Skip to main content

Trehalose Metabolism: Enzymatic Pathways and Physiological Functions

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Trehalose is a disaccharide (α-D-glucopyranosyl α-D-glucopyranoside) commonly found in many fungi and present in particularly high concentrations in stationary-phase cells and survival forms. For a long time, trehalose was considered to be a storage carbohydrate, accumulated under conditions of imminent carbon shortage and mobilized under prolonged starvation conditions. However, several unusual features of trehalose metabolism have been discovered in recent years. Trehalose levels often correlate closely with stress resistance and in vitro experiments have shown a remarkable capacity of high trehalose concentrations in conferring protection to denaturation of proteins and membranes under stress conditions. The role of trehalose in stress protection is now well established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisaka K, Masuda T, Chikamune T, Kamitori K (1998) Purification and characterization of trehalose Phosphorylase from Catellatospora ferruginea. Biosci Biotechnol Biochem 62:782–787

    Article  PubMed  CAS  Google Scholar 

  • Alabran DM, Ball DH, Reese ET (1983) Comparison of the trehalase of Trichoderma reesei with those from other sources. Carbohydr Res 123:179–181

    Article  PubMed  CAS  Google Scholar 

  • Amaral FC, van Dijck P, Nicoli JR, Thevelein JM (1997) Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol 167:202–208

    Article  PubMed  CAS  Google Scholar 

  • Anchordoguy TJ, Crowe JH, Griffin FJ, Clark WH (1988) Cryopreservation of sperm from the marine shrimp Sicyona engentis. Cryobiology 25:238–243

    Article  PubMed  CAS  Google Scholar 

  • App H, Holzer H (1989) Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J Biol Chem 264:17583–17588

    PubMed  CAS  Google Scholar 

  • Argüelles JC (1997) Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol Lett 146:65–71

    Article  PubMed  Google Scholar 

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Article  PubMed  Google Scholar 

  • Argüelles JC, Gacto M (1985) Evidence for regulatory trehalase activity in Candida utilis. Can J Microbiol 31:529–537

    Article  Google Scholar 

  • Argüelles JC, Gacto M (1986) Comparative study of two trehalases from Candida utilis. Microbiologia 2:105–114

    PubMed  Google Scholar 

  • Argüelles JC, Gacto M (1988) Differential location of regulatory and non-regulatory trehalases in Candida utilis cells. Antonie van Leeuwenhoek 54:555–565

    Article  PubMed  Google Scholar 

  • Argüelles JC, Vicente-Soler J, Gacto M (1986) Protein phosphorylation and trehalase activation in Candida utilis. FEMS Microbiol Lett 34:361–365

    Article  Google Scholar 

  • Arisan-Atac I, Wolschek MF, Kubicek CP (1996) Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol Lett 140:77–83

    Article  PubMed  CAS  Google Scholar 

  • Arneborg N, Moos MK, Jakobsen M (1997) Induction of acetic acid tolerance and trehalose accumulation by added and produced ethanol in Saccharomyces cere-visiae. Biotechnol Lett 19:931–933

    Article  CAS  Google Scholar 

  • Arya SC (2000) Stabilization of vaccines: to be or not to be. Vaccine 19:595–597

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV, Raman A, Northcott CJ (1992) Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disac-charide to stress tolerance. FEMS Microbiol Lett 94: 271–276

    Article  CAS  Google Scholar 

  • Barton JK, den Hollander JA, Hopfield JJ, Shulman RG (1982) 13C Nuclear magnetic resonance study of trehalose mobilization in yeast spores. J Bacteriol 151: 177–185

    PubMed  CAS  Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 10:585–592

    PubMed  CAS  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, van der Zee P, Wiemken A (1992) Characterization of the 56kDa subunit of the yeast tre-halose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Sun W, Hohmann S, Wera S, Reinders A, de Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273:33311–33319

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC (1996) Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci USA 93:13096–13101

    Article  PubMed  CAS  Google Scholar 

  • Belocopitow E, Maréchal LR (1970) Trehalose Phosphorylase from Euglena gracilis. Biochim Biophys Acta 198: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Beltran FF, Castillo R, Vicente-Soler J, Cansado J, Gacto M (2000) Role for trehalase during germination of spores in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 193:117–121

    Article  PubMed  CAS  Google Scholar 

  • Bergsma JC, Kasri NN, Donaton MC, de Wever V, Tisi R, de Winde JH, Martegani E, Thevelein JM, Wera S (2001) PtdIns(4,5)P(2) and phospholipase C-independent Ins(l,4,5)P(3) signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochem J 359:517–523

    Article  PubMed  CAS  Google Scholar 

  • Beullens M, Mbonyi K, Geerts L, Gladines D, Detremerie K, Jans AW, Thevelein JM (1988) Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 172:227–231

    Article  PubMed  CAS  Google Scholar 

  • Bhandal IS, Hauptmann RM, Widholm JM (1985) Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol 78:430–432

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Chen L, Broach JR, Powers S (1995) Ras membrane targeting is essential for glucose signaling but not for viability in yeast. Proc Natl Acad Sci USA 92:2984–2988

    Article  PubMed  CAS  Google Scholar 

  • Blakeley D, Tolliday B, Colaço C, Roser B (1990) Dry instant blood typing plate for bedside use. Lancet 336:854–855

    Article  PubMed  CAS  Google Scholar 

  • Blazquez MA, Lagunas R, Gancedo C, Gancedo JM (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329:51–54

    Article  PubMed  CAS  Google Scholar 

  • Blazquez MA, Stucka R, Feldmann H, Gancedo C (1994) Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. J Bacteriol 176:3895–3902

    PubMed  CAS  Google Scholar 

  • Bonini BM, Neves MJ, Jorge JA, Terenzi HF (1995) Effects of temperature shifts on the metabolism of trehalose in Neurospora crassa wild type and a trehalase-deficient (tre) mutant. Evidence against the participation of periplasmic trehalase in the catabolism of intracellular trehalose. Biochim Biophys Acta 1245: 339–347

    Article  PubMed  Google Scholar 

  • Bonini BM, van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, van Dijck P, Thevelein JM (2000) Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tpsl mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350 (Pt l):261–268

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Ehmann U, Bremer E, Middendorf A, Postma P (1987) Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262: 13212–13218

    PubMed  CAS  Google Scholar 

  • Bourret JA (1986) Evidence that a glucose-mediated rise in cyclic AMP triggers germination of Pilobolus longipes spores. Exp Mycol 10:60–66

    Article  CAS  Google Scholar 

  • Brana AF, Mendez C, Diaz LA, Manzanal MB, Hardisson C (1986) Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J Gen Microbiol 132 (Pt 5):1319–1326

    PubMed  CAS  Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1991) Osmotically-regulated trehalose accumulation and cyclic beta-(l,2)-glucan excretion by Rhizobium legu-minosarum biovar trifolii TA-1. Arch Microbiol 156: 501–506

    CAS  Google Scholar 

  • Broach JR, Deschenes RJ (1990) The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54:79–139

    Article  PubMed  CAS  Google Scholar 

  • Brownlee C, Jennings DH (1981) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:615–619

    Article  CAS  Google Scholar 

  • Burke MJ (1985) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, NY, pp 358–363

    Google Scholar 

  • Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. J Biol Chem 231:259–275

    PubMed  CAS  Google Scholar 

  • Callaerts G, Iserentant D, Verachtert H (1993) Relation between trehalose and sterol accumulation during oxygenation of cropped yeast. J Am Soc Brew Chem 51:75–77

    CAS  Google Scholar 

  • Cameron S, Levin L, Zoller M, Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism and heat shock resistance in S. cerevisiae. Cell 53:555–566

    Article  PubMed  CAS  Google Scholar 

  • Cannon JF, Pringle JR, Fiechter A, Khalil M (1994) Characterization of glycogen-deficient gle mutants of Saccharomyces cerevisiae. Genetics 136:485–503

    PubMed  CAS  Google Scholar 

  • Carrillo D, Vicente-Soler J, Gacto M (1992) Activation of neutral trehalase by fermentable sugars and cAMP in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 98:61–66

    Article  CAS  Google Scholar 

  • Carrillo D, Vicente-Soler J, Gacto M (1994a) Cyclic AMP signalling pathway and trehalase activation in the fission yeast Schizosaccharomyces pombe. Microbiology 140:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Carrillo D, Vicente-Soler J, Gacto M (1994b) Sensitivity of fructose-1,6-bisphosphatase to glucose and cyclic AMP in the fission yeast Schizosaccharomyces pombe. Microbios 79:73–79

    PubMed  CAS  Google Scholar 

  • Carrillo D, Vicente-Soler J, Fernandez J, Soto T, Cansado J, Gacto M (1995) Activation of cytoplasmic trehalase by cyclic-AMP-dependent and cyclic-AMP-independent signalling pathways in the yeast Candida utilis. Microbiology 141 (Pt 3):679–686

    Article  PubMed  CAS  Google Scholar 

  • Charlab R, Oliveira DE, Panek AD (1985) Investigation of the relationship between sstl and fdp mutations in yeast and their effect on trehalose synthesis. Braz J Med Biol Res 18:447–454

    PubMed  Google Scholar 

  • Chen T, Fowler A, Toner M (2000) Literature review: supplemented phase diagram of the trehalose-water binary mixture. Cryobiology 40:277–282

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS (1985) The physical properties and metalic status of Artemia cysts at low water contents: The “water replacement hypothesis”. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, NY, pp 169–187

    Google Scholar 

  • Cochrane VW (1958) The physiology of fungi. Wiley, New York

    Google Scholar 

  • Colaço C, Sen S, Thangavelu M, Pinder S, Roser B (1992) Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology 10:1007–1011

    Article  PubMed  Google Scholar 

  • Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17:3326–3341

    Article  PubMed  CAS  Google Scholar 

  • Coote PJ, Jones MV, Edgar K, Cole MB (1992) TPK gene products mediate cAMP-independent thermotoler-ance in Saccharomyces cerevisiae. J Gen Microbiol 138: 2551–2557

    PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–11090

    Article  PubMed  CAS  Google Scholar 

  • Cotter DA (1975) Spores of the cellular slime mold Dictyostelium discoideum. In: Gerhardt P, Costilow RN, Sadoff HL (eds) Spores VI. American Society for Microbiology, Washington, DC, pp 61–72

    Google Scholar 

  • Coutinho C, Bernardes E, Felix D, Panek A (1988) Trehalose as cryoprotectant for preservation of yeast strains. J Biotechnol 7:23–32

    Article  CAS  Google Scholar 

  • Coutinho CC, Silva JT, Panek AD (1992) Trehalase activity and its regulation during growth of Saccharomyces cerevisiae. Biochem Int 26:521–530

    PubMed  CAS  Google Scholar 

  • Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27:219–231

    Article  CAS  Google Scholar 

  • Crowe JH, Panek AD, Crowe LM, Panek AC, Dearaujo PD (1991) Trehalose transport in yeast cells. Biochem Int 24:721–730

    PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105

    Article  PubMed  CAS  Google Scholar 

  • Cuber R, Eleutherio ECA, Pereira MD, Panek AD (1997) The role of the trehalose transporter during germination. Biochim Biophys Acta Biomembr 1330:165–171

    Article  CAS  Google Scholar 

  • De Almeida FM, Lucio AKB, Polizeli Maria de Lourdes TM, Jorge JA, Terenzi HF (1997) Function and regulation of the acid and neutral trehalases of Mucor rouxll. FEMS Microbiol Lett 155:73–77

    Article  PubMed  Google Scholar 

  • De Almeida EM, Polizeli MD, Terenzi HF, Jorge JA (1999) Biochemical characterization of a Ca2+-dependent acid trehalase activity from the thermophilic fungus Chaetomium thermophilum var. coprophilum. FEMS Microbiol Lett 171:11–15

    Google Scholar 

  • De Antoni GL, Perez P, Abraham A, Anon MC (1989) Trehalose, a cryoprotectant for Lactobacillus bulgaricus. Cryobiology 26:149–153

    Article  Google Scholar 

  • De Araujo PS, Panek AC, Crowe JH, Crowe LM, Panek AD (1991) Trehalose-transporting membrane vesicles from yeasts. Biochem Int 24:731–737

    PubMed  Google Scholar 

  • De Koning W, Groeneveld K, Oehlen LJ, Berden JA, van Dam K (1991) Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification. J Gen Microbiol 137 (Pt 4):971–976

    PubMed  Google Scholar 

  • Dellamora Ortiz GM, Ortiz CHD, Maia JCC, Panek AD (1986) Partial purification and characterization of the interconvertible forms of trehalase from Saccharomyces cerevisiae. Arch Biochem Biophys 251:205–214

    Article  Google Scholar 

  • D’Enfert C, Fontaine T (1997) Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24:203–216

    Article  PubMed  Google Scholar 

  • D’Enfert C, Bonini BM, Zapella PDA, Fontaine T, da Silva AM, Terenzi HF (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:471–483

    Article  PubMed  Google Scholar 

  • De Pinho CA, de Lourdes M, Polizeli TM, Jorge JA, Terenzi HF (2001) Mobilisation of trehalose in mutants of the cyclic AMP signalling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiol Lett 199:85–89

    PubMed  Google Scholar 

  • De Silva-Udawatta MN, Cannon JF (2001) Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol Microbiol 40:1345–1356

    Article  PubMed  Google Scholar 

  • De Virgilio C, Simmen U, Hottiger T, Boiler T, Wiemken A (1990) Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotol-erance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Lett 273:107–110

    Article  PubMed  Google Scholar 

  • De Virgilio C, Burckert N, Boller T, Wiemken A (1991a) A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Lett 291:355–358

    Article  PubMed  Google Scholar 

  • De Virgilio C, Muller J, Boller T, Wiemken A (1991b) A constitutive, heat shock-activated neutral trehalase occurs in Schizosaccharomyces pombe in addition to the sporulation-specific acid trehalase. FEMS Microbiol Lett 84:85–90

    Google Scholar 

  • De Virgilio C, Piper P, Boller T, Wiemken A (1991c) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hspl04 and in the absence of protein synthesis. FEBS Lett 288:86–90

    Article  PubMed  Google Scholar 

  • De Virgilio C, Buerckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  PubMed  Google Scholar 

  • Dewerchin MA, Van Laere AJ (1984) Trehalase activity and cyclic AMP content during early development of Mucor rouxii spores. J Bacteriol 158:575–579

    PubMed  CAS  Google Scholar 

  • Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 272: 30196–30200

    Article  PubMed  CAS  Google Scholar 

  • Donaton MCV, Holsbeeks I, Legatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM (2003) The Gapl general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol 50:911–929

    Article  PubMed  CAS  Google Scholar 

  • Dumont JE, Jauniaux JC, Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci 14:67–71

    Article  PubMed  CAS  Google Scholar 

  • Durnez P, Pernambuco MB, Oris E, Argüelles JC, Mergelsberg H, Thevelein JM (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10: 1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Eck R, Bergmann C, Ziegelbauer K, Schonfeld W, Kunkel W (1997) A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. Microbiology 143:3747–3756

    Article  PubMed  CAS  Google Scholar 

  • Eis C, Nidetzky B (1999) Characterization of trehalose Phosphorylase from Schizophyllum commune. Biochem J 341:385–393

    Article  PubMed  CAS  Google Scholar 

  • Eis C, Albert M, Dax K, Nidetzky B (1998) The stereochemical course of the reaction mechanism of trehalose Phosphorylase from Schizophyllum commune. FEBS Lett 440:440–443

    Article  PubMed  CAS  Google Scholar 

  • Eis C, Watkins M, Prohaska T, Nidetzky B (2001) Fungal trehalose Phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J 356:757–767

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    Article  PubMed  CAS  Google Scholar 

  • Elliott B, Futcher B (1993) Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9:33–42

    Article  PubMed  CAS  Google Scholar 

  • Elliott B, Haltiwanger RS, Futcher B (1996) Synergy between trehalose and Hspl04 for thermotolerance in Saccharomyces cerevisiae. Genetics 144:923–933

    PubMed  CAS  Google Scholar 

  • Engelberg D, Perlman R, Levitzki A (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cell Signal 1:1–7

    Article  PubMed  CAS  Google Scholar 

  • Engelberg D, Poradosu E, Simchen G, Levitzki A (1990) Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides. FEBS Lett 261:413–418

    Article  PubMed  CAS  Google Scholar 

  • Ernandes JR, de Meirsman C, Rolland F, Winderickx J, de Winde J, Brandao RL, Thevelein JM (1998) During the initiation of fermentation overexpression of hexoki-nase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tpsl. Yeast 14:255–269

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Soto T, Vicente-Soler J, Cansado J, Gacto M (1996) Inhibition by polyols of the heat-shock-induced activation of trehalase in the yest Zygo saccharomyces rouxii. Biochem Mol Biol Int 38:43–50

    PubMed  CAS  Google Scholar 

  • Fernandez J, Soto T, Vicente-Soler J, Cansado J, Gacto M (1997) Heat-shock response in Schizosaccharomyces pombe cells lacking cyclic AMP-dependent phosphorylation. Curr Genet 31:112–118

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JC, Thevelein JM, Hohmann S, Paschoalin VM, Trugo LC, Panek AD (1997) Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim Biophys Acta 1335:40–50

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    PubMed  CAS  Google Scholar 

  • Franco A, Soto T, Vicente Soler J, Guillen PV, Cansado J, Gacto M (2000) Characterization of tppl(+) as encoding a main trehalose-6P phosphatase in the fission yeast Schizosaccharomyces pombe. J Bacteriol 182: 5880–5884

    Article  PubMed  CAS  Google Scholar 

  • François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  Google Scholar 

  • François J, van Schaftingen E, Hers H-G (1984) The mechanism by which glucose increases fructose-2,6-bis-phosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145:187–193

    Article  PubMed  Google Scholar 

  • François JM, Eraso P, Gancedo C (1987) Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164:369–373

    Article  PubMed  Google Scholar 

  • François J, Villanueva ME, Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen Phosphorylase induced by glucose, a nitrogen source or uncouples. Eur J Biochem 174:551–559

    Article  PubMed  Google Scholar 

  • François J, Neves MJ, Hers HG (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7:575–587

    Article  PubMed  Google Scholar 

  • Franks F, Hatley RHM, Mathias SF (1991) Materials science and the production of shelf-stable biologicals. Biopharmacology 4:38–42

    CAS  Google Scholar 

  • Fujii S, Iwahashi H, Obuchi K, Fujii T, Komatsu Y (1996) Characterization of a barotolerant mutant of the yeast Saccharomyces cerevisiae: importance of trehalose content and membrane fluidity. FEMS Microbiol Lett 141:97–101

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y, Kozasa T, Kaziro Y, Takeda T, Yamamoto M (1986) Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 44:329–336

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254

    Article  CAS  Google Scholar 

  • Gélinas P, Fiset G, LeDuy A, Goulet J (1989) Effect of growth conditions and trehalose content on cryotolerance of bakers’ yeast in frozen doughs. Appl Environ Microbiol 55:2453–2459

    PubMed  Google Scholar 

  • Geyskens I, Kumara SHMC, Donaton MCV, Bergsma JCT, Thevelein JM, Wera S (2000) Expression of mammalian PKB partially complements deletion of the yeast protein kinase Sch9. In: Bos JL (ed) Molecular mechanisms of signal transduction. NATO ASI Series, Series A316. IOS Press, Amsterdam, pp 117–126

    Google Scholar 

  • Giæver HM, Styrvold OB, Kaasen J, Strom AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    PubMed  Google Scholar 

  • Gibbs JB, Marshall MS (1989) The ras oncogene—an important regulatory element in lower eucaryotic organisms. Microbiol Rev 53:171–185

    PubMed  CAS  Google Scholar 

  • Giots F, Donaton MC, Thevelein JM (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47(4):1163–1181

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hspl04, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MI, Stucka R, Blazquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIFi, a yeast gene necessary for growth on glucose. Yeast 8: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    Article  PubMed  Google Scholar 

  • Gottlieb D (1978) The germination of fungus spores. Meadowfield Press, Shildon, UK

    Google Scholar 

  • Grba S, Oura E, Suomalainen H (1975) On the formation of glycogen and trehalose in baker’s yeast. Eur J Appl Microbiol 2:29–37

    Article  CAS  Google Scholar 

  • Grba S, Oura E, Suomalainen H (1979) Formation of trehalose and glycogen in growing baker’s yeast. Finn Chem Lett 1979:61–64

    Google Scholar 

  • Green JL, Angell CA (1989) Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem 93:2880–2882

    Article  CAS  Google Scholar 

  • Gross A, Winograd S, Marbach I, Levitzki A (1999) The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae. Biochemistry 38:13252–13262

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Watson K (1998) De novo protein synthesis is essential for thermotolerance acquisition in a Saccharomyces cerevisiae trehalose synthase mutant. Biochem Mol Biol Int 45:663–671

    PubMed  CAS  Google Scholar 

  • Gupta J, Harris SD, Cotter DA (1987) Evidence for non-regulatory trehalase activity in Dictyostelium discoideum. Curr Microbiol 16:101–104

    Article  CAS  Google Scholar 

  • Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U (1989) Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli Kl2. Mol Gen Genet 217:347–354

    Article  PubMed  CAS  Google Scholar 

  • Hall BG (1983) Yeast thermotolerance does not require protein synthesis. J Bacteriol 156:1363–1365

    PubMed  CAS  Google Scholar 

  • Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrate during growth of mycelium and sporphore. J Gen Microbiol 95:309–320

    Google Scholar 

  • Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Harris DS, Cotter DA (1987) Vacuolar (lysosomal) trehalase of Saccharomyces cerevisiae. Curr Microbiol 15:247–249

    Article  CAS  Google Scholar 

  • Hazell BW, Nevalainen H, Attfield PV (1995) Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett 377:457–460

    Article  PubMed  CAS  Google Scholar 

  • Hazell BW, Kletsas S, Nevalainen H, Attfield PV (1997) Involvement of CIF1 (GGS1/TPS1) in osmotic stress response in Saccharomyces cerevisiae. FEBS Lett 414: 353–358

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924

    PubMed  CAS  Google Scholar 

  • Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56:1386–1391

    PubMed  CAS  Google Scholar 

  • Hirasawa R, Yokoigawa K, Isobe Y, Kawai H (2001) Improving the freeze tolerance of bakers’ yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526

    Article  PubMed  CAS  Google Scholar 

  • Hirata T, Yokomise H, Fukuse T, Muro K, Ono N, Inui K, Hitomi S, Wada H (1993) Successful 12-hour lung preservation with trehalose. Transplant Proc 25:1597–1598

    PubMed  CAS  Google Scholar 

  • Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM (1992) Nutrientinduced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138:2035–2043

    PubMed  CAS  Google Scholar 

  • Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK (1992) Glucose-induced regulatory defects in the Saccharomyces cerevisiae by p1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 174:4183–4188

    PubMed  CAS  Google Scholar 

  • Hohmann S, Neves MJ, de Koning W, Alijo R, Ramos J, Thevelein JM (1993) The growth and signalling defects of the ggsl (fdpl/bypl) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23:281–289

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, van Dijck P, Luyten K, Thevelein JM (1994) The bypl-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNA(GLN) (CAG): Ggsl/Tpsl protein levels restraining growth on fermentable sugars and trehalose accumulation. Curr Genet 26:295–301

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol 20:981–991

    Article  PubMed  CAS  Google Scholar 

  • Honadel TE, Killian GJ (1988) Cryopreservation of murine embryos with trehalose and glycerol. Cryobiology 25:331–337

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987a) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987b) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522

    PubMed  CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett 255:431–434

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, de Virgilio C, Bell W, Boller T, Wiemken A (1992) Canavanine treatment of yeast induces thermotolerance. Yeast 8:S91

    Google Scholar 

  • Hottiger T, de Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144: 671–680

    Article  PubMed  CAS  Google Scholar 

  • Iida H (1988) Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5’ coding region of the adenylate cyclase gene. Mol Cell Biol 8:5555–5560

    PubMed  CAS  Google Scholar 

  • Iida H, Yahara I (1984) Specific early-Gl blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the Go of higher eukaryotes. J Cell Biol 98:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Shimoda C (1981a) Changes in trehalose content and trehalase activity during spore germination in fission yeast, Schizosaccharomyces pombe. Arch Microbiol 129:19–22

    Article  CAS  Google Scholar 

  • Inoue H, Shimoda C (1981b) Induction of trehalase activity on a nitrogen-free medium : a sporulation-specific event in the fission yeast, Schizosaccharomyces pombe. Mol Gen Genet 183:32–36

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997a) Effect of temperature on the role of Hspl04 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997b) Barotolerance is dependent on both trehalose and heat shock protein 104 but is essentially different from thermo-tolerance in Saccharomyces cerevisiae. Lett Appl Microbiol 25:43–47

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K, Komatsu Y (1998) Evidence for the interplay between trehalose metabolism and Hspl04 in yeast. Appl Environ Microbiol 64: 4614–4617

    PubMed  CAS  Google Scholar 

  • Jacquet M, Camonis J (1985) Control of the cell division cycle and sporulation in Saccharomyces cerevisiae by the cyclic AMP system. Biochimie 67:35–43

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Davis C, Broach JR (1998) Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 17:6942–6951

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Fujita M, Culley BM, Apolinario E, Yamamoto M, Maundrell K, Hoffman CS (1995) sckl, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140:457–467

    PubMed  CAS  Google Scholar 

  • Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli - evidence that transcription is activated by KatF (AppR). J Bacteriol 174:889–898

    PubMed  CAS  Google Scholar 

  • Kaasen I, Mcdougall J, Strom AR (1994) Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki MK, Polizeli MDTM, Terenzi HF, Jorge JA (1996) Characterization of trehalase activities from the thermophilic fungus Scytalidium thermophilum. Biochim Biophys Acta Gen Subjects 1291:199–205

    Article  CAS  Google Scholar 

  • Keller F, Schellenberg M, Wiemken A (1982) Localization of trehalase in vacuoles and trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch Microbiol 131:298–301

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Powers S (1991) Overexpression of RPH, a novel inhibitor of the yeast Ras-cyclic AMP pathway, down-regulates normal but not mutationally activated ras function. Mol Cell Biol 11:3894–3904

    PubMed  CAS  Google Scholar 

  • Kim J, Alizadeh P, Harding T, Hefnergravink A, Klionsky DJ (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing and ethanol shock: potential commercial applications. Appl Environ Microbiol 62:1563–1569

    PubMed  CAS  Google Scholar 

  • Kitamoto Y, Akashi H, Tanaka H, Mori N (1988) α-Glucose-1-phosphate formation by a novel trehalose Phosphorylase from Flammulina velutypes. FEMS Microbiol Lett 55:147–150

    Article  CAS  Google Scholar 

  • Kline L, Sugihara TF (1968) Factors affecting the stability of frozen bread doughs. I. Prepared by the straight dough method. Bakers Digest 42:44–69

    Google Scholar 

  • Kopp M, Muller H, Holzer H (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268:4766–4774

    PubMed  CAS  Google Scholar 

  • Kotyk A, Michaljanicova D (1979) Uptake of trehalose by Saccharomyces cerevisiae. J Gen Microbiol 110:323–332

    PubMed  CAS  Google Scholar 

  • Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gprl, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Küenzi MT, Fiechter A (1969) Changes in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 64:396–407

    Article  PubMed  Google Scholar 

  • Küenzi MT, Fiechter A (1972) Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Mikrobiol 84:254–265

    Article  PubMed  Google Scholar 

  • Landry S, Hoffman CS (2001) The git5 Gbeta and gitll Ggamma form an atypical Gbetagamma dimer acting in the fission yeast glucose/cAMP pathway. Genetics 157:1159–1168

    PubMed  CAS  Google Scholar 

  • Levine H, Slade L (1992) Another view of trehalose for drying and stabilizing biological materials. Biophar-macology 5:36–40

    CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Watson K (1993) Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microbiol 59:1065–1071

    PubMed  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  CAS  Google Scholar 

  • Londesborough J, Varimo K (1984) Characterization of two trehalases in baker’s yeast. Biochem J 219:511–518

    PubMed  CAS  Google Scholar 

  • Londesborough J, Vuorio O (1991) Trehalose-6-phosphate synthase/phosphatase complex from bakers’ yeast: purification of a proteolytically activated form. J Gen Microbiol 137:323–330

    PubMed  CAS  Google Scholar 

  • Luyten K, de Koning W, Tesseur I, Ruiz MC, Ramos J, Cobbaert P, Thevelein JM, Hohmann S (1993) Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur J Biochem 217:701–713

    Article  PubMed  CAS  Google Scholar 

  • Ma P, Wera S, van Dijck P, Thevelein JM (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10:91–104

    PubMed  CAS  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134:1661–1666

    PubMed  CAS  Google Scholar 

  • Mager WH, Moradas-Ferreira P (1993) Stress response of yeast. Biochem J 290:1–13

    PubMed  CAS  Google Scholar 

  • Malone RE (1990) Dual regulation of meiosis in yeast. Cell 61:375–378

    Article  PubMed  CAS  Google Scholar 

  • Marino C, Curto M, Bruno R, Rinaudo MT (1989) Trehalose synthase and trehalose behaviour in yeast cells in anhydrobiosis and hydrobiosis. Int J Biochem 21:1369–1375

    Article  CAS  Google Scholar 

  • Martegani E, Baroni M, Vanoni M (1986) Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast. Exp Cell Res 162:544–548

    Article  PubMed  CAS  Google Scholar 

  • Martin MC, Diaz LA, Manzanal MB, Hardisson C (1986) Role of trehalose in the spores of Streptomyces. FEMS Microbiol Lett 35:49–54

    Article  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1:15–24

    Article  PubMed  CAS  Google Scholar 

  • Mbonyi K, Beullens M, Detremerie K, Geerts L, Thevelein JM (1988) Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8:3051–3057

    PubMed  CAS  Google Scholar 

  • Mbonyi K, van Aelst L, Argüelles JC, Jans AWH, Thevelein JM (1990) Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with reduced activity of cAMP-dependent protein kinase. Mol Cell Biol 10:4518–4523

    PubMed  CAS  Google Scholar 

  • McBride MJ, Ensign JC (1987) Effects of intracellular trehalose content on Streptomyces griseus spores. J Bacteriol 169:4995–5001

    PubMed  CAS  Google Scholar 

  • McDougall J, Kaasen I, Strom AR (1993) A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coli otsA mutant. FEMS Microbiol Lett 107:25–30

    Article  PubMed  CAS  Google Scholar 

  • Merritt PP (1960) The effect of preparation on the stability and performance of frozen, unbaked, yeast-leavened doughs. Bakers Digest 34:57–58

    Google Scholar 

  • Mintzer KA, Field J (1999) The SH3 domain of the S. cerevisiae Cdc25p binds adenylyl cyclase and facilitates Ras regulation of cAMP signalling. Cell Signal 11:127–135

    Article  PubMed  CAS  Google Scholar 

  • Mittenbühler K, Holzer H (1988) Purification and characterization of acid trehalase from the yeast suc2 mutant. J Biol Chem 263:8537–8543

    PubMed  Google Scholar 

  • Munder T, Kuntzel H (1989) Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett 242:341–345

    Article  PubMed  CAS  Google Scholar 

  • Neves MJ, François J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288 (Pt 3):859–864

    PubMed  CAS  Google Scholar 

  • Neves MJ, Jorge JA, François JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neu-rospora crassa. FEBS Lett 283:19–22

    Article  PubMed  CAS  Google Scholar 

  • Neves MJ, Hohmann S, Bell W, Dumortier F, Luyten K, Ramos J, Cobbaert P, de Koning W, Kaneva Z, Thevelein JM (1995) Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet 27:110–122

    Article  PubMed  CAS  Google Scholar 

  • Newman YM, Ring SG, Colaço C (1993) The role of trehalose and other carbohydrates in biopreservation. Biotechnol Genet Eng Rev 11:263–294

    PubMed  CAS  Google Scholar 

  • Nocero M, Isshiki T, Yamamoto M, Hoffman CS (1994) Glucose repression of fbpl transcription of Schizosac-charomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8). Genetics 138:39–45

    PubMed  CAS  Google Scholar 

  • Noubhani A, Bunoust O, Rigoulet M, Thevelein JM (2000) Reconstitution of ethanolic fermentation in perme-abilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 267:4566–4576

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Holzer H (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 58:197–237

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Kopp M, Burgert M, Deuchler I, Kienle I, Holzer H (1994) Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Lett 344:225–228

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Kopp M, Holzer H (1995a) Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem 270:10193–10198

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Mechler B, Destruelle M, Holzer H (1995b) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett 360:286–290

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Uno K, Ohta S (1986) Selection of yeasts for bread-making by the frozen dough method. Appl Environ Microbiol 52:941–943

    PubMed  CAS  Google Scholar 

  • Operti MS, Oliveira DE, Freitas-Valle AB, Oestreicher EG, Mattoon JR, Panek AD (1982) Relationships between trehalose metabolism and maltose utilization in Saccharomyces cerevisiae. III. Evidence for alternative pathways of trehalose synthesis. Curr Genet 5:69–76

    Article  CAS  Google Scholar 

  • Ortiz CH, Maia JCC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation—dephosphorylation cascade system. J Bacteriol 153:644–651

    PubMed  CAS  Google Scholar 

  • Otting G, Liepinsh E, Wuthrich K (1991) Protein hydration in aqueous solution. Science 254:974–980

    Article  PubMed  CAS  Google Scholar 

  • Padrao GR, Malamud DR, Panek AD, Mattoon JR (1982) Regulation of energy metabolism in yeast. Inheritance of a pleiotropic mutation causing defects in metabolism of energy reserves, ethanol utilization and formation of cytochrome a.a3. Mol Gen Genet 185:255–261

    Article  PubMed  CAS  Google Scholar 

  • Panek AC, de Araujo PS, Moura Neto V, Panek AD (1987) Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces. I. Interconversion of forms by phosphorylation. Curr Genet 11:459–465

    Article  PubMed  CAS  Google Scholar 

  • Panek AC, Araujo PS, Poppe SC, Panek AD (1990) On the determination of trehalose-6-phosphate synthase in Saccharomyces. Biochem Int 21:695–704

    PubMed  CAS  Google Scholar 

  • Panek AD (1963) Function of trehalose in baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100:422–425

    Article  CAS  Google Scholar 

  • Panek AD, Mattoon JR (1977) Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development. Arch Biochem Biophys 183:306–316

    Article  PubMed  CAS  Google Scholar 

  • Panek AD, Bernardes EJ (1983) Trehalose: its role in germination of Saccharomyces cerevisiae. Curr Genet 7:393–397

    Article  CAS  Google Scholar 

  • Panek AD, Sampaio AL, Braz GC, Baker SJ, Mattoon JR (1980) Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell Mol Biol 25:345–354

    Google Scholar 

  • Panek AD, Ferreira R, Panek AC (1989) Comparative studies between the glucose-induced phosphorylation signal and the heat shock response in mutants of Saccharomyces cerevisiae. Biochimie 71:313–318

    Article  PubMed  CAS  Google Scholar 

  • Panneman H, Ruijter GJ, van den Broeck HC, Visser J (1998) Cloning and biochemical characterisation of Aspergillus niger hexokinase—the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur J Biochem 258:223–232

    Article  PubMed  CAS  Google Scholar 

  • Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143 (Pt 6):1891–1900

    Article  PubMed  CAS  Google Scholar 

  • Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203

    Article  PubMed  CAS  Google Scholar 

  • Parry JM, Davies PJ, Evans WE (1976) The effects of “cell age” upon the lethal effects of physical and chemical mutagens in the yeast Saccharomyces cerevisiae. Mol Gen Genet 146:27–35

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hspl04. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  • Paschoalin VM, Costa-Carvalho VL, Panek AD (1986) Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in Saccharomyces. Curr Genet 10:725–731

    Article  PubMed  CAS  Google Scholar 

  • Paschoalin VMF, Silva JT, Panek AD (1989) Identification of an ADPG-dependent trehalose synthase in Saccharomyces. Curr Genet 16:81–87

    Article  PubMed  CAS  Google Scholar 

  • Payen R (1949) Variation des teneurs en glycogène et en trehalose pendant le séchage de la levure. Can J Res 27B:749–756

    Article  CAS  Google Scholar 

  • Pedruzzi I, Burckert N, Egger P, de Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gisl. EMBO J 19:2569–2579

    Article  PubMed  CAS  Google Scholar 

  • Pernambuco MB, Winderickx J, Crauwels M, Griffioen G, Mager WH, Thevelein JM (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology 142 (Pt 7): 1775–1782

    Article  PubMed  CAS  Google Scholar 

  • Petit T, François J (1994) Accumulation of trehalose in Saccharomyces cerevisiae growing on maltose is dependent on the TPS1 gene encoding the UDP glucose-linked trehalose synthase. FEBS Lett 355:309–313

    Article  PubMed  CAS  Google Scholar 

  • Piper P (1998) Differential role of Hsps and trehalose in stress tolerance. Trends Microbiol 6:43–44

    Article  PubMed  CAS  Google Scholar 

  • Piper PW, Lockheart A (1988) A temperature-sensitive mutant of Saccharomyces cerevisiae defective in the specific phosphatase of trehalose biosynthesis. FEMS Microbiol Lett 49:245–250

    Article  CAS  Google Scholar 

  • Plesset J, Ludwig J, Cox B, McLaughlin C (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169:779–784

    PubMed  CAS  Google Scholar 

  • Plourde-Owobi L, Durner S, Parrou JL, Wieczorke R, Goma G, François J (1999) AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J Bacteriol 181:3830–3832

    PubMed  CAS  Google Scholar 

  • Plourde-Owobi L, Durner S, Goma G, François J (2000) Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability. Int J Food Microbiol 55:33–40

    Article  PubMed  CAS  Google Scholar 

  • Polakis ES, Bartley W (1966) Changes in dry weight, protein, deoxyribonucleic acid, ribonucleic acid and reserve and structural carbohydrate during the aerobic growth cycle of yeast. Biochem J 98:883–887

    PubMed  CAS  Google Scholar 

  • Pollock GE, Holmstrom CD (1951) The trehalose content and the quality of active dry yeast. Cereal Chem 28: 498–505

    CAS  Google Scholar 

  • Quain DE, Haslam JM (1979) Changes in glucose 6-phosphate and storage carbohydrates during catabo-lite derepression in Saccharomyces cerevisiae. J Gen Microbiol 113:195–198

    CAS  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Forster R, Warr RSC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39:51–56

    Article  CAS  Google Scholar 

  • Reed SI (1992) The role of p34 kinases in the Gl to S-phase transition. Annu Rev Cell Biol 8:529–561

    Article  PubMed  CAS  Google Scholar 

  • Reinders A, Burckert N, Hohmann S, Thevelein JM, Boiler T, Wiemken A, de Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695

    Article  PubMed  CAS  Google Scholar 

  • Reinders A, Burckert N, Boller T, Wiemken A, de Virgilio C (1998) Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Riml5p protein kinase. Genes Dev 12: 2943–2955

    Article  PubMed  CAS  Google Scholar 

  • Reinders A, Romano I, Wiemken A, de Virgilio C (1999) The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J Bacteriol 181:4665–4668

    PubMed  CAS  Google Scholar 

  • Ribeiro M J, Reinders A, Boller T, Wiemken A, de Virgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25:571–581

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, de Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38:348–358

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  PubMed  CAS  Google Scholar 

  • Roser BJ (1991a) Trehalose, a new approach to premium dried foods. Trends Food Sci Technol 2:166–169

    Article  CAS  Google Scholar 

  • Roser BJ (1991b) Trehalose drying: a novel replacement for freeze-drying. Biopharmacology 5:44–53

    Google Scholar 

  • Roth R (1970) Carbohydrate accumulation during the sporulation of yeast. J Bacteriol 101:53–57

    PubMed  CAS  Google Scholar 

  • Ruf J, Wacker H, James P, Maffia M, Seiler P, Galand G, von Kieckebusch A, Semenza G, Mantei N (1990) Rabbit small intestinal trehalase. Purification, cDNA cloning, expression, and verification of glycosylphosphatidyli-nositol anchoring. J Biol Chem 265:15034–15039

    PubMed  CAS  Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. Bioessays 17:959–965

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1989) Structure and dynamics of water surrounding biomolecules. Annu Rev Biophys Biophys Chem 16:93–114

    Article  Google Scholar 

  • Saito K, Kase T, Takahashi E, Horinouchi S (1998) Purification and characterization of a trehalose synthase from the basidiomycete Grifola frondosa. Appl Environ Microbiol 64:4340–4345

    PubMed  CAS  Google Scholar 

  • Sales K, Brandt W, Rumbak E, Lindsey G (2000) The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta 1463:267–278

    Article  PubMed  CAS  Google Scholar 

  • San Miguel PF, Argüelles JC (1994) Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae (1994) Biochim Biophys Acta 1200:155–160

    Article  Google Scholar 

  • Sanchez Y, Lindquist S (1990) HSP 104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hspl04 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    PubMed  CAS  Google Scholar 

  • Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80–87

    Article  PubMed  CAS  Google Scholar 

  • Schenberg-Frascino A, Moustacchi E (1972) Lethal and mutagenic effects of elevated temperature on haploid yeast. Mol Gen Genet 115:243–257

    Article  PubMed  CAS  Google Scholar 

  • Schick I, Haltrich D, Kulbe KD (1995) Trehalose Phosphorylase from Pichia fermentans and its role in the metabolism of trehalose. Appl Microbiol Biotechnol 43:1088–1095

    Article  CAS  Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782

    Article  PubMed  CAS  Google Scholar 

  • Schomerus C, Munder T, Kuntzel H (1990) Site-directed mutagenesis of the Saccharomyces cerevisiae CDC25 gene: effects on mitotic growth and cAMP signalling. Mol Gen Genet 223:426–432

    Article  PubMed  CAS  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    PubMed  CAS  Google Scholar 

  • Seo HS, Koo YJ, Lim JY, Song JT, Kim CH, Kim JK, Lee JS, Choi YD (2000) Characterization of a afunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl Environ Microbiol 66:2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Sharma SC (1997) A possible role of trehalose in osmotol-erance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15

    Article  PubMed  CAS  Google Scholar 

  • Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker’s yeast. Appl Environ Microbiol 65:2841–2846

    PubMed  CAS  Google Scholar 

  • Shin D-Y, Matsumoto K, Iida H, Uno I, and Ishikawa T (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7:244–250

    PubMed  CAS  Google Scholar 

  • Sillje HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181:396–400

    PubMed  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998a) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  PubMed  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998b) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  PubMed  CAS  Google Scholar 

  • Slade L, Levine H (1988) Non-equilibrium behavior of small carbohydrate-water systems. Pure Appl Chem 60:1841–1864

    Article  CAS  Google Scholar 

  • Smith SE (1967) Carbohydrate translocation in orchid mycorrhizas. New Phytol 66:371–378

    Article  CAS  Google Scholar 

  • Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1995a) Nitrogen-source-induced activation of neutral trehalase in Schizosaccharomyces pombe and Pachysolen tannophilus: role of cAMP as second messenger. FEMS Microbiol Lett 132:229–232

    Article  PubMed  CAS  Google Scholar 

  • Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1995b) Glucose-induced, cyclic-AMP-independent signalling pathway for activation of neutral trehalase in the fission yeast Schizosaccharomyces pombe. Microbiology 141:2665–2671

    Article  CAS  Google Scholar 

  • Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1996) Posttranslational regulatory control of trehalase induced by nutrients, metabolic inhibitors, and physical agents in Pachysolen tannophilus. Fungal Genet Biol 20:143–151

    Article  CAS  Google Scholar 

  • Soto T, Fernandez J, Cansado J, Vicente-Soler J, Gacto M (1997) Protein kinase Sckl is involved in trehalase activation by glucose and nitrogen source in the fission yeast Schizosaccharomyces pombe. Microbiology 143 (Pt 7):2457–2463

    Article  PubMed  CAS  Google Scholar 

  • Soto T, Fernandez J, Dominguez A, Vicente-Soler J, Cansado J, Gacto M (1998) Analysis of the ntpl+ gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 1443:225–229

    Article  PubMed  CAS  Google Scholar 

  • Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1999) Accumulation of trehalose by overexpression of tpsl, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. Appl Environ Microbiol 65:2020–2024

    PubMed  CAS  Google Scholar 

  • Stambuk BU, Dearaujo PS, Panek AD, Serrano R (1996) Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae. Eur J Biochem 237:876–881

    Article  PubMed  CAS  Google Scholar 

  • Stambuk BU, Panek AD, Crowe JH, Crowe LM, de Araujo PS (1998) Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta 1379:118–128

    Article  PubMed  CAS  Google Scholar 

  • Stambuk BU, da Silva MA, Panek AD, de Araujo PS (1999) Active alpha-glucoside transport in Saccharomyces cerevisiae. FEMS Microbiol Lett 170:105–110

    PubMed  CAS  Google Scholar 

  • Stewart LC, Richtmeyer NK, Hudson CS (1950) The preparation of trehalose from yeast. J Am Chem Soc 72: 2059–2061

    Article  CAS  Google Scholar 

  • Strom AR (1998) Osmoregulation in the model organism Escherichia coli: genes governing the synthesis of glycine betaine and trehalose and their use in metabolic engineering of stress tolerance. J Biosci 23:437–445

    Article  CAS  Google Scholar 

  • Strom AR, Falkenberg P, Landfald B (1986) Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39:79–86

    Google Scholar 

  • Sugajska E, Swiatek W, Zabrocki P, Geyskens I, Thevelein JM, Zolnierowicz S, Wera S (2001) Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the yeast Saccharomyces cerevisiae. Mol Microbiol 40:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Sugihara TF, Kline L (1968) Factors affecting the stability of frozen bread doughs. II. Prepared by the sponge and dough method. Bakers Digest 42:51–54,69

    Google Scholar 

  • Sumida M, Ogura S, Miyata S, Arai M, Murao S (1989) Purification and some properties of trehalase from Chaetomium aureum MS-27. J Ferment Bioeng 67:83–86

    Article  CAS  Google Scholar 

  • Suomalainen H, Pfäffli S (1961) Changes in the carbohydrate reserves of baker’s yeast during growth and on standing. J Inst Brew 67:249–254

    CAS  Google Scholar 

  • Sussman AS (1954) Changes in the permeability of ascospores of Neurospora tetrasperma during germination. J Gen Physiol 38:59–77

    Article  PubMed  CAS  Google Scholar 

  • Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412

    Article  PubMed  CAS  Google Scholar 

  • Tatchell K (1993) Ras genes in the budding yeast Saccharomyces cerevisiae. In: Kurjan J, Taylor BJ (eds) Signal transduction prokaryotic and simple eukaryotic systems. Academic Press, San Diego, pp 147–188

    Chapter  Google Scholar 

  • Tereshina VM, Polotebnova MV, and Feofilova EP (1988) Trehalase activity of spores of the wild-type strain of Cunninghamella japonica and mutants with a reduced rate of trehalase synthesis. Microbiology 56:587–592

    Google Scholar 

  • Thevelein JM (1984a) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    PubMed  CAS  Google Scholar 

  • Thevelein JM (1984b) Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch Microbiol 138:64–67

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1984c) Activation of trehalase by membrane-depolarizing agents in yeast vegetative cells and ascospores. J Bacteriol 158:337–339

    PubMed  CAS  Google Scholar 

  • Thevelein JM (1988) Regulation of trehalase activity by phosphorylation—dephosphorylation during developmental transitions in fungi. Exp Mycol 12:1–12

    Article  CAS  Google Scholar 

  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS adenylate cyclase signalling pathway in yeast—the relationship to nutrient-induced cell cycle control. Mol Microbiol 5:1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. In: Grivell L (ed) Molecular biology of yeasts. Antonie van Leeuwenhoek, Journal of microbiology, special issue, vol 62. Kluwer, Dordrecht, pp 109–130

    Google Scholar 

  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10:1753–1790

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, Jones KA (1983) Reversibility characteristics of glucose-induced trehalase activation associated with the breaking of dormancy in yeast ascospores. Eur J Biochem 136:583–587

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, Beullens M (1985) Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J Gen Microbiol 131 (Pt 12):3199–3209

    PubMed  CAS  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, den Hollander JA, Shulman RG (1982) Changes in the activity and properties of trehalase during early germination of yeast ascospores: correlation with trehalose breakdown as studied by in vivo 13C NMR. Proc Natl Acad Sci USA 79:3503–3507

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, Cauwenberg L, Colombo S, de Winde JH, Donaton M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, van Dijck P, Versele M, Wera S, Winderickx J (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26:819–825

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Wigler M (1988) SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527

    Article  PubMed  CAS  Google Scholar 

  • Tripp ML, Paznokas JL (1982) Glucose-initiated germination of Mucor racemosus sporangiospores. J Gen Microbiol 128:477–483

    PubMed  CAS  Google Scholar 

  • Trivedi NB, Jacobson G (1986) Recent advances in baker’s yeast. Prog Ind Microbiol 23:45–71

    CAS  Google Scholar 

  • Uno I, Matsumoto K, Adachi K, Ishikawa T (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258:10867–10872

    PubMed  CAS  Google Scholar 

  • Van Aelst L, Boy-Marcotte E, Camonis JH, Thevelein JM, Jacquet M (1990) The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. Eur J Biochem 193:675–680

    Article  PubMed  Google Scholar 

  • Van Aelst L, Jans AW, Thevelein JM (1991) Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. J Gen Microbiol 137 (Pt 2):341–349

    PubMed  Google Scholar 

  • Van Aelst L, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves M J, Luyten K, Alijo R, Ramos J, Coccetti P, Martegani E, de Magalhaes-Rocha NM, Brandao RL, van Dijck P, Vanhalewyn M, Durnez P, Jans AWH, Thevelein JM (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol Microbiol 8:927–943

    Article  PubMed  Google Scholar 

  • Van der Plaat JB (1974) Cyclic 3’,5’-adenosine monophosphate stimulates trehalose degradation in baker’s yeast. Biochem Biophys Res Commun 56:580–587

    Article  PubMed  Google Scholar 

  • Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    PubMed  Google Scholar 

  • Van Dijck P, de Rop L, Szlufcik K, van Ael E, Thevelein JM (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hyphae formation. Infect Immun 70(4):1772–1782

    Article  PubMed  CAS  Google Scholar 

  • Van Doom J, Scholte ME, Postma PW, van Driel R, van Dam K (1988a) Regulation of trehalase activity during the cell cycle of Saccharomyces cerevisiae. J Gen Microbiol 134 (Pt 3):785–790

    Google Scholar 

  • Van Doom J, Valkenburg JA, Scholte ME, Oehlen LJ, van Driel R, Postma PW, Nanninga N, van Dam K (1988b) Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae. J Bacteriol 170:4808–4815

    Google Scholar 

  • Van Laere A (1986a) Biochemistry of spore germination in Phycomyces. FEMS Microbiol Rev 32:189–198

    Google Scholar 

  • Van Laere A (1986b) Resistance of germinating Phycorny ces spores to desiccation, freezing, and acids. FEMS Microbiol Ecol 38:251–256

    Article  Google Scholar 

  • Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210

    Google Scholar 

  • Van Laere A, Siegers LK (1987) Trehalose breakdown in germinating spores of Mucor rouxii. FEMS Microbiol Lett 41:247–252

    Article  Google Scholar 

  • Van Mulders RM, van Laere A (1984) Cyclic AMP, trehalase and germination of Phycornyces blakesleeanus spores. J Gen Microbiol 130:541–547

    Google Scholar 

  • Van Vaeck C, Wera S, van Dijck P, Thevelein JM (2001) Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochem J 353:157–162

    Article  PubMed  Google Scholar 

  • Vandercammen A, François J, Hers H-G (1989) Characterization of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur J Biochem 182:613–620

    Article  PubMed  CAS  Google Scholar 

  • Vanhalewyn M, Dumortier F, Debast G, Colombo S, Ma P, Winderickx J, van Dijck P, Thevelein JM (1999) A mutation in Saccharomyces cerevisiae adenylate cyclase, CyrlK1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Mol Microbiol 33:363–376

    Article  PubMed  CAS  Google Scholar 

  • Versele M, de Winde JH, Thevelein JM (1999) A novel regulator of G protein signalling in yeast, Rgs2, down-regulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 18:5577–5591

    Article  PubMed  CAS  Google Scholar 

  • Versele M, Lemaire K, Thevelein JM (2001) Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep 2: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Soler J, Argüelles JC, Gacto M (1989) Presence of two trehalose-6-phosphate synthase enzymes in Candida utilis. FEMS Microbiol Lett 61:273–278

    Article  CAS  Google Scholar 

  • Vicente-Soler J, Argüelles JC, Gacto M (1991) Proteolytic activation of alpha,alpha-trehalose 6-phosphate synthase in Candida utilis. FEMS Microbiol Lett 66:157–161

    PubMed  CAS  Google Scholar 

  • Von Meyenburg HK (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66:289–303

    Article  Google Scholar 

  • Vuorio O, Londesborough J, Kalkkinen N (1992) Trehalose synthase: purification of the intact enzyme and cloning of the structural genes. Yeast 8 (Special Issue): S626

    Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861

    Article  PubMed  CAS  Google Scholar 

  • Walton EF, Carter BLA, Pringle JR (1979) An enrichment method for temperature-sensitive and auxotrophic mutants of yeast. Mol Gen Genet 171:111–114

    Article  Google Scholar 

  • Wannet WJB, den Camp HJMO, Wisselink HW, van der Drift C, van Griensven LJLD, Vogels GD (1998) Purification and characterization of trehalose Phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta Gen Subjects 1425: 177–188

    Article  CAS  Google Scholar 

  • Wannet WJB, Aben EMJ, van der Drift C, van Griensven LJLD, Vogels GD, den Camp JMO (1999) Trehalose Phosphorylase activity and carbohydrate levels during axenic fruiting in three Agaricus bisporus strains. Curr Microbiol 39:205–210

    Article  PubMed  CAS  Google Scholar 

  • Welton RM, Hoffman CS (2000) Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics 156:513–521

    PubMed  CAS  Google Scholar 

  • Wera S, de Schrijver E, Geyskens I, Nwaka S, Thevelein JM (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J 343:621–626

    Article  PubMed  CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwen-hoek J Microbiol 58:209–217

    Article  CAS  Google Scholar 

  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 Gene encoding the cytosolic Catalase-T of Saccharomyces cerevisiae. J Biol Chem 266:12406–12411

    PubMed  CAS  Google Scholar 

  • Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S, van Dijck P, Thevelein JM (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet 252:470–482

    PubMed  CAS  Google Scholar 

  • Winkler K, Kienle I, Burgert M, Wagner JC, Holzer H (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett 291:269–272

    Article  PubMed  CAS  Google Scholar 

  • Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42:79–87

    Article  PubMed  CAS  Google Scholar 

  • Wolschek MF, Kubicek CP (1997) The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem 272:2729–2735

    Article  PubMed  CAS  Google Scholar 

  • Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159: 1491–1499

    PubMed  CAS  Google Scholar 

  • Xue Y, Batlle M, Hirsch JP (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17:1996–2007

    Article  PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11:1062–1068

    PubMed  CAS  Google Scholar 

  • Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H (1997) G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 240:287–292

    Article  PubMed  CAS  Google Scholar 

  • Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nthl by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406

    Article  PubMed  Google Scholar 

  • Zaragoza O, Blazquez MA, Gancedo C (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 180:3809–3815

    PubMed  CAS  Google Scholar 

  • Zaragoza O, de Virgilio C, Ponton J, Gancedo C (2002) Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. Microbiology 148: 1281–1290

    PubMed  CAS  Google Scholar 

  • Zentella R, Mascorro-Gallardo JO, van Dijck P, Folch-Mallol J, Bonini BM, van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) A Selaginella lepidophylla tre-halose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tpsl mutant. Plant Physiol 119:1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Zevenhuizen LPTM (1992) Levels of trehalose and glycogen in Athrobacter globiformis under conditions of nutrient starvation and osmotic stress. Antonie Van Leeuwenhoek 61:61–68

    Article  PubMed  CAS  Google Scholar 

  • Zikmanis PB, Laivenieks MG, Auzinya LP, Kulaev IS, Beker ME (1985) Relationship between the content of high-molecular-weight polyphosphates and trehalose and viability of populations following dehydratation of the yeast Saccharomyces cerevisiae. Microbiology 54: 326–330

    Google Scholar 

  • Zikmanis PB, Kruche RV, Auzinya LP, Margevicha MV, Becker E (1988) Distribution of trehalose between dehydrated Saccharomyces cerevisiae cells and the rehydratation medium. Microbiology 57:414–416

    Google Scholar 

  • Zimmermann ALS, Terenzi HF, Jorge JA (1990) Purification and properties of an extracellular conidial trehalase from Humicola grisea Var Thermoidea. Biochim Biophys Acta 1036:41–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonini, B.M., Van Dijck, P., Thevelein, J.M. (2004). Trehalose Metabolism: Enzymatic Pathways and Physiological Functions. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics