Polyamines in Fungi

  • M. A. Hoyt
  • R. H. Davis
Chapter
Part of the The Mycota book series (MYCOTA, volume 3)

Abstract

This chapter emphasizes new developments in our knowledge of polyamine biochemistry and regulation in fungi, some of which have contributed significantly to the polyamine field in general. Prior to the last edition of The Mycota, the last major review of polyamines in fungi was that of Stevens and Winther (1979). The phenomenological character of their review reflected the poor knowledge of polyamine biochemistry and function at the time. Nevertheless, it is a useful source of information, some of which remains to be interpreted adequately. Other significant reviews of polyamine biosynthesis in microorganisms have appeared since that time, in particular those of Tabor and Tabor (1985) and of Davis et al. (1992). Space limitations here exclude consideration of polyamine oxidase systems (Smith and Barker 1988; Large 1992) and polyamines in phytopathogenic fungi (Galston and Weinstein 1988).

Keywords

Arginine Aspergillus Candida Dine Fusarium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arscott PG, Az L, Bloomfield VA (1990) Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers 30:619–630PubMedCrossRefGoogle Scholar
  2. Bailey A, Mueller E, Bowyer P (2000) Ornithine decarboxylase of Stagonospora (Septoria) nodorum is required for virulence toward wheat. J Biol Chem. 275: 14242–14247PubMedCrossRefGoogle Scholar
  3. Balasundaram D, Tabor CW, Tabor H (1991) Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88: 5872–5876PubMedCrossRefGoogle Scholar
  4. Balasundaram D, Tabor CW, Tabor H (1993) Oxygen toxicity in a polyamine-depleted spe2A mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90: 4693–4697PubMedCrossRefGoogle Scholar
  5. Balasundaram D, Dinman JD, Tabor CW, Tabor H (1994a) SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 176:7126–7128PubMedGoogle Scholar
  6. Balasundaram D, Xie QW, Tabor CW, Tabor H (1994b) The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. J Bacteriol 176:6407–6409PubMedGoogle Scholar
  7. Balasundaram D, Tabor CW, Tabor H (1996) Sensitivity of polyamine-deficient Saccharomyces cerevisiae to elevated temperatures. J Bacteriol 178:2721–2724PubMedGoogle Scholar
  8. Balasundaram D, Tabor CW, Tabor H (1999) Sensitivity of spermidine-deficient Saccharomyces cerevisiae to paromomycin. Antimicrob Agents Chemother 43: 1314–1316PubMedGoogle Scholar
  9. Barnett GR, Seyfzadeh M, Davis RH (1988) Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa. J Biol Chem 263:10005–10008PubMedGoogle Scholar
  10. Brawley JV, Ferro AJ (1979) Polyamine biosynthesis during germination of yeast ascospores. J Bacteriol 140:649–654PubMedGoogle Scholar
  11. Chattopadhyay MK, Murakami Y, Matsufuji S (2001) Antizyme regulates the degradation of ornithine decarboxylase in fission yeast Schizosaccharomyces pombe. Study in the spe2 knockout strains. J Biol Chem 276:21235–21241PubMedCrossRefGoogle Scholar
  12. Choih SJ, Ferro AJ, Shapiro SK (1978) Relationship between polyamines and macromolecules in germinating yeast ascospores. J Bacteriol 133:424–426PubMedGoogle Scholar
  13. Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194PubMedCrossRefGoogle Scholar
  14. Cohn MS, Tabor CW, Tabor H (1978) Isolation and characterization of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase, spermidine and spermine. J Bacteriol 134:208–213PubMedGoogle Scholar
  15. Cohn MS, Tabor CW, Tabor H (1980) Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae. J Bacteriol 142:791–799PubMedGoogle Scholar
  16. Cramer CL, Davis RH (1984) Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J Biol Chem 259:5152–5157PubMedGoogle Scholar
  17. Davis RH, Ristow JL (1988) Polyamine transport in Neurospora crassa. Arch Biochem Biophys 267:479–489PubMedCrossRefGoogle Scholar
  18. Davis RH, Ristow JL (1989) Uptake, intracellular binding and excretion of polyamines during growth of Neurospora crassa. Arch. Biochem Biophys 271:315–322CrossRefGoogle Scholar
  19. Davis RH, Ristow JL (1991) Polyamine toxicity in Neurospora crassa. Arch Biochem Biophys 285:306–311PubMedCrossRefGoogle Scholar
  20. Davis RH, Ristow JL (1995) Osmotic effects on the polyamine pathway of Neurospora crassa. Exp Mycol 19:314–319PubMedCrossRefGoogle Scholar
  21. Davis RH, Lawless MB, Port LA (1970) Arginaseless Neurospora: genetics, physiology and polyamine synthesis. J Bacteriol 102:299–305PubMedGoogle Scholar
  22. Davis RH, Krasner GN, DiGangi JJ, Ristow JL (1985) Distinct roles of putrescine and spermidine in the regulation of ornithine decarboxylase in Neurospora crassa. Proc Natl Acad Sci USA 82:4105–4109PubMedCrossRefGoogle Scholar
  23. Davis RH, Hynes L, Eversole-Cire P (1987) Nonsense mutations of the ornithine decarboxylase structural gene of Neurospora crassa. Mol Cell Biol 7:1122–1128PubMedGoogle Scholar
  24. Davis RH, Ristow JL, Howard AD, Barnett GR (1991) Calcium modulation of polyamine transport is lost in a putrescine-sensitive mutant of Neurospora crassa. Arch Biochem Biophys 285:297–305PubMedCrossRefGoogle Scholar
  25. Davis RH, Coffino P, Morris DR (1992) Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev 56:280–290PubMedGoogle Scholar
  26. DiGangi JJ, Seylzadeh M, Davis RH (1987) Ornithine decarboxylase of Neurospora crassa: purification, properties and mechanism of inactivation. J Biol Chem 262: 7889–7893PubMedGoogle Scholar
  27. Erez O, Kahana C (2001) Screening for modulators of spermine tolerance identifies Skyl, the SR protein kinase of Saccharomyces cerevisiae, as a regulator of polyamine transport and ion homeostasis. Mol Cell Biol 21:175–184PubMedCrossRefGoogle Scholar
  28. Eversole P, DiGangi JJ, Menees T, Davis RH (1985) Structural gene for ornithine decarboxylase in Neurospora crassa. Mol Cell Biol 5:1301–1306PubMedGoogle Scholar
  29. Fonzi WA (1989a) Biochemical and genetic characterization of the structure of yeast ornithine decarboxylase. Biochem Biophys Res Commun 162:1409–1416PubMedCrossRefGoogle Scholar
  30. Fonzi WA (1989b) Regulation of Saccharomyces cerevisiae ornithine decarboxylase expression in response to polyamine. J Biol Chem 264:18110–18118PubMedGoogle Scholar
  31. Fonzi WA, Sypherd PS (1987) The gene and the primary structure of ornithine decarboxylase from Saccharomyces cerevisiae. J Biol Chem 262:10127–10133PubMedGoogle Scholar
  32. Galston AW, Weinstein LH (1988) Control of phy-topathogens by inhibitors of polyamine biosynthesis. Adv Exp Med Biol 250:589–599PubMedCrossRefGoogle Scholar
  33. Guevara-Olvera L, Calvo-Mendez C, Ruiz-Herrera J (1993) The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol 139:485–493PubMedGoogle Scholar
  34. Guevara-Olvera L, Xoconostle-Cazares B, Ruiz-Herrera J (1997) Cloning and disruption of the ornithine decarboxylase gene of Ustilago maydis: evidence for a role of polyamines in its dimorphic transition. Microbiology 143:2237–2245PubMedCrossRefGoogle Scholar
  35. Guevara-Olvera L, Hung CY, Yu JJ, Cole GT (2000) Sequence, expression and functional analysis of the Coccidioides immitis ODC(ornithine decarboxylase) gene. Gene 242:437–448PubMedCrossRefGoogle Scholar
  36. Hafner EW, Tabor CW, Tabor H (1979) Mutants of Escherichia coli that do not contain 1,4-diaminobu-tane (putrescine) or spermidine. J Biol Chem 254: 12419–12426PubMedGoogle Scholar
  37. Hamasaki-Katagiri N, Tabor CW, Tabor H (1997) Spermidine biosynthesis in Saccharomyces cerevisiae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187(l):35–43PubMedCrossRefGoogle Scholar
  38. Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H (1998) Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene 210:195–201PubMedCrossRefGoogle Scholar
  39. Hartig D, Lemkemeier K, Frank J, Lottspeich F, Klink F (1992) The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur J Biochem 204:751–758CrossRefGoogle Scholar
  40. Herrero AB, Lopez MC, Garcia S, Schmidt A, Spaltmann F, Ruiz-Herrera J, Dominguez A (1999) Control of filament formation in Candida albicans by polyamine levels. Infect Immun 67:4870–4878PubMedGoogle Scholar
  41. Hoyt MA, Williams-Abbott LJ, Pitkin JW, Davis RH (2000a) Cloning and expression of the S-adenosylmethionine decarboxylase gene of Neurospora crassa and processing of its product. Mol Gen Genet 263:664–673PubMedCrossRefGoogle Scholar
  42. Hoyt MA, Broun M, Davis RH (2000b) Polyamine regulation of ornithine decarboxylase synthesis in Neurospora crassa. Mol Cell Biol 20:2760–2773PubMedCrossRefGoogle Scholar
  43. Inderlied CB, Cihlar RL, Sypherd PS (1980) Regulation of ornithine decarboxylase during morphogenesis of Mucor recemosus. J Bacteriol 141:699–706PubMedGoogle Scholar
  44. Ito K, Kashiwagi KK, Watanabe S, Kameji T, Hayashi S-I, Igarashi K (1990) Influence of the 5’ untranslated region of ornithine decarboxylase mRNA and spermidine on ornithine decarboxylase synthesis. J Biol Chem 265:13036–13041PubMedGoogle Scholar
  45. Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF (2000a) Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 19:1907–1917PubMedCrossRefGoogle Scholar
  46. Ivanov IP, Gesteland RF, Matsufuji S, Atkins JF (2000b) Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly+1 in fission yeast, but -2 in budding yeast. RNA 4:1230–1238CrossRefGoogle Scholar
  47. Jimenez-Bremont J, Ruiz-Herrera J, Dominguez-Olavarri A (2001) Disruption of gene YlODC reveals absolute requirement of polyamines for mycelial development in Yarrowia lipolytics FEMS Yeast Res 1:195–204Google Scholar
  48. Kakinuma Y, Maruyama T, Nozaki T, Wada Y, Ohsumi Y, Igarashi K (1995) Cloning of the gene encoding a putative serine/threonine protein kinase which enhances spermine uptake in Saccharomyces cere-visiae. Biochem Biophys Res Commun 216:985–992PubMedCrossRefGoogle Scholar
  49. Kaouass M, Audette M, Ramotar D, Verma S, de Montigny D, Gamache I, Torossian K, Poulin R (1997) The STK2 gene, which encodes a putative Ser/Thr protein kinase, is required for high-affinity spermidine transport in Saccharomyces cerevisiae. Mol Cell Biol 17: 2994–3004PubMedGoogle Scholar
  50. Kaouass M, Gamache I, Ramotar D, Audette M, Poulin R (1998) The spermidine transport system is regulated by ligand inactivation, endocytosis, and by the Nprlp Ser/Thr protein kinase in Saccharomyces cerevisiae. J Biol Chem 273:2109–2117PubMedCrossRefGoogle Scholar
  51. Kashiwagi K, Taneja SK, Liu T-Y, Tabor CW, Tabor H (1990) Spermidine biosynthesis in Saccharomyces cerevisiae. Biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase. J Biol Chem 265:22321–22326PubMedGoogle Scholar
  52. Krasnow MA, Cozzarelli NR (1982) Catenation of DNA rings by topoisomerasees. Mechanism of control by spermidine. J Biol Chem 257:2687–2693PubMedGoogle Scholar
  53. Khurana N, Saxena RK, Gupta R, Rajam MV (1996) Polyamines as modulators of microcycle conidiation in Aspergillus flavus. Microbiology 142:517–523PubMedCrossRefGoogle Scholar
  54. Large PJ (1992) Enzymes and pathways of polyamine breakdown in microorganisms. FEMS Microbiol Revs 88:249–262CrossRefGoogle Scholar
  55. Lopez MC, Garcia S, Ruiz-Herrera J, Dominguez A (1997) The ornithine decarboxylase gene from Candida albicans. Sequence analysis and expression during dimorphism. Curr Genet 32:108–114PubMedCrossRefGoogle Scholar
  56. Marshall M, Russo G, van Etten J, Nickerson K (1979) Polyamines in dimorphic fungi. Curr Microbiol 2: 187–190CrossRefGoogle Scholar
  57. Marton LJ, Morris DR (1987) Molecular and cellular functions of the polyamines. In: McCann PP, Pegg AE, Sjoerdsma A (eds) Inhibition of polyamine biosynthesis: biological significance and basis for new therapies. Academic Press, New York, pp 79–105Google Scholar
  58. Maruyama T, Masuda N, Kakinuma Y, Igarashi K (1994) Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae. Biochem Biophys Acta 1194:289–295PubMedCrossRefGoogle Scholar
  59. Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60PubMedCrossRefGoogle Scholar
  60. McDougall KJ, Deters J, Miskimen J (1977) Isolation of putrescine-requiring mutants of Neurospora crassa. Antonie Leeuwenhoek 43:143–151PubMedCrossRefGoogle Scholar
  61. McNemar MD, Gorman JA, Buckley HR (1997) Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spel delta strain of Saccharomyces cerevisiae.Yezst 13:1383–1389Google Scholar
  62. McNemar MD, Gorman JA, Buckley HR (2001) Isolation of a gene encoding a putative polyamine transporter from Candida albicans, GPT1. Yeast 18:555–561PubMedCrossRefGoogle Scholar
  63. Munro GF, Hercules K, Morgan J, Sauerbier W (1972) Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium. J Biol Chem 247:1272–1280PubMedGoogle Scholar
  64. Nagarajan S, Ganern B, Pegg AE (1988) Studies of nonme-tabolizable polyamines that support growth of SV3T3 cells depleted of natural polyamines by exposure to α-difluoromethylornithine. Biochem J 254:373–378PubMedGoogle Scholar
  65. Nickerson KW, Dunkle LD, van Etten JL (1977) Absence of spermine in filamentous fungi. J Bacteriol 129:173–176PubMedGoogle Scholar
  66. Nozaki T, Nishimura K, Michael AJ, Maruyama T, Kakinuma Y, Igarashi K (1996) A second gene encoding a putative serine/threonine protein kinase which enhances spermine uptake in Saccharomyces cerevisiae. Biochem Biophys Res Commun 228:452–458PubMedCrossRefGoogle Scholar
  67. Pajunen A, Crozat A, Janne OA, Ihalainen R, Laitenen PH, Stanley B, Madhubala R, Pegg AE (1988) Structure and regulation of mammalian S-adenosylmethionine decarboxylase. J Biol Chem 263:17040–17049Google Scholar
  68. Park MH (1989) The essential role of hypusine in eukaryotic translation initiation factor 4D (eIF-41). J Biol Chem 264:18531–18535PubMedGoogle Scholar
  69. Paulus TJ, Davis RH (1981) Regulation of polyamine synthesis in relation to putrescine and spermidine pools in Neurospora crassa. J Bacteriol 145:14–20PubMedGoogle Scholar
  70. Paulus TJ, Kiyono P, Davis RH (1982) Polyamine-deficient Neurospora crassa mutants and synthesis of cadaverine. J Bacteriol 152:291–297PubMedGoogle Scholar
  71. Paulus TJ, Cramer CL, Davis RH (1983) Compartmentation of spermidine in Neurospora crassa. J Biol Chem 258: 8608–8612PubMedGoogle Scholar
  72. Pegg AE (1986) Recent advances in the biochemistry of polyamines in eucaryotes. Biochem J 234:249–262PubMedGoogle Scholar
  73. Persson L, Oredsson SM, Anehus S, Heby O (1985) Ornithine decarboxylase inhibitors increase the cellular content of the enzyme: implications for translational regulation. Biochem Biophys Res Commun 131: 239–245PubMedCrossRefGoogle Scholar
  74. Persson L, Holm I, Heby O (1986) Translational regulation of ornithine decarboxylase by polyamines. FEBS Lett 205:175–178PubMedCrossRefGoogle Scholar
  75. Pitkin J, Davis RH (1990) The genetics of polyamine synthesis in Neurospora crassa. Arch Biophys Biochem 278:386–391CrossRefGoogle Scholar
  76. Pitkin J, Perriere M, Kanehl A, Ristow JL, Davis RH (1994) Polyamine metabolism and growth of Neurospora strains lacking cis-acting control sites in the ornithine decarboxylase gene. Arch Biochem Biophys 315:153–160PubMedCrossRefGoogle Scholar
  77. Pollard KJ, Samuels ML, Crowley KA, Hansen JC, Peterson CL (1999) Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J 18:5622–5633PubMedCrossRefGoogle Scholar
  78. Poso H, Sinervirta R, Janne J (1975) S-adenosylmethionine decarboxylase from baker’s yeast. Biochem J 151:67–73PubMedGoogle Scholar
  79. Poulin R, Wechter RS, Pegg AE (1991) An early enlargement of the putrescine pool is required for growth in L1210 mouse leukemia cells under hypoosmotic stress. J Biol Chem 266:6142–6151PubMedGoogle Scholar
  80. Ruiz-Herrera J (1993) The role of polyamines in fungal cell differentiation. Arch Med Res 24:263–265PubMedGoogle Scholar
  81. Ruiz-Herrera J (1994) Polyamines, DNA methylation, and fungal differentiation. Crit Rev Microbiol 20:143–150PubMedCrossRefGoogle Scholar
  82. San-Bias G, San-Bias F, Sorais F, Moreno B, Ruiz-Herrera J (1996) Polyamines in growth and dimorphism of Paracoccidioides brasiliensis. Arch Microbiol 166:411–413CrossRefGoogle Scholar
  83. Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JB (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11:3105–3114PubMedGoogle Scholar
  84. Schuber F (1989) Influence of polyamines on membrane function. Biochem J 260:1–10PubMedGoogle Scholar
  85. Schwartz B, Hittelman A, Daneshvar L, Basu HS, Marton LJ, Feuerstein BG (1995) A new model for disruption of the ornithine decarboxylase gene, SPEI, in Saccharomyces cerevisiae exhibits growth arrest and genetic instability at the MAT locus. Biochem J 312:83–90PubMedGoogle Scholar
  86. Smith TA, Barker JHA (1988) The di- and polyamine oxidases of plants. Adv Exp Med Biol 250:573–587PubMedCrossRefGoogle Scholar
  87. Sneath PHA (1955) Putrescine as an essential growth factor for a mutant of Aspergillus nidulans. Nature 175:818CrossRefGoogle Scholar
  88. Spathas DH, Pateman JA, Clutterbuck AJ (1982) Polyamine transport in Aspergillus nidulans. J Gen Microbiol 128: 557–563PubMedGoogle Scholar
  89. Stevens L, Winther MD (1979) Spermine, spermidine and putrescine in fungal development. Adv Microbial Physiol 19:63–148CrossRefGoogle Scholar
  90. Stevens L, McKinnon IM, Winther M (1976) Polyamine and ornithine metabolism during the germination of conidia of Aspergillus nidulans. Biochem J 158:235–241PubMedGoogle Scholar
  91. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Revs 49:81–99Google Scholar
  92. Tabor H, Hafner EW, Tabor CW (1980) Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J Bacteriol 144:952–956PubMedGoogle Scholar
  93. Tomitori H, Kashiwagi K, Sakata K, Kakinuma Y, Igarashi K (1999) Identification of a gene for a polyamine transport protein in yeast. J Biol Chem 274:3265–3267PubMedCrossRefGoogle Scholar
  94. Tomitori H, Kashiwagi K, Asakawa T, Kakinuma Y, Michael AJ, Igarashi, K (2001) Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 353:681–688PubMedCrossRefGoogle Scholar
  95. Toth C, Coffino P (1999) Regulated degradation of yeast ornithine decarboxylase. J Biol Chem 274:25921–25926PubMedCrossRefGoogle Scholar
  96. Turner R, North MJ, Harwood JM (1979) Putrescine uptake by the cellular slime mould Dictyostelium discoideum. Biochem J 180:119–127PubMedGoogle Scholar
  97. Tyagi AK, Tabor CW, Tabor H (1981) Ornithine decarboxylase from Saccharomyces cerevisiae. Purification, properties, and regulation of activity. J Biol Chem 256: 12156–12163PubMedGoogle Scholar
  98. Tyagi AK, Wickner RB, Tabor CW, Tabor H (1984) Specificity of polyamine requirements for the replication and maintenance of different double-stranded RNA plasmids in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81:1149–1153PubMedCrossRefGoogle Scholar
  99. Van Daalen Wetters T, Brabant M, Coffino P (1989a) Regulation of mouse ornithine decarboxylase activity by cell growth, serum and tetradecanoyl phorbol acetate is governed primarily by sequences within the coding region of the gene. Nucleic Acids Res 17:9843–9860PubMedCrossRefGoogle Scholar
  100. Van Daalen Wetters T, Macrae M, Brabant M, Sittler A, Coffino P (1989b) Polyamine-mediated regulation of mouse ornithine decarboxylase is posttranslational. Mol Cell Biol 9:5484–5490PubMedGoogle Scholar
  101. Walters DR, Cowley T (1996) Formation of cadaverine derivatives in Saccharomyces cerevisiae. FEMS Microbiol Lett 145:255–259PubMedCrossRefGoogle Scholar
  102. Watanabe S-I, Kusama-Eguchi K, Kobayashi H, Igarashi K (1991) Estimation of polyamine binding to macro-molecules and ATP in bovine lymphocytes and rat liver. J Biol Chem 266:20803–20809PubMedGoogle Scholar
  103. West HM, Walters DR (1991) Polyamine uptake by the plant pathogenic fungus Fusarium culmorum. Mycol Res 95: 715–719CrossRefGoogle Scholar
  104. White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276: 10794–10800PubMedCrossRefGoogle Scholar
  105. Whitney PA, Morris DR (1978) Polyamine auxotrophs of Saccharomyces cerevisiae. J Bacteriol 134:214–220PubMedGoogle Scholar
  106. Williams LJ, Barnett GR, Ristow JL, Pitkin J, Perriere M, Davis RH (1992) The ornithine decarboxylase gene of Neurospora crassa: isolation, sequence, and polyamine-mediated regulation of its mRNA. Mol Cell Biol 12:347–359PubMedGoogle Scholar
  107. Yamada H, Isobe K, Tani Y (1980) Oxidation of polyamines by fungal enzymes. Agric Biol Chem 44:2469–2476CrossRefGoogle Scholar
  108. Zhu C, Karplus K, Grate L, Coffino P (2000) A homolog of mammalian antizyme is present in fission yeast Schizosaccharomyces pombe but not detected in budding yeast Saccharomyces cerevisiae. Bioinfor matics 16:478–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. A. Hoyt
    • 1
  • R. H. Davis
    • 2
  1. 1.Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations