• S. Boisnard
  • G. Ruprich-Robert
  • M. Picard
  • V. Berteaux-Lecellier
Part of the The Mycota book series (MYCOTA, volume 3)


Microbodies were first observed by Rhodin (1954). These single-membrane organelles, whose size varies between 0.1 and lμm, are present in nearly all eukaryotic cells. Since their isolation by de Duve and Baudhuin (1966), they have been termed “peroxisomes” due to the close association in their matrix of both H2O2-generating and -degrading enzymes (Sect. II). While dispensable in yeasts, their importance in humans was demonstrated by the discovery of the first peroxisomal disease (Goldfisher et al. 1973), which initiated the beginning of serious studies of these organelles. Peroxisomal diseases are due to the absence of either one or several metabolic functions of peroxisomes (reviewed by Lazarow 1995; Wanders et al. 1995; Gould and Valle 2000; Moser 2000). The multiple metabolic deficiencies are due to impairment in peroxisome biogenesis and result in peroxisome biogenesis disorders, the most severe of which is Zellweger syndrome.


Filamentous Fungus Yarrowia Lipolytica Nematophagous Fungus Zellweger Syndrome Peroxisome Biogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amor C, Dominguez AI, de Lucas JR, Laborda F (2000) The catabolite inactivation of Aspergillus nidulans isoci-trate lyase occurs by specific autophagy of peroxisomes. Arch Microbiol 174:59–66PubMedCrossRefGoogle Scholar
  2. Baerends RJ, Salomons FA, Faber KN, Kiel JA, van der Klei IJ, Veenhuis M (1997) Deviant Pex3p levels affect normal peroxisome formation in Hansenula polymorpha: high steady-state levels of the protein fully abolish matrix protein import. Yeast 13:1437–1448PubMedCrossRefGoogle Scholar
  3. Baerends RJ, Faber KN, Kiel JA, van der Klei IJ, Harder W, Veenhuis M (2000) Sorting and function of peroxisomal membrane proteins. FEMS Microbiol Rev 24:291–301PubMedCrossRefGoogle Scholar
  4. Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H (1999) Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 274:22208–22216PubMedCrossRefGoogle Scholar
  5. Belcour L, Sainsard-Chanet A, Jamet-VIierny C, Picard M (1999) Stability of the mitochondrial genome of Podospora anserina and its genetic control. In: Lestienne P (ed) Mitochondrial diseases: models and methods. Springer, Berlin Heidelberg New York, pp 209–227CrossRefGoogle Scholar
  6. Bellu AR, Komori M, van der Klei IJ, Kiel JA, Veenhuis M (2001) Peroxisome biogenesis and selective degradation converge at Pexl4p. J Biol Chem 276:44570–44574PubMedCrossRefGoogle Scholar
  7. Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM (1995) A nonmam-malian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81:1043–1051PubMedCrossRefGoogle Scholar
  8. Boisnard S, Zickler D, Picard M, Berteaux-Lecellier V (2003) Overexpression of a human and a fungal ABC transporter similarly suppresses the differentiation defects of a fungal peroxisomal mutant but introduces pleiotropic cellular effects. Mol Microbiol 49:1287–1296PubMedCrossRefGoogle Scholar
  9. Braiterman LT, Zheng S, Watkins PA, Geraghty MT, Johnson G, McGuinness MC, Moser AB, Smith KD (1998) Suppression of peroxisomal membrane protein defects by peroxisomal ATP binding cassette (ABC) proteins. Hum Mol Genet 7:239–247PubMedCrossRefGoogle Scholar
  10. Catlett NL, Weisman LS (2000) Divide and multiply: organelle partitioning in yeast. Curr Opin Cell Biol 12:509–516PubMedCrossRefGoogle Scholar
  11. Chelstowska A, Butow RA (1995) RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J Biol Chem 270:18141–18146Google Scholar
  12. Chiang HL, Schekman R, Hamamoto S (1996) Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 271:9934–9941PubMedCrossRefGoogle Scholar
  13. Cohen G, Fessl F, Traczyk A, Rytka J, Ruis H (1985) Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the ctal mutation. Mol Gen Genet 200:74–79PubMedCrossRefGoogle Scholar
  14. Coppin-Raynal E, Dequart-Chablat M, Picard M (1988) Genetics of ribosomes and translational accuracy in Podospora anserina. In: Tuite M, Picard M, Bolotin-Fukuhara M (eds) Genetics of translation, NATO ASI Series. Springer, Berlin Heidelberg New York, pp 431–442CrossRefGoogle Scholar
  15. Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428PubMedGoogle Scholar
  16. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357PubMedGoogle Scholar
  17. De Lucas JR, Valenciano S, Dominguez AI, Turner G, Laborda F (1997) Characterization of oleate-nonuti-lizing mutants of Aspergillus nidulans isolated by the 3-amino-l,2,4-triazole positive selection method. Arch Microbiol 168:504–512PubMedCrossRefGoogle Scholar
  18. Dijksterhuis J, Veenhuis M, Harder W, Nordbring-Hertz B (1994) Nematophagous fungi: physiological aspects and structure-function relationships. Adv Microb Physiol 36:111–143PubMedCrossRefGoogle Scholar
  19. Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3PubMedCrossRefGoogle Scholar
  20. Einwachter H, Sowinski S, Kunau WH, Schliebs W (2001) Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pexl8p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep 2:1035–1039Google Scholar
  21. Eitzen GA, Szilard RK, Rachubinski RA (1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol 137:1265–1278PubMedCrossRefGoogle Scholar
  22. Epstein CB, Waddle JA, Hale W IV, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genomewide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308PubMedGoogle Scholar
  23. Faber KN, Heyman JA, Subramani S (1998) Two AAA family peroxins PpPexlp and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol Cell Biol 18: 936–943PubMedGoogle Scholar
  24. Faber KN, Haan GJ, Baerends RJ, Kram AM, Veenhuis M (2002) Normal peroxisome development from vesicles induced by truncated Hansenula polymorpha Pex3p. J Biol Chem 277:11026–11033PubMedCrossRefGoogle Scholar
  25. Fischer R (1999) Nuclear movement in filamentous fungi. FEMS Microbiol Rev 23:39–68PubMedCrossRefGoogle Scholar
  26. Gärtner J, Obie C, Watkins P, Valle D (1994) Restoration of peroxisome biogenesis in a peroxisome-deficient mammalian cell line by expression of either the 35 kDa or the 70 kDa peroxisomal membrane proteins. J Inherit Metab Dis 17:327–329PubMedCrossRefGoogle Scholar
  27. Gärtner J, Brosius U, Obie C, Watkins PA, Valle D (1998) Restoration of PEX2 peroxisome assembly defects by overexpression of PMP70. Eur J Cell Biol 76:237–245PubMedCrossRefGoogle Scholar
  28. Ghaedi K, Tamura S, Okumoto K, Matsuzono Y, Fujiki Y (2000) The peroxin pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 11:2085–2102PubMedGoogle Scholar
  29. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Ritch RH, Norton WT, Rapin I, Gartner L (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64PubMedCrossRefGoogle Scholar
  30. Götte K, Girzalsky W, Linkert M, Baumgart E, Kammerer S, Kunau WH, Erdmann R (1998) Pexl9p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18:616–628PubMedGoogle Scholar
  31. Gould SJ, Valle D (2000) Peroxisome biogenesis disorders — Genetics and cell biology. Trends Genet 16:340–345PubMedCrossRefGoogle Scholar
  32. Gould SJ, Collins CS (2002) Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 3:382–389PubMedCrossRefGoogle Scholar
  33. Gunkel K, van der Klei IJ, Barth G, Veenhuis M (1999) Selective peroxisome degradation in Yarrowia lipolytica after a shift of cells from acetate/oleate/ethylamine into glucose/ammonium sulfate-containing media. FEBS Lett 451:1–4PubMedCrossRefGoogle Scholar
  34. Gurvitz A, Rottensteiner H, Hiltunen JK, Binder M, Dawes IW, Ruis H, Hamilton B (1997) Regulation of the yeast SPS 19 gene encoding peroxisomal 2,4-dienoyl-CoA reductase by the transcription factors Pip2p and Oaf1p: beta-oxidation is dispensable for Saccharomyces cerevisiae sporulation in acetate medium. Mol Microbiol 26:675–685PubMedCrossRefGoogle Scholar
  35. Gurwitz A, Rottensteiner H, Hamilton B, Ruis H, Hartig A, Dawes IW, Binder M (1998) Fate and role of peroxisomes during the life cycle of the yeast Saccharomyces cerevisiae: inheritance of peroxisomes during meiosis. Hitochem Cell Biol 110:15–26CrossRefGoogle Scholar
  36. Gurvitz A, Hiltunen JK, Erdmann R, Hamilton B, Hartig A, Ruis H, Rottensteiner H (2001) Saccharomyces cerevisiae Adr1p governs fatty acid beta-oxidation and peroxisome proliferation by regulating POX1 and PEX11. J Biol Chem 276:31825–31830Google Scholar
  37. Harper CC, South ST, McCaffery JM, Gould SJ (2002) Peroxisomal membrane protein import does not require pexl7p. J Biol Chem 277:16498–16504PubMedCrossRefGoogle Scholar
  38. Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155: 979–990PubMedCrossRefGoogle Scholar
  39. Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231PubMedCrossRefGoogle Scholar
  40. Jia Y, Rothermel B, Thornton J, Butow RA (1997) A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 17:1110–1117PubMedGoogle Scholar
  41. Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter, A, Dujon B, Ansorge W, Tabak HF (1999) Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10:1859–1872PubMedGoogle Scholar
  42. Karpichev IV, Small GM (1998) Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol Cell Biol 18:6560–6570PubMedGoogle Scholar
  43. Karpichev IV, Luo Y, Marians RC, Small GM (1997) A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of beta-oxidation enzymes in Saccharomyces cerevisiae. Mol Cell Biol 17:69–80PubMedGoogle Scholar
  44. Kiel JA, Hilbrands RE, van der Klei IJ, Rasmussen SW, Salomons FA, van der Heide M, Faber KN, Cregg JM, Veenhuis M (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15:1059–1078Google Scholar
  45. Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342PubMedCrossRefGoogle Scholar
  46. Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appresso-rium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13:1945–1957PubMedGoogle Scholar
  47. Klein AT, van den Berg M, Bottger G, Tabak HF, Distel B (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277:25011–25019Google Scholar
  48. Komori M, Rasmussen SW, Kiel JA, Baerends RJ, Cregg JM, van der Klei IJ, Veenhuis M (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J 16:44–53PubMedCrossRefGoogle Scholar
  49. Kos W, Kal AJ, van Wilpe S, Tabak HF (1995) Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. Biochim Biophys Acta 1264:79–86PubMedCrossRefGoogle Scholar
  50. Kunau WH, Kionka C, Ledebur A, Mateblowski M, Moreno De La Garza M, Schultz-Borchard U, Thieringer R, Veenhuis M (1987) ß-Oxidation systems in eukaryotic microorganisms. In: Fahimi HD, Sies H (eds) Peroxisomes in biology and medicine. Springer, Berlin Heidelberg New York, pp 128–140CrossRefGoogle Scholar
  51. Kunze M, Kragler F, Binder M, Hartig A, Gurvitz A (2002) Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium. Eur J Biochem 269:915–922PubMedCrossRefGoogle Scholar
  52. Lambkin GR, Rachubinski RA (2001) Yarrowia lipolytica cells mutant for the peroxisomal peroxin Pexl9p contain structures resembling wild-type peroxisomes. Mol Biol Cell 12:3353–3364Google Scholar
  53. Lazarow PB (1995) Peroxisome structure, function, and biogenesis-human patients and yeast mutants show strikingly similar defects in peroxisome biogenesis. J Neuropathol Exp Neurol 54:720–725PubMedCrossRefGoogle Scholar
  54. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530PubMedCrossRefGoogle Scholar
  55. Li X, Gould SJ (2002) PEX11 promotes peroxisome division independently of peroxisome metabolism. J Cell Biol 156:643–651Google Scholar
  56. Liao X, Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61–71Google Scholar
  57. Liao XS, Small WC, Srere PA, Butow RA (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 11:38–46PubMedGoogle Scholar
  58. Liu Z, Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19:6720–6728PubMedGoogle Scholar
  59. Liu Z, Sekito T, Epstein CB, Butow RA (2001) RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p. EMBO J 20:7209–7219PubMedCrossRefGoogle Scholar
  60. Luo Y, Karpichev IV, Kohanski RA, Small GM (1996) Purification, identification, and properties of a Saccharomyces cerevisiae oleate-activated upstream activating sequence-binding protein that is involved in the activation of POX1. J Biol Chem 271:12068–12075PubMedCrossRefGoogle Scholar
  61. Mathur J, Mathur N, Hulskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045PubMedCrossRefGoogle Scholar
  62. Moser HW (2000) Molecular genetics of peroxisomal disorders. Front Biosci 5:D298–306PubMedCrossRefGoogle Scholar
  63. Müller WH, van der Krift TP, Krouwer AJJ, Wösten HAB, van der Voort LHM, Smaa1 EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495PubMedGoogle Scholar
  64. Osiewacz HD, Scheckhuber CQ (2002) Senescence in Podospora anserina. In: Osiewacz HD (ed) Molecular biology of fungal development. Dekker, New York, pp 87–108CrossRefGoogle Scholar
  65. Palmieri L, Rottenstainer H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059PubMedCrossRefGoogle Scholar
  66. Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65: 563–607PubMedCrossRefGoogle Scholar
  67. Purdue PE, Lazarow PB (2001) Peroxisome biogenesis. Annu Rev Cell Dev Biol 17:701–752PubMedCrossRefGoogle Scholar
  68. Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed convoluted tubule cells of the mouse kidney. Thesis, StockholmGoogle Scholar
  69. Rossignol JL, Picard M (1991) Ascobolus immersus and Podospora anserina-, sex, recombination, silencing and death. In: Bennet JW, Lasure LL (eds) More gene manipulations in Fungi. Academic Press, New York, pp 266–290CrossRefGoogle Scholar
  70. Rottensteiner H, Kal AJ, Filipits M, Binder M, Hamilton B, Tabak HF, Ruis H (1996) Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. EMBO J 15:2924–2934PubMedGoogle Scholar
  71. Ruprich-Robert G, Berteaux-Lecellier V, Zickler D, Panvier-Adoutte A, Picard M (2002a) Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in podospora. Genetics 161:1089–1099PubMedGoogle Scholar
  72. Ruprich-Robert G, Zickler D, Berteaux-Lecellier V, Vélot C, Picard M (2002b) Lack of mitochondrial citrate synthase discloses a new meiotic checkpoint in a strict aerobe. EMBO J 21:6440–6451PubMedCrossRefGoogle Scholar
  73. Sacksteder KA, Gould SJ (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34:623–652PubMedCrossRefGoogle Scholar
  74. Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944PubMedCrossRefGoogle Scholar
  75. Salomons FA, Kiel JA, Faber KN, Veenhuis M, van der Klei IJ (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha pexl4 null mutant. J Biol Chem 275:12603–12611PubMedCrossRefGoogle Scholar
  76. Schrader M, King SJ, Stroh TA, Schroer TA (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113:3663–3671PubMedGoogle Scholar
  77. Sekito T, Thornton J, Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtglp and Rtg3p. Mol Biol Cell 11:2103–2115PubMedGoogle Scholar
  78. Sekito T, Liu Z, Thornton J, Butow RA (2002) Independent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Mol Biol Cell 13:795–804PubMedCrossRefGoogle Scholar
  79. Silar P, Daboussi MJ (1999) Non-conventional infectious elements in filamentous fungi. Trends Genet 15:141–145PubMedCrossRefGoogle Scholar
  80. Simon M, Adam G, Rapatz W, Spevak W, Ruis H (1991) The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol 11:699–704PubMedGoogle Scholar
  81. Simon M, Binder M, Adam G, Hartig A, Ruis H (1992) Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast 8:303–309PubMedCrossRefGoogle Scholar
  82. South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144: 255–266PubMedCrossRefGoogle Scholar
  83. South ST, Baumgart E, Gould SJ (2001) Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis. Proc Natl Acad Sci USA 98:12027–12031PubMedCrossRefGoogle Scholar
  84. Steinberg G (1998) Organelle transport and molecular motors in Fungi. Fungal Genet Biol 24:161–177PubMedCrossRefGoogle Scholar
  85. Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188PubMedGoogle Scholar
  86. Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418PubMedCrossRefGoogle Scholar
  87. Suelmann R, Fischer R (2000) Mitochondrial movement and morphology depend on an intact actin cytoskele-ton in Aspergillus nidulans. Cell Motil Cytoskeleton 45:42–50PubMedCrossRefGoogle Scholar
  88. Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217Google Scholar
  89. Thiemann M, Schrader M, Volkl A, Baumgart E, Fahimi HD (2000) Interaction of peroxisomes with microtubules. In vitro studies using a novel peroxisome-microtubule binding assay. Eur J Biochem 267:6264–6275PubMedCrossRefGoogle Scholar
  90. Titorenko VI, Rachubinski RA (2001) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368PubMedCrossRefGoogle Scholar
  91. Titorenko VI, Keizer I, Harder W, Veenhuis M (1995) Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J Bacteriol 177:357–363PubMedGoogle Scholar
  92. Titorenko VI, Ogrydziak DM, Rachubinski RA (1997) Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 17:5210–5226PubMedGoogle Scholar
  93. Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157PubMedCrossRefGoogle Scholar
  94. Tuttle DL, Dunn WA Jr (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108:25–35PubMedGoogle Scholar
  95. Valenciano S, De Lucas JR, Pedregosa A, Monistrol IF, Laborda F (1996) Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166:336–341PubMedCrossRefGoogle Scholar
  96. Valenciano S, de Lucas JR, van der Klei I, Veenhuis M, Laborda F (1998) Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy. Arch Microbiol 170:370–376PubMedCrossRefGoogle Scholar
  97. Van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197PubMedCrossRefGoogle Scholar
  98. Van der Klei IJ, Veenhuis M (1997) Yeast peroxisomes: function and biogenesis of a versatile cell organelle. Trends Microbiol 5:502–509PubMedCrossRefGoogle Scholar
  99. Van der Klei IJ, Harder W, Veenhuis M (1991) Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 7:195–209PubMedCrossRefGoogle Scholar
  100. Van der Klei IJ, Hilbrands RE, Kiel JA, Rasmussen SW, Cregg JM, Veenhuis M (1998) The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J 17:3608–3618PubMedCrossRefGoogle Scholar
  101. Van der Leij I, Van en Berg M, Boot R, Franse M, Distel B, Tabak HF (1992) Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 119:153–162PubMedCrossRefGoogle Scholar
  102. Van Roermund CWT, Drissen R, van de Berg M, Ijlst L, Hettema EH, Tabak HF, Waterham HM, Wanders RJA (2001) Identification of a peroxisomal ATP carrier required for medum-chain fatty acid β-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329PubMedCrossRefGoogle Scholar
  103. Veenhuis M, Keizer-Gunnink I, Harder W (1980) An electron microscopical study of the development of peroxisomes during formation and germination of ascospores in the methylotrophic yeast Hansenula polymorpha. Antonie Van Leeuwenhoek 46:129–141PubMedCrossRefGoogle Scholar
  104. Veenhuis M, Douma A, Harder W, Osumi M (1983) Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 134: 193–203PubMedCrossRefGoogle Scholar
  105. Veenhuis M, Nordbring-Hertz B, Harde W (1984) Occurrence, characterization and development of two different types of microbodies in the nematophagous fungus Arthrobotrys oligospora. FEMS Microbiol Lett 24:31–38CrossRefGoogle Scholar
  106. Veenhuis M, Nordbring-Hertz B, Harder W (1985a) Development of fate of electron-dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie Van Leeuwenhoek 51:399–407PubMedCrossRefGoogle Scholar
  107. Veenhuis M, Nordbring-Hertz B, Harder W (1985b) An electron-microscopical analysis of capture and initial stages of penetration of nematodes by Arthrobotrys oligospora. Antonie Van Leeuwenhoek 51:385–398PubMedCrossRefGoogle Scholar
  108. Veenhuis M, Harder W, Nordbring-Hertz B (1989a) Occurrence and metabolic significance of microbodies in trophic hyphae of the nematophagous fungus Arthrobotrys oligospora. Antonie Van Leeuwenhoek 56:241–249PubMedCrossRefGoogle Scholar
  109. Veenhuis M, van Wijk C, Wyss U, Nordbring-Hertz B, Harder W (1989b) Significance of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie Van Leeuwenhoek 56:251–261PubMedCrossRefGoogle Scholar
  110. Veenhuis M, Komori M, Salomons F, Hilbrands RE, Hut H, Baerends RJ, Kiel JA, van der Klei IJ (1996) Peroxisomal remnants in peroxisome-deficient mutants of the yeast Hansenula polymorpha. FEBS Lett 383:114–118PubMedCrossRefGoogle Scholar
  111. Voorn-Brouwer T, Kragt A, Tabak HF, Distel B (2001) Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular transport. J Cell Sci 114:2199–2204PubMedGoogle Scholar
  112. Wanders RJ, Schutgens RB, Barth PG (1995) Peroxisomal disorders: a review. J Neuropathol Exp Neurol 54:726–739PubMedCrossRefGoogle Scholar
  113. Waterham HR, de Vries Y, Russel KA, Xie W, Veenhuis M, Cregg JM (1996) The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol Cell Biol 16:2527–2536PubMedGoogle Scholar
  114. Yamashita RA, May GS (1998) Motoring along the hyphae: molecular motors and the fungal cytoskeleton. Curr Opin Cell Biol 10:74–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. Boisnard
  • G. Ruprich-Robert
  • M. Picard
  • V. Berteaux-Lecellier
    • 1
  1. 1.Institut de Génétique et MicrobiologieUMR-CNRS 8621Orsay CedexFrance

Personalised recommendations