molecular chaperone Ydj1 is required for the p34CDC28-dependent phosphorylation of the cyclin Cln3 that signals its degradation. Mol Cell Biol 16: 3679–3684

    PubMed  CAS  Google Scholar 

  • Yan W, Craig EA (1999) The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sisl. Mol Cell Biol 19:7751–7758

    PubMed  CAS  Google Scholar 

  • Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17:4809–4817

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Gahl W, Hamer D (1991) Role of heat shock transcription factor in yeast metallothionein gene expression. Mol Cell Biol 11 3676–3681

    PubMed  CAS  Google Scholar 

  • Yoshida H, Yanagi H, Yura T (1995) Cloning and characterization of the mitochondrial HSP60-encoding gene of Schizosaccharomyces pombe. Gene 167:163–166

    Article  PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11:1062–1068

    PubMed  CAS  Google Scholar 

  • Young BP, Craven RA, Reid PJ, Willer M, Stirling CJ (2001) Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J 20:262–271

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J 19:5930–5940

    Article  PubMed  CAS  Google Scholar 

  • Yun D-J, Zhao Y, Pardo JM, Narasimhan ML, Damsz B, Lee H, Abad LR, D’Urzo MP, Hasegawa PM, Bressan RA (1997) Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci USA 94:7082–7087

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Nagai H, Mori H (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350

    Article  PubMed  CAS  Google Scholar 

  • Zahringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn4/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406

    Article  PubMed  CAS  Google Scholar 

  • Zaitsevskaya-Carter T, Cooper JA (1997) Spm1, a stress-activated MAP kinase that regulates morphogenesis in S. pombe. EMBO J 16:1318–1331

    Article  PubMed  CAS  Google Scholar 

  • Zhan K, Vattem KM, Bauer BN, Dever TE, Chen J-J, Wek RC (2002) Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for resistance to environmental stresses. Mol Cell Biol 22:7134–7146

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11:3787–3796

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lamm R, Pillonel C, Lam S, Xu J-R (2002) Osmoregulation and fungicide resistance: the Neu-rospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68:532–538

    Article  PubMed  CAS  Google Scholar 

  • Zhong T, Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73:1175–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plesofsky, N. (2004). Heat Shock Proteins and the Stress Response. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics