Trehalose Metabolism: Enzymatic Pathways and Physiological Functions

  • B. M. Bonini
  • P. Van Dijck
  • J. M. Thevelein
Chapter
Part of the The Mycota book series (MYCOTA, volume 3)

Abstract

Trehalose is a disaccharide (α-D-glucopyranosyl α-D-glucopyranoside) commonly found in many fungi and present in particularly high concentrations in stationary-phase cells and survival forms. For a long time, trehalose was considered to be a storage carbohydrate, accumulated under conditions of imminent carbon shortage and mobilized under prolonged starvation conditions. However, several unusual features of trehalose metabolism have been discovered in recent years. Trehalose levels often correlate closely with stress resistance and in vitro experiments have shown a remarkable capacity of high trehalose concentrations in conferring protection to denaturation of proteins and membranes under stress conditions. The role of trehalose in stress protection is now well established.

Keywords

Carbohydrate Dehydration Sponge Cytosol Catalase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisaka K, Masuda T, Chikamune T, Kamitori K (1998) Purification and characterization of trehalose Phosphorylase from Catellatospora ferruginea. Biosci Biotechnol Biochem 62:782–787PubMedCrossRefGoogle Scholar
  2. Alabran DM, Ball DH, Reese ET (1983) Comparison of the trehalase of Trichoderma reesei with those from other sources. Carbohydr Res 123:179–181PubMedCrossRefGoogle Scholar
  3. Amaral FC, van Dijck P, Nicoli JR, Thevelein JM (1997) Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol 167:202–208PubMedCrossRefGoogle Scholar
  4. Anchordoguy TJ, Crowe JH, Griffin FJ, Clark WH (1988) Cryopreservation of sperm from the marine shrimp Sicyona engentis. Cryobiology 25:238–243PubMedCrossRefGoogle Scholar
  5. App H, Holzer H (1989) Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J Biol Chem 264:17583–17588PubMedGoogle Scholar
  6. Argüelles JC (1997) Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol Lett 146:65–71PubMedCrossRefGoogle Scholar
  7. Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224PubMedCrossRefGoogle Scholar
  8. Argüelles JC, Gacto M (1985) Evidence for regulatory trehalase activity in Candida utilis. Can J Microbiol 31:529–537CrossRefGoogle Scholar
  9. Argüelles JC, Gacto M (1986) Comparative study of two trehalases from Candida utilis. Microbiologia 2:105–114PubMedGoogle Scholar
  10. Argüelles JC, Gacto M (1988) Differential location of regulatory and non-regulatory trehalases in Candida utilis cells. Antonie van Leeuwenhoek 54:555–565PubMedCrossRefGoogle Scholar
  11. Argüelles JC, Vicente-Soler J, Gacto M (1986) Protein phosphorylation and trehalase activation in Candida utilis. FEMS Microbiol Lett 34:361–365CrossRefGoogle Scholar
  12. Arisan-Atac I, Wolschek MF, Kubicek CP (1996) Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol Lett 140:77–83PubMedCrossRefGoogle Scholar
  13. Arneborg N, Moos MK, Jakobsen M (1997) Induction of acetic acid tolerance and trehalose accumulation by added and produced ethanol in Saccharomyces cere-visiae. Biotechnol Lett 19:931–933CrossRefGoogle Scholar
  14. Arya SC (2000) Stabilization of vaccines: to be or not to be. Vaccine 19:595–597PubMedCrossRefGoogle Scholar
  15. Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263PubMedCrossRefGoogle Scholar
  16. Attfield PV, Raman A, Northcott CJ (1992) Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disac-charide to stress tolerance. FEMS Microbiol Lett 94: 271–276CrossRefGoogle Scholar
  17. Barton JK, den Hollander JA, Hopfield JJ, Shulman RG (1982) 13C Nuclear magnetic resonance study of trehalose mobilization in yeast spores. J Bacteriol 151: 177–185PubMedGoogle Scholar
  18. Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 10:585–592PubMedGoogle Scholar
  19. Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, van der Zee P, Wiemken A (1992) Characterization of the 56kDa subunit of the yeast tre-halose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959PubMedCrossRefGoogle Scholar
  20. Bell W, Sun W, Hohmann S, Wera S, Reinders A, de Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273:33311–33319PubMedCrossRefGoogle Scholar
  21. Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC (1996) Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci USA 93:13096–13101PubMedCrossRefGoogle Scholar
  22. Belocopitow E, Maréchal LR (1970) Trehalose Phosphorylase from Euglena gracilis. Biochim Biophys Acta 198: 151–154PubMedCrossRefGoogle Scholar
  23. Beltran FF, Castillo R, Vicente-Soler J, Cansado J, Gacto M (2000) Role for trehalase during germination of spores in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 193:117–121PubMedCrossRefGoogle Scholar
  24. Bergsma JC, Kasri NN, Donaton MC, de Wever V, Tisi R, de Winde JH, Martegani E, Thevelein JM, Wera S (2001) PtdIns(4,5)P(2) and phospholipase C-independent Ins(l,4,5)P(3) signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochem J 359:517–523PubMedCrossRefGoogle Scholar
  25. Beullens M, Mbonyi K, Geerts L, Gladines D, Detremerie K, Jans AW, Thevelein JM (1988) Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 172:227–231PubMedCrossRefGoogle Scholar
  26. Bhandal IS, Hauptmann RM, Widholm JM (1985) Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol 78:430–432PubMedCrossRefGoogle Scholar
  27. Bhattacharya S, Chen L, Broach JR, Powers S (1995) Ras membrane targeting is essential for glucose signaling but not for viability in yeast. Proc Natl Acad Sci USA 92:2984–2988PubMedCrossRefGoogle Scholar
  28. Blakeley D, Tolliday B, Colaço C, Roser B (1990) Dry instant blood typing plate for bedside use. Lancet 336:854–855PubMedCrossRefGoogle Scholar
  29. Blazquez MA, Lagunas R, Gancedo C, Gancedo JM (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329:51–54PubMedCrossRefGoogle Scholar
  30. Blazquez MA, Stucka R, Feldmann H, Gancedo C (1994) Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. J Bacteriol 176:3895–3902PubMedGoogle Scholar
  31. Bonini BM, Neves MJ, Jorge JA, Terenzi HF (1995) Effects of temperature shifts on the metabolism of trehalose in Neurospora crassa wild type and a trehalase-deficient (tre) mutant. Evidence against the participation of periplasmic trehalase in the catabolism of intracellular trehalose. Biochim Biophys Acta 1245: 339–347PubMedCrossRefGoogle Scholar
  32. Bonini BM, van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, van Dijck P, Thevelein JM (2000) Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tpsl mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350 (Pt l):261–268PubMedCrossRefGoogle Scholar
  33. Boos W, Ehmann U, Bremer E, Middendorf A, Postma P (1987) Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262: 13212–13218PubMedGoogle Scholar
  34. Bourret JA (1986) Evidence that a glucose-mediated rise in cyclic AMP triggers germination of Pilobolus longipes spores. Exp Mycol 10:60–66CrossRefGoogle Scholar
  35. Brana AF, Mendez C, Diaz LA, Manzanal MB, Hardisson C (1986) Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J Gen Microbiol 132 (Pt 5):1319–1326PubMedGoogle Scholar
  36. Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1991) Osmotically-regulated trehalose accumulation and cyclic beta-(l,2)-glucan excretion by Rhizobium legu-minosarum biovar trifolii TA-1. Arch Microbiol 156: 501–506Google Scholar
  37. Broach JR, Deschenes RJ (1990) The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54:79–139PubMedCrossRefGoogle Scholar
  38. Brownlee C, Jennings DH (1981) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:615–619CrossRefGoogle Scholar
  39. Burke MJ (1985) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, NY, pp 358–363Google Scholar
  40. Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. J Biol Chem 231:259–275PubMedGoogle Scholar
  41. Callaerts G, Iserentant D, Verachtert H (1993) Relation between trehalose and sterol accumulation during oxygenation of cropped yeast. J Am Soc Brew Chem 51:75–77Google Scholar
  42. Cameron S, Levin L, Zoller M, Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism and heat shock resistance in S. cerevisiae. Cell 53:555–566PubMedCrossRefGoogle Scholar
  43. Cannon JF, Pringle JR, Fiechter A, Khalil M (1994) Characterization of glycogen-deficient gle mutants of Saccharomyces cerevisiae. Genetics 136:485–503PubMedGoogle Scholar
  44. Carrillo D, Vicente-Soler J, Gacto M (1992) Activation of neutral trehalase by fermentable sugars and cAMP in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 98:61–66CrossRefGoogle Scholar
  45. Carrillo D, Vicente-Soler J, Gacto M (1994a) Cyclic AMP signalling pathway and trehalase activation in the fission yeast Schizosaccharomyces pombe. Microbiology 140:1467–1472PubMedCrossRefGoogle Scholar
  46. Carrillo D, Vicente-Soler J, Gacto M (1994b) Sensitivity of fructose-1,6-bisphosphatase to glucose and cyclic AMP in the fission yeast Schizosaccharomyces pombe. Microbios 79:73–79PubMedGoogle Scholar
  47. Carrillo D, Vicente-Soler J, Fernandez J, Soto T, Cansado J, Gacto M (1995) Activation of cytoplasmic trehalase by cyclic-AMP-dependent and cyclic-AMP-independent signalling pathways in the yeast Candida utilis. Microbiology 141 (Pt 3):679–686PubMedCrossRefGoogle Scholar
  48. Charlab R, Oliveira DE, Panek AD (1985) Investigation of the relationship between sstl and fdp mutations in yeast and their effect on trehalose synthesis. Braz J Med Biol Res 18:447–454PubMedGoogle Scholar
  49. Chen T, Fowler A, Toner M (2000) Literature review: supplemented phase diagram of the trehalose-water binary mixture. Cryobiology 40:277–282PubMedCrossRefGoogle Scholar
  50. Clegg JS (1985) The physical properties and metalic status of Artemia cysts at low water contents: The “water replacement hypothesis”. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, NY, pp 169–187Google Scholar
  51. Cochrane VW (1958) The physiology of fungi. Wiley, New YorkGoogle Scholar
  52. Colaço C, Sen S, Thangavelu M, Pinder S, Roser B (1992) Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology 10:1007–1011PubMedCrossRefGoogle Scholar
  53. Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17:3326–3341PubMedCrossRefGoogle Scholar
  54. Coote PJ, Jones MV, Edgar K, Cole MB (1992) TPK gene products mediate cAMP-independent thermotoler-ance in Saccharomyces cerevisiae. J Gen Microbiol 138: 2551–2557PubMedGoogle Scholar
  55. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–11090PubMedCrossRefGoogle Scholar
  56. Cotter DA (1975) Spores of the cellular slime mold Dictyostelium discoideum. In: Gerhardt P, Costilow RN, Sadoff HL (eds) Spores VI. American Society for Microbiology, Washington, DC, pp 61–72Google Scholar
  57. Coutinho C, Bernardes E, Felix D, Panek A (1988) Trehalose as cryoprotectant for preservation of yeast strains. J Biotechnol 7:23–32CrossRefGoogle Scholar
  58. Coutinho CC, Silva JT, Panek AD (1992) Trehalase activity and its regulation during growth of Saccharomyces cerevisiae. Biochem Int 26:521–530PubMedGoogle Scholar
  59. Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143:2627–2637PubMedCrossRefGoogle Scholar
  60. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703PubMedCrossRefGoogle Scholar
  61. Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27:219–231CrossRefGoogle Scholar
  62. Crowe JH, Panek AD, Crowe LM, Panek AC, Dearaujo PD (1991) Trehalose transport in yeast cells. Biochem Int 24:721–730PubMedGoogle Scholar
  63. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  64. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105PubMedCrossRefGoogle Scholar
  65. Cuber R, Eleutherio ECA, Pereira MD, Panek AD (1997) The role of the trehalose transporter during germination. Biochim Biophys Acta Biomembr 1330:165–171CrossRefGoogle Scholar
  66. De Almeida FM, Lucio AKB, Polizeli Maria de Lourdes TM, Jorge JA, Terenzi HF (1997) Function and regulation of the acid and neutral trehalases of Mucor rouxll. FEMS Microbiol Lett 155:73–77PubMedCrossRefGoogle Scholar
  67. De Almeida EM, Polizeli MD, Terenzi HF, Jorge JA (1999) Biochemical characterization of a Ca2+-dependent acid trehalase activity from the thermophilic fungus Chaetomium thermophilum var. coprophilum. FEMS Microbiol Lett 171:11–15Google Scholar
  68. De Antoni GL, Perez P, Abraham A, Anon MC (1989) Trehalose, a cryoprotectant for Lactobacillus bulgaricus. Cryobiology 26:149–153CrossRefGoogle Scholar
  69. De Araujo PS, Panek AC, Crowe JH, Crowe LM, Panek AD (1991) Trehalose-transporting membrane vesicles from yeasts. Biochem Int 24:731–737PubMedGoogle Scholar
  70. De Koning W, Groeneveld K, Oehlen LJ, Berden JA, van Dam K (1991) Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification. J Gen Microbiol 137 (Pt 4):971–976PubMedGoogle Scholar
  71. Dellamora Ortiz GM, Ortiz CHD, Maia JCC, Panek AD (1986) Partial purification and characterization of the interconvertible forms of trehalase from Saccharomyces cerevisiae. Arch Biochem Biophys 251:205–214CrossRefGoogle Scholar
  72. D’Enfert C, Fontaine T (1997) Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24:203–216PubMedCrossRefGoogle Scholar
  73. D’Enfert C, Bonini BM, Zapella PDA, Fontaine T, da Silva AM, Terenzi HF (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:471–483PubMedCrossRefGoogle Scholar
  74. De Pinho CA, de Lourdes M, Polizeli TM, Jorge JA, Terenzi HF (2001) Mobilisation of trehalose in mutants of the cyclic AMP signalling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiol Lett 199:85–89PubMedGoogle Scholar
  75. De Silva-Udawatta MN, Cannon JF (2001) Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol Microbiol 40:1345–1356PubMedCrossRefGoogle Scholar
  76. De Virgilio C, Simmen U, Hottiger T, Boiler T, Wiemken A (1990) Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotol-erance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Lett 273:107–110PubMedCrossRefGoogle Scholar
  77. De Virgilio C, Burckert N, Boller T, Wiemken A (1991a) A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Lett 291:355–358PubMedCrossRefGoogle Scholar
  78. De Virgilio C, Muller J, Boller T, Wiemken A (1991b) A constitutive, heat shock-activated neutral trehalase occurs in Schizosaccharomyces pombe in addition to the sporulation-specific acid trehalase. FEMS Microbiol Lett 84:85–90Google Scholar
  79. De Virgilio C, Piper P, Boller T, Wiemken A (1991c) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hspl04 and in the absence of protein synthesis. FEBS Lett 288:86–90PubMedCrossRefGoogle Scholar
  80. De Virgilio C, Buerckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323PubMedCrossRefGoogle Scholar
  81. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186PubMedCrossRefGoogle Scholar
  82. Dewerchin MA, Van Laere AJ (1984) Trehalase activity and cyclic AMP content during early development of Mucor rouxii spores. J Bacteriol 158:575–579PubMedGoogle Scholar
  83. Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 272: 30196–30200PubMedCrossRefGoogle Scholar
  84. Donaton MCV, Holsbeeks I, Legatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM (2003) The Gapl general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol 50:911–929PubMedCrossRefGoogle Scholar
  85. Dumont JE, Jauniaux JC, Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci 14:67–71PubMedCrossRefGoogle Scholar
  86. Durnez P, Pernambuco MB, Oris E, Argüelles JC, Mergelsberg H, Thevelein JM (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10: 1049–1064PubMedCrossRefGoogle Scholar
  87. Eck R, Bergmann C, Ziegelbauer K, Schonfeld W, Kunkel W (1997) A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. Microbiology 143:3747–3756PubMedCrossRefGoogle Scholar
  88. Eis C, Nidetzky B (1999) Characterization of trehalose Phosphorylase from Schizophyllum commune. Biochem J 341:385–393PubMedCrossRefGoogle Scholar
  89. Eis C, Albert M, Dax K, Nidetzky B (1998) The stereochemical course of the reaction mechanism of trehalose Phosphorylase from Schizophyllum commune. FEBS Lett 440:440–443PubMedCrossRefGoogle Scholar
  90. Eis C, Watkins M, Prohaska T, Nidetzky B (2001) Fungal trehalose Phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J 356:757–767PubMedCrossRefGoogle Scholar
  91. Elbein AD (1974) The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem 30:227–256PubMedCrossRefGoogle Scholar
  92. Elliott B, Futcher B (1993) Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9:33–42PubMedCrossRefGoogle Scholar
  93. Elliott B, Haltiwanger RS, Futcher B (1996) Synergy between trehalose and Hspl04 for thermotolerance in Saccharomyces cerevisiae. Genetics 144:923–933PubMedGoogle Scholar
  94. Engelberg D, Perlman R, Levitzki A (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cell Signal 1:1–7PubMedCrossRefGoogle Scholar
  95. Engelberg D, Poradosu E, Simchen G, Levitzki A (1990) Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides. FEBS Lett 261:413–418PubMedCrossRefGoogle Scholar
  96. Ernandes JR, de Meirsman C, Rolland F, Winderickx J, de Winde J, Brandao RL, Thevelein JM (1998) During the initiation of fermentation overexpression of hexoki-nase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tpsl. Yeast 14:255–269PubMedCrossRefGoogle Scholar
  97. Fernandez J, Soto T, Vicente-Soler J, Cansado J, Gacto M (1996) Inhibition by polyols of the heat-shock-induced activation of trehalase in the yest Zygo saccharomyces rouxii. Biochem Mol Biol Int 38:43–50PubMedGoogle Scholar
  98. Fernandez J, Soto T, Vicente-Soler J, Cansado J, Gacto M (1997) Heat-shock response in Schizosaccharomyces pombe cells lacking cyclic AMP-dependent phosphorylation. Curr Genet 31:112–118PubMedCrossRefGoogle Scholar
  99. Ferreira JC, Thevelein JM, Hohmann S, Paschoalin VM, Trugo LC, Panek AD (1997) Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim Biophys Acta 1335:40–50PubMedCrossRefGoogle Scholar
  100. Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862PubMedGoogle Scholar
  101. Franco A, Soto T, Vicente Soler J, Guillen PV, Cansado J, Gacto M (2000) Characterization of tppl(+) as encoding a main trehalose-6P phosphatase in the fission yeast Schizosaccharomyces pombe. J Bacteriol 182: 5880–5884PubMedCrossRefGoogle Scholar
  102. François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145PubMedCrossRefGoogle Scholar
  103. François J, van Schaftingen E, Hers H-G (1984) The mechanism by which glucose increases fructose-2,6-bis-phosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145:187–193PubMedCrossRefGoogle Scholar
  104. François JM, Eraso P, Gancedo C (1987) Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164:369–373PubMedCrossRefGoogle Scholar
  105. François J, Villanueva ME, Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen Phosphorylase induced by glucose, a nitrogen source or uncouples. Eur J Biochem 174:551–559PubMedCrossRefGoogle Scholar
  106. François J, Neves MJ, Hers HG (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7:575–587PubMedCrossRefGoogle Scholar
  107. Franks F, Hatley RHM, Mathias SF (1991) Materials science and the production of shelf-stable biologicals. Biopharmacology 4:38–42Google Scholar
  108. Fujii S, Iwahashi H, Obuchi K, Fujii T, Komatsu Y (1996) Characterization of a barotolerant mutant of the yeast Saccharomyces cerevisiae: importance of trehalose content and membrane fluidity. FEMS Microbiol Lett 141:97–101PubMedCrossRefGoogle Scholar
  109. Fukui Y, Kozasa T, Kaziro Y, Takeda T, Yamamoto M (1986) Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 44:329–336PubMedCrossRefGoogle Scholar
  110. Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254CrossRefGoogle Scholar
  111. Gélinas P, Fiset G, LeDuy A, Goulet J (1989) Effect of growth conditions and trehalose content on cryotolerance of bakers’ yeast in frozen doughs. Appl Environ Microbiol 55:2453–2459PubMedGoogle Scholar
  112. Geyskens I, Kumara SHMC, Donaton MCV, Bergsma JCT, Thevelein JM, Wera S (2000) Expression of mammalian PKB partially complements deletion of the yeast protein kinase Sch9. In: Bos JL (ed) Molecular mechanisms of signal transduction. NATO ASI Series, Series A316. IOS Press, Amsterdam, pp 117–126Google Scholar
  113. Giæver HM, Styrvold OB, Kaasen J, Strom AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849PubMedGoogle Scholar
  114. Gibbs JB, Marshall MS (1989) The ras oncogene—an important regulatory element in lower eucaryotic organisms. Microbiol Rev 53:171–185PubMedGoogle Scholar
  115. Giots F, Donaton MC, Thevelein JM (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47(4):1163–1181PubMedCrossRefGoogle Scholar
  116. Glover JR, Lindquist S (1998) Hspl04, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82PubMedCrossRefGoogle Scholar
  117. Gonzalez MI, Stucka R, Blazquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIFi, a yeast gene necessary for growth on glucose. Yeast 8: 183–192PubMedCrossRefGoogle Scholar
  118. Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597PubMedCrossRefGoogle Scholar
  119. Gottlieb D (1978) The germination of fungus spores. Meadowfield Press, Shildon, UKGoogle Scholar
  120. Grba S, Oura E, Suomalainen H (1975) On the formation of glycogen and trehalose in baker’s yeast. Eur J Appl Microbiol 2:29–37CrossRefGoogle Scholar
  121. Grba S, Oura E, Suomalainen H (1979) Formation of trehalose and glycogen in growing baker’s yeast. Finn Chem Lett 1979:61–64Google Scholar
  122. Green JL, Angell CA (1989) Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem 93:2880–2882CrossRefGoogle Scholar
  123. Gross A, Winograd S, Marbach I, Levitzki A (1999) The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae. Biochemistry 38:13252–13262PubMedCrossRefGoogle Scholar
  124. Gross C, Watson K (1998) De novo protein synthesis is essential for thermotolerance acquisition in a Saccharomyces cerevisiae trehalose synthase mutant. Biochem Mol Biol Int 45:663–671PubMedGoogle Scholar
  125. Gupta J, Harris SD, Cotter DA (1987) Evidence for non-regulatory trehalase activity in Dictyostelium discoideum. Curr Microbiol 16:101–104CrossRefGoogle Scholar
  126. Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U (1989) Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli Kl2. Mol Gen Genet 217:347–354PubMedCrossRefGoogle Scholar
  127. Hall BG (1983) Yeast thermotolerance does not require protein synthesis. J Bacteriol 156:1363–1365PubMedGoogle Scholar
  128. Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrate during growth of mycelium and sporphore. J Gen Microbiol 95:309–320Google Scholar
  129. Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107PubMedCrossRefGoogle Scholar
  130. Harris DS, Cotter DA (1987) Vacuolar (lysosomal) trehalase of Saccharomyces cerevisiae. Curr Microbiol 15:247–249CrossRefGoogle Scholar
  131. Hazell BW, Nevalainen H, Attfield PV (1995) Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett 377:457–460PubMedCrossRefGoogle Scholar
  132. Hazell BW, Kletsas S, Nevalainen H, Attfield PV (1997) Involvement of CIF1 (GGS1/TPS1) in osmotic stress response in Saccharomyces cerevisiae. FEBS Lett 414: 353–358PubMedCrossRefGoogle Scholar
  133. Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924PubMedGoogle Scholar
  134. Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56:1386–1391PubMedGoogle Scholar
  135. Hirasawa R, Yokoigawa K, Isobe Y, Kawai H (2001) Improving the freeze tolerance of bakers’ yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526PubMedCrossRefGoogle Scholar
  136. Hirata T, Yokomise H, Fukuse T, Muro K, Ono N, Inui K, Hitomi S, Wada H (1993) Successful 12-hour lung preservation with trehalose. Transplant Proc 25:1597–1598PubMedGoogle Scholar
  137. Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM (1992) Nutrientinduced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138:2035–2043PubMedGoogle Scholar
  138. Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK (1992) Glucose-induced regulatory defects in the Saccharomyces cerevisiae by p1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 174:4183–4188PubMedGoogle Scholar
  139. Hohmann S, Neves MJ, de Koning W, Alijo R, Ramos J, Thevelein JM (1993) The growth and signalling defects of the ggsl (fdpl/bypl) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23:281–289PubMedCrossRefGoogle Scholar
  140. Hohmann S, van Dijck P, Luyten K, Thevelein JM (1994) The bypl-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNA(GLN) (CAG): Ggsl/Tpsl protein levels restraining growth on fermentable sugars and trehalose accumulation. Curr Genet 26:295–301PubMedCrossRefGoogle Scholar
  141. Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol 20:981–991PubMedCrossRefGoogle Scholar
  142. Honadel TE, Killian GJ (1988) Cryopreservation of murine embryos with trehalose and glycerol. Cryobiology 25:331–337PubMedCrossRefGoogle Scholar
  143. Hottiger T, Boller T, Wiemken A (1987a) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115PubMedCrossRefGoogle Scholar
  144. Hottiger T, Schmutz P, Wiemken A (1987b) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522PubMedGoogle Scholar
  145. Hottiger T, Boller T, Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett 255:431–434PubMedCrossRefGoogle Scholar
  146. Hottiger T, de Virgilio C, Bell W, Boller T, Wiemken A (1992) Canavanine treatment of yeast induces thermotolerance. Yeast 8:S91Google Scholar
  147. Hottiger T, de Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193PubMedCrossRefGoogle Scholar
  148. Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144: 671–680PubMedCrossRefGoogle Scholar
  149. Iida H (1988) Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5’ coding region of the adenylate cyclase gene. Mol Cell Biol 8:5555–5560PubMedGoogle Scholar
  150. Iida H, Yahara I (1984) Specific early-Gl blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the Go of higher eukaryotes. J Cell Biol 98:1185–1193PubMedCrossRefGoogle Scholar
  151. Inoue H, Shimoda C (1981a) Changes in trehalose content and trehalase activity during spore germination in fission yeast, Schizosaccharomyces pombe. Arch Microbiol 129:19–22CrossRefGoogle Scholar
  152. Inoue H, Shimoda C (1981b) Induction of trehalase activity on a nitrogen-free medium : a sporulation-specific event in the fission yeast, Schizosaccharomyces pombe. Mol Gen Genet 183:32–36PubMedCrossRefGoogle Scholar
  153. Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997a) Effect of temperature on the role of Hspl04 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5PubMedCrossRefGoogle Scholar
  154. Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997b) Barotolerance is dependent on both trehalose and heat shock protein 104 but is essentially different from thermo-tolerance in Saccharomyces cerevisiae. Lett Appl Microbiol 25:43–47PubMedCrossRefGoogle Scholar
  155. Iwahashi H, Nwaka S, Obuchi K, Komatsu Y (1998) Evidence for the interplay between trehalose metabolism and Hspl04 in yeast. Appl Environ Microbiol 64: 4614–4617PubMedGoogle Scholar
  156. Jacquet M, Camonis J (1985) Control of the cell division cycle and sporulation in Saccharomyces cerevisiae by the cyclic AMP system. Biochimie 67:35–43PubMedCrossRefGoogle Scholar
  157. Jiang Y, Davis C, Broach JR (1998) Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 17:6942–6951PubMedCrossRefGoogle Scholar
  158. Jin M, Fujita M, Culley BM, Apolinario E, Yamamoto M, Maundrell K, Hoffman CS (1995) sckl, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140:457–467PubMedGoogle Scholar
  159. Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171PubMedCrossRefGoogle Scholar
  160. Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli - evidence that transcription is activated by KatF (AppR). J Bacteriol 174:889–898PubMedGoogle Scholar
  161. Kaasen I, Mcdougall J, Strom AR (1994) Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15PubMedCrossRefGoogle Scholar
  162. Kadowaki MK, Polizeli MDTM, Terenzi HF, Jorge JA (1996) Characterization of trehalase activities from the thermophilic fungus Scytalidium thermophilum. Biochim Biophys Acta Gen Subjects 1291:199–205CrossRefGoogle Scholar
  163. Keller F, Schellenberg M, Wiemken A (1982) Localization of trehalase in vacuoles and trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch Microbiol 131:298–301PubMedCrossRefGoogle Scholar
  164. Kim J, Powers S (1991) Overexpression of RPH, a novel inhibitor of the yeast Ras-cyclic AMP pathway, down-regulates normal but not mutationally activated ras function. Mol Cell Biol 11:3894–3904PubMedGoogle Scholar
  165. Kim J, Alizadeh P, Harding T, Hefnergravink A, Klionsky DJ (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing and ethanol shock: potential commercial applications. Appl Environ Microbiol 62:1563–1569PubMedGoogle Scholar
  166. Kitamoto Y, Akashi H, Tanaka H, Mori N (1988) α-Glucose-1-phosphate formation by a novel trehalose Phosphorylase from Flammulina velutypes. FEMS Microbiol Lett 55:147–150CrossRefGoogle Scholar
  167. Kline L, Sugihara TF (1968) Factors affecting the stability of frozen bread doughs. I. Prepared by the straight dough method. Bakers Digest 42:44–69Google Scholar
  168. Kopp M, Muller H, Holzer H (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268:4766–4774PubMedGoogle Scholar
  169. Kotyk A, Michaljanicova D (1979) Uptake of trehalose by Saccharomyces cerevisiae. J Gen Microbiol 110:323–332PubMedGoogle Scholar
  170. Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gprl, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012PubMedCrossRefGoogle Scholar
  171. Küenzi MT, Fiechter A (1969) Changes in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 64:396–407PubMedCrossRefGoogle Scholar
  172. Küenzi MT, Fiechter A (1972) Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Mikrobiol 84:254–265PubMedCrossRefGoogle Scholar
  173. Landry S, Hoffman CS (2001) The git5 Gbeta and gitll Ggamma form an atypical Gbetagamma dimer acting in the fission yeast glucose/cAMP pathway. Genetics 157:1159–1168PubMedGoogle Scholar
  174. Levine H, Slade L (1992) Another view of trehalose for drying and stabilizing biological materials. Biophar-macology 5:36–40Google Scholar
  175. Lewis JG, Learmonth RP, Watson K (1993) Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microbiol 59:1065–1071PubMedGoogle Scholar
  176. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394PubMedGoogle Scholar
  177. Londesborough J, Varimo K (1984) Characterization of two trehalases in baker’s yeast. Biochem J 219:511–518PubMedGoogle Scholar
  178. Londesborough J, Vuorio O (1991) Trehalose-6-phosphate synthase/phosphatase complex from bakers’ yeast: purification of a proteolytically activated form. J Gen Microbiol 137:323–330PubMedGoogle Scholar
  179. Luyten K, de Koning W, Tesseur I, Ruiz MC, Ramos J, Cobbaert P, Thevelein JM, Hohmann S (1993) Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur J Biochem 217:701–713PubMedCrossRefGoogle Scholar
  180. Ma P, Wera S, van Dijck P, Thevelein JM (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10:91–104PubMedGoogle Scholar
  181. Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191Google Scholar
  182. Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134:1661–1666PubMedGoogle Scholar
  183. Mager WH, Moradas-Ferreira P (1993) Stress response of yeast. Biochem J 290:1–13PubMedGoogle Scholar
  184. Malone RE (1990) Dual regulation of meiosis in yeast. Cell 61:375–378PubMedCrossRefGoogle Scholar
  185. Marino C, Curto M, Bruno R, Rinaudo MT (1989) Trehalose synthase and trehalose behaviour in yeast cells in anhydrobiosis and hydrobiosis. Int J Biochem 21:1369–1375CrossRefGoogle Scholar
  186. Martegani E, Baroni M, Vanoni M (1986) Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast. Exp Cell Res 162:544–548PubMedCrossRefGoogle Scholar
  187. Martin MC, Diaz LA, Manzanal MB, Hardisson C (1986) Role of trehalose in the spores of Streptomyces. FEMS Microbiol Lett 35:49–54CrossRefGoogle Scholar
  188. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235PubMedGoogle Scholar
  189. Matsumoto K, Uno I, Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1:15–24PubMedCrossRefGoogle Scholar
  190. Mbonyi K, Beullens M, Detremerie K, Geerts L, Thevelein JM (1988) Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8:3051–3057PubMedGoogle Scholar
  191. Mbonyi K, van Aelst L, Argüelles JC, Jans AWH, Thevelein JM (1990) Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with reduced activity of cAMP-dependent protein kinase. Mol Cell Biol 10:4518–4523PubMedGoogle Scholar
  192. McBride MJ, Ensign JC (1987) Effects of intracellular trehalose content on Streptomyces griseus spores. J Bacteriol 169:4995–5001PubMedGoogle Scholar
  193. McDougall J, Kaasen I, Strom AR (1993) A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coli otsA mutant. FEMS Microbiol Lett 107:25–30PubMedCrossRefGoogle Scholar
  194. Merritt PP (1960) The effect of preparation on the stability and performance of frozen, unbaked, yeast-leavened doughs. Bakers Digest 34:57–58Google Scholar
  195. Mintzer KA, Field J (1999) The SH3 domain of the S. cerevisiae Cdc25p binds adenylyl cyclase and facilitates Ras regulation of cAMP signalling. Cell Signal 11:127–135PubMedCrossRefGoogle Scholar
  196. Mittenbühler K, Holzer H (1988) Purification and characterization of acid trehalase from the yeast suc2 mutant. J Biol Chem 263:8537–8543PubMedGoogle Scholar
  197. Munder T, Kuntzel H (1989) Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett 242:341–345PubMedCrossRefGoogle Scholar
  198. Neves MJ, François J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288 (Pt 3):859–864PubMedGoogle Scholar
  199. Neves MJ, Jorge JA, François JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neu-rospora crassa. FEBS Lett 283:19–22PubMedCrossRefGoogle Scholar
  200. Neves MJ, Hohmann S, Bell W, Dumortier F, Luyten K, Ramos J, Cobbaert P, de Koning W, Kaneva Z, Thevelein JM (1995) Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet 27:110–122PubMedCrossRefGoogle Scholar
  201. Newman YM, Ring SG, Colaço C (1993) The role of trehalose and other carbohydrates in biopreservation. Biotechnol Genet Eng Rev 11:263–294PubMedGoogle Scholar
  202. Nocero M, Isshiki T, Yamamoto M, Hoffman CS (1994) Glucose repression of fbpl transcription of Schizosac-charomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8). Genetics 138:39–45PubMedGoogle Scholar
  203. Noubhani A, Bunoust O, Rigoulet M, Thevelein JM (2000) Reconstitution of ethanolic fermentation in perme-abilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 267:4566–4576PubMedCrossRefGoogle Scholar
  204. Nwaka S, Holzer H (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 58:197–237PubMedCrossRefGoogle Scholar
  205. Nwaka S, Kopp M, Burgert M, Deuchler I, Kienle I, Holzer H (1994) Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Lett 344:225–228PubMedCrossRefGoogle Scholar
  206. Nwaka S, Kopp M, Holzer H (1995a) Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem 270:10193–10198PubMedCrossRefGoogle Scholar
  207. Nwaka S, Mechler B, Destruelle M, Holzer H (1995b) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett 360:286–290PubMedCrossRefGoogle Scholar
  208. Oda Y, Uno K, Ohta S (1986) Selection of yeasts for bread-making by the frozen dough method. Appl Environ Microbiol 52:941–943PubMedGoogle Scholar
  209. Operti MS, Oliveira DE, Freitas-Valle AB, Oestreicher EG, Mattoon JR, Panek AD (1982) Relationships between trehalose metabolism and maltose utilization in Saccharomyces cerevisiae. III. Evidence for alternative pathways of trehalose synthesis. Curr Genet 5:69–76CrossRefGoogle Scholar
  210. Ortiz CH, Maia JCC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation—dephosphorylation cascade system. J Bacteriol 153:644–651PubMedGoogle Scholar
  211. Otting G, Liepinsh E, Wuthrich K (1991) Protein hydration in aqueous solution. Science 254:974–980PubMedCrossRefGoogle Scholar
  212. Padrao GR, Malamud DR, Panek AD, Mattoon JR (1982) Regulation of energy metabolism in yeast. Inheritance of a pleiotropic mutation causing defects in metabolism of energy reserves, ethanol utilization and formation of cytochrome a.a3. Mol Gen Genet 185:255–261PubMedCrossRefGoogle Scholar
  213. Panek AC, de Araujo PS, Moura Neto V, Panek AD (1987) Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces. I. Interconversion of forms by phosphorylation. Curr Genet 11:459–465PubMedCrossRefGoogle Scholar
  214. Panek AC, Araujo PS, Poppe SC, Panek AD (1990) On the determination of trehalose-6-phosphate synthase in Saccharomyces. Biochem Int 21:695–704PubMedGoogle Scholar
  215. Panek AD (1963) Function of trehalose in baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100:422–425CrossRefGoogle Scholar
  216. Panek AD, Mattoon JR (1977) Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development. Arch Biochem Biophys 183:306–316PubMedCrossRefGoogle Scholar
  217. Panek AD, Bernardes EJ (1983) Trehalose: its role in germination of Saccharomyces cerevisiae. Curr Genet 7:393–397CrossRefGoogle Scholar
  218. Panek AD, Sampaio AL, Braz GC, Baker SJ, Mattoon JR (1980) Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell Mol Biol 25:345–354Google Scholar
  219. Panek AD, Ferreira R, Panek AC (1989) Comparative studies between the glucose-induced phosphorylation signal and the heat shock response in mutants of Saccharomyces cerevisiae. Biochimie 71:313–318PubMedCrossRefGoogle Scholar
  220. Panneman H, Ruijter GJ, van den Broeck HC, Visser J (1998) Cloning and biochemical characterisation of Aspergillus niger hexokinase—the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur J Biochem 258:223–232PubMedCrossRefGoogle Scholar
  221. Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143 (Pt 6):1891–1900PubMedCrossRefGoogle Scholar
  222. Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203PubMedCrossRefGoogle Scholar
  223. Parry JM, Davies PJ, Evans WE (1976) The effects of “cell age” upon the lethal effects of physical and chemical mutagens in the yeast Saccharomyces cerevisiae. Mol Gen Genet 146:27–35PubMedCrossRefGoogle Scholar
  224. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hspl04. Nature 372:475–478PubMedCrossRefGoogle Scholar
  225. Paschoalin VM, Costa-Carvalho VL, Panek AD (1986) Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in Saccharomyces. Curr Genet 10:725–731PubMedCrossRefGoogle Scholar
  226. Paschoalin VMF, Silva JT, Panek AD (1989) Identification of an ADPG-dependent trehalose synthase in Saccharomyces. Curr Genet 16:81–87PubMedCrossRefGoogle Scholar
  227. Payen R (1949) Variation des teneurs en glycogène et en trehalose pendant le séchage de la levure. Can J Res 27B:749–756CrossRefGoogle Scholar
  228. Pedruzzi I, Burckert N, Egger P, de Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gisl. EMBO J 19:2569–2579PubMedCrossRefGoogle Scholar
  229. Pernambuco MB, Winderickx J, Crauwels M, Griffioen G, Mager WH, Thevelein JM (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology 142 (Pt 7): 1775–1782PubMedCrossRefGoogle Scholar
  230. Petit T, François J (1994) Accumulation of trehalose in Saccharomyces cerevisiae growing on maltose is dependent on the TPS1 gene encoding the UDP glucose-linked trehalose synthase. FEBS Lett 355:309–313PubMedCrossRefGoogle Scholar
  231. Piper P (1998) Differential role of Hsps and trehalose in stress tolerance. Trends Microbiol 6:43–44PubMedCrossRefGoogle Scholar
  232. Piper PW, Lockheart A (1988) A temperature-sensitive mutant of Saccharomyces cerevisiae defective in the specific phosphatase of trehalose biosynthesis. FEMS Microbiol Lett 49:245–250CrossRefGoogle Scholar
  233. Plesset J, Ludwig J, Cox B, McLaughlin C (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169:779–784PubMedGoogle Scholar
  234. Plourde-Owobi L, Durner S, Parrou JL, Wieczorke R, Goma G, François J (1999) AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J Bacteriol 181:3830–3832PubMedGoogle Scholar
  235. Plourde-Owobi L, Durner S, Goma G, François J (2000) Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability. Int J Food Microbiol 55:33–40PubMedCrossRefGoogle Scholar
  236. Polakis ES, Bartley W (1966) Changes in dry weight, protein, deoxyribonucleic acid, ribonucleic acid and reserve and structural carbohydrate during the aerobic growth cycle of yeast. Biochem J 98:883–887PubMedGoogle Scholar
  237. Pollock GE, Holmstrom CD (1951) The trehalose content and the quality of active dry yeast. Cereal Chem 28: 498–505Google Scholar
  238. Quain DE, Haslam JM (1979) Changes in glucose 6-phosphate and storage carbohydrates during catabo-lite derepression in Saccharomyces cerevisiae. J Gen Microbiol 113:195–198Google Scholar
  239. Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Forster R, Warr RSC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39:51–56CrossRefGoogle Scholar
  240. Reed SI (1992) The role of p34 kinases in the Gl to S-phase transition. Annu Rev Cell Biol 8:529–561PubMedCrossRefGoogle Scholar
  241. Reinders A, Burckert N, Hohmann S, Thevelein JM, Boiler T, Wiemken A, de Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695PubMedCrossRefGoogle Scholar
  242. Reinders A, Burckert N, Boller T, Wiemken A, de Virgilio C (1998) Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Riml5p protein kinase. Genes Dev 12: 2943–2955PubMedCrossRefGoogle Scholar
  243. Reinders A, Romano I, Wiemken A, de Virgilio C (1999) The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J Bacteriol 181:4665–4668PubMedGoogle Scholar
  244. Ribeiro M J, Reinders A, Boller T, Wiemken A, de Virgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25:571–581PubMedCrossRefGoogle Scholar
  245. Rolland F, de Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38:348–358PubMedCrossRefGoogle Scholar
  246. Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317PubMedCrossRefGoogle Scholar
  247. Roser BJ (1991a) Trehalose, a new approach to premium dried foods. Trends Food Sci Technol 2:166–169CrossRefGoogle Scholar
  248. Roser BJ (1991b) Trehalose drying: a novel replacement for freeze-drying. Biopharmacology 5:44–53Google Scholar
  249. Roth R (1970) Carbohydrate accumulation during the sporulation of yeast. J Bacteriol 101:53–57PubMedGoogle Scholar
  250. Ruf J, Wacker H, James P, Maffia M, Seiler P, Galand G, von Kieckebusch A, Semenza G, Mantei N (1990) Rabbit small intestinal trehalase. Purification, cDNA cloning, expression, and verification of glycosylphosphatidyli-nositol anchoring. J Biol Chem 265:15034–15039PubMedGoogle Scholar
  251. Ruis H, Schuller C (1995) Stress signaling in yeast. Bioessays 17:959–965PubMedCrossRefGoogle Scholar
  252. Saenger W (1989) Structure and dynamics of water surrounding biomolecules. Annu Rev Biophys Biophys Chem 16:93–114CrossRefGoogle Scholar
  253. Saito K, Kase T, Takahashi E, Horinouchi S (1998) Purification and characterization of a trehalose synthase from the basidiomycete Grifola frondosa. Appl Environ Microbiol 64:4340–4345PubMedGoogle Scholar
  254. Sales K, Brandt W, Rumbak E, Lindsey G (2000) The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta 1463:267–278PubMedCrossRefGoogle Scholar
  255. San Miguel PF, Argüelles JC (1994) Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae (1994) Biochim Biophys Acta 1200:155–160CrossRefGoogle Scholar
  256. Sanchez Y, Lindquist S (1990) HSP 104 required for induced thermotolerance. Science 248:1112–1115PubMedCrossRefGoogle Scholar
  257. Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hspl04 is required for tolerance to many forms of stress. EMBO J 11:2357–2364PubMedGoogle Scholar
  258. Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80–87PubMedCrossRefGoogle Scholar
  259. Schenberg-Frascino A, Moustacchi E (1972) Lethal and mutagenic effects of elevated temperature on haploid yeast. Mol Gen Genet 115:243–257PubMedCrossRefGoogle Scholar
  260. Schick I, Haltrich D, Kulbe KD (1995) Trehalose Phosphorylase from Pichia fermentans and its role in the metabolism of trehalose. Appl Microbiol Biotechnol 43:1088–1095CrossRefGoogle Scholar
  261. Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782PubMedCrossRefGoogle Scholar
  262. Schomerus C, Munder T, Kuntzel H (1990) Site-directed mutagenesis of the Saccharomyces cerevisiae CDC25 gene: effects on mitotic growth and cAMP signalling. Mol Gen Genet 223:426–432PubMedCrossRefGoogle Scholar
  263. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389PubMedGoogle Scholar
  264. Seo HS, Koo YJ, Lim JY, Song JT, Kim CH, Kim JK, Lee JS, Choi YD (2000) Characterization of a afunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl Environ Microbiol 66:2484–2490PubMedCrossRefGoogle Scholar
  265. Sharma SC (1997) A possible role of trehalose in osmotol-erance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15PubMedCrossRefGoogle Scholar
  266. Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker’s yeast. Appl Environ Microbiol 65:2841–2846PubMedGoogle Scholar
  267. Shin D-Y, Matsumoto K, Iida H, Uno I, and Ishikawa T (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7:244–250PubMedGoogle Scholar
  268. Sillje HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181:396–400PubMedGoogle Scholar
  269. Singer MA, Lindquist S (1998a) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468PubMedCrossRefGoogle Scholar
  270. Singer MA, Lindquist S (1998b) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648PubMedCrossRefGoogle Scholar
  271. Slade L, Levine H (1988) Non-equilibrium behavior of small carbohydrate-water systems. Pure Appl Chem 60:1841–1864CrossRefGoogle Scholar
  272. Smith SE (1967) Carbohydrate translocation in orchid mycorrhizas. New Phytol 66:371–378CrossRefGoogle Scholar
  273. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1995a) Nitrogen-source-induced activation of neutral trehalase in Schizosaccharomyces pombe and Pachysolen tannophilus: role of cAMP as second messenger. FEMS Microbiol Lett 132:229–232PubMedCrossRefGoogle Scholar
  274. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1995b) Glucose-induced, cyclic-AMP-independent signalling pathway for activation of neutral trehalase in the fission yeast Schizosaccharomyces pombe. Microbiology 141:2665–2671CrossRefGoogle Scholar
  275. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1996) Posttranslational regulatory control of trehalase induced by nutrients, metabolic inhibitors, and physical agents in Pachysolen tannophilus. Fungal Genet Biol 20:143–151CrossRefGoogle Scholar
  276. Soto T, Fernandez J, Cansado J, Vicente-Soler J, Gacto M (1997) Protein kinase Sckl is involved in trehalase activation by glucose and nitrogen source in the fission yeast Schizosaccharomyces pombe. Microbiology 143 (Pt 7):2457–2463PubMedCrossRefGoogle Scholar
  277. Soto T, Fernandez J, Dominguez A, Vicente-Soler J, Cansado J, Gacto M (1998) Analysis of the ntpl+ gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 1443:225–229PubMedCrossRefGoogle Scholar
  278. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1999) Accumulation of trehalose by overexpression of tpsl, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. Appl Environ Microbiol 65:2020–2024PubMedGoogle Scholar
  279. Stambuk BU, Dearaujo PS, Panek AD, Serrano R (1996) Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae. Eur J Biochem 237:876–881PubMedCrossRefGoogle Scholar
  280. Stambuk BU, Panek AD, Crowe JH, Crowe LM, de Araujo PS (1998) Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta 1379:118–128PubMedCrossRefGoogle Scholar
  281. Stambuk BU, da Silva MA, Panek AD, de Araujo PS (1999) Active alpha-glucoside transport in Saccharomyces cerevisiae. FEMS Microbiol Lett 170:105–110PubMedGoogle Scholar
  282. Stewart LC, Richtmeyer NK, Hudson CS (1950) The preparation of trehalose from yeast. J Am Chem Soc 72: 2059–2061CrossRefGoogle Scholar
  283. Strom AR (1998) Osmoregulation in the model organism Escherichia coli: genes governing the synthesis of glycine betaine and trehalose and their use in metabolic engineering of stress tolerance. J Biosci 23:437–445CrossRefGoogle Scholar
  284. Strom AR, Falkenberg P, Landfald B (1986) Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39:79–86Google Scholar
  285. Sugajska E, Swiatek W, Zabrocki P, Geyskens I, Thevelein JM, Zolnierowicz S, Wera S (2001) Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the yeast Saccharomyces cerevisiae. Mol Microbiol 40:1020–1026PubMedCrossRefGoogle Scholar
  286. Sugihara TF, Kline L (1968) Factors affecting the stability of frozen bread doughs. II. Prepared by the sponge and dough method. Bakers Digest 42:51–54,69Google Scholar
  287. Sumida M, Ogura S, Miyata S, Arai M, Murao S (1989) Purification and some properties of trehalase from Chaetomium aureum MS-27. J Ferment Bioeng 67:83–86CrossRefGoogle Scholar
  288. Suomalainen H, Pfäffli S (1961) Changes in the carbohydrate reserves of baker’s yeast during growth and on standing. J Inst Brew 67:249–254Google Scholar
  289. Sussman AS (1954) Changes in the permeability of ascospores of Neurospora tetrasperma during germination. J Gen Physiol 38:59–77PubMedCrossRefGoogle Scholar
  290. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412PubMedCrossRefGoogle Scholar
  291. Tatchell K (1993) Ras genes in the budding yeast Saccharomyces cerevisiae. In: Kurjan J, Taylor BJ (eds) Signal transduction prokaryotic and simple eukaryotic systems. Academic Press, San Diego, pp 147–188CrossRefGoogle Scholar
  292. Tereshina VM, Polotebnova MV, and Feofilova EP (1988) Trehalase activity of spores of the wild-type strain of Cunninghamella japonica and mutants with a reduced rate of trehalase synthesis. Microbiology 56:587–592Google Scholar
  293. Thevelein JM (1984a) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59PubMedGoogle Scholar
  294. Thevelein JM (1984b) Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch Microbiol 138:64–67PubMedCrossRefGoogle Scholar
  295. Thevelein JM (1984c) Activation of trehalase by membrane-depolarizing agents in yeast vegetative cells and ascospores. J Bacteriol 158:337–339PubMedGoogle Scholar
  296. Thevelein JM (1988) Regulation of trehalase activity by phosphorylation—dephosphorylation during developmental transitions in fungi. Exp Mycol 12:1–12CrossRefGoogle Scholar
  297. Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS adenylate cyclase signalling pathway in yeast—the relationship to nutrient-induced cell cycle control. Mol Microbiol 5:1301–1307PubMedCrossRefGoogle Scholar
  298. Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. In: Grivell L (ed) Molecular biology of yeasts. Antonie van Leeuwenhoek, Journal of microbiology, special issue, vol 62. Kluwer, Dordrecht, pp 109–130Google Scholar
  299. Thevelein JM (1994) Signal transduction in yeast. Yeast 10:1753–1790PubMedCrossRefGoogle Scholar
  300. Thevelein JM, Jones KA (1983) Reversibility characteristics of glucose-induced trehalase activation associated with the breaking of dormancy in yeast ascospores. Eur J Biochem 136:583–587PubMedCrossRefGoogle Scholar
  301. Thevelein JM, Beullens M (1985) Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J Gen Microbiol 131 (Pt 12):3199–3209PubMedGoogle Scholar
  302. Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10PubMedCrossRefGoogle Scholar
  303. Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918PubMedCrossRefGoogle Scholar
  304. Thevelein JM, den Hollander JA, Shulman RG (1982) Changes in the activity and properties of trehalase during early germination of yeast ascospores: correlation with trehalose breakdown as studied by in vivo 13C NMR. Proc Natl Acad Sci USA 79:3503–3507PubMedCrossRefGoogle Scholar
  305. Thevelein JM, Cauwenberg L, Colombo S, de Winde JH, Donaton M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, van Dijck P, Versele M, Wera S, Winderickx J (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26:819–825PubMedCrossRefGoogle Scholar
  306. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36PubMedCrossRefGoogle Scholar
  307. Toda T, Cameron S, Sass P, Wigler M (1988) SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527PubMedCrossRefGoogle Scholar
  308. Tripp ML, Paznokas JL (1982) Glucose-initiated germination of Mucor racemosus sporangiospores. J Gen Microbiol 128:477–483PubMedGoogle Scholar
  309. Trivedi NB, Jacobson G (1986) Recent advances in baker’s yeast. Prog Ind Microbiol 23:45–71Google Scholar
  310. Uno I, Matsumoto K, Adachi K, Ishikawa T (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258:10867–10872PubMedGoogle Scholar
  311. Van Aelst L, Boy-Marcotte E, Camonis JH, Thevelein JM, Jacquet M (1990) The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. Eur J Biochem 193:675–680PubMedCrossRefGoogle Scholar
  312. Van Aelst L, Jans AW, Thevelein JM (1991) Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. J Gen Microbiol 137 (Pt 2):341–349PubMedGoogle Scholar
  313. Van Aelst L, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves M J, Luyten K, Alijo R, Ramos J, Coccetti P, Martegani E, de Magalhaes-Rocha NM, Brandao RL, van Dijck P, Vanhalewyn M, Durnez P, Jans AWH, Thevelein JM (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol Microbiol 8:927–943PubMedCrossRefGoogle Scholar
  314. Van der Plaat JB (1974) Cyclic 3’,5’-adenosine monophosphate stimulates trehalose degradation in baker’s yeast. Biochem Biophys Res Commun 56:580–587PubMedCrossRefGoogle Scholar
  315. Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115PubMedGoogle Scholar
  316. Van Dijck P, de Rop L, Szlufcik K, van Ael E, Thevelein JM (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hyphae formation. Infect Immun 70(4):1772–1782PubMedCrossRefGoogle Scholar
  317. Van Doom J, Scholte ME, Postma PW, van Driel R, van Dam K (1988a) Regulation of trehalase activity during the cell cycle of Saccharomyces cerevisiae. J Gen Microbiol 134 (Pt 3):785–790Google Scholar
  318. Van Doom J, Valkenburg JA, Scholte ME, Oehlen LJ, van Driel R, Postma PW, Nanninga N, van Dam K (1988b) Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae. J Bacteriol 170:4808–4815Google Scholar
  319. Van Laere A (1986a) Biochemistry of spore germination in Phycomyces. FEMS Microbiol Rev 32:189–198Google Scholar
  320. Van Laere A (1986b) Resistance of germinating Phycorny ces spores to desiccation, freezing, and acids. FEMS Microbiol Ecol 38:251–256CrossRefGoogle Scholar
  321. Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210Google Scholar
  322. Van Laere A, Siegers LK (1987) Trehalose breakdown in germinating spores of Mucor rouxii. FEMS Microbiol Lett 41:247–252CrossRefGoogle Scholar
  323. Van Mulders RM, van Laere A (1984) Cyclic AMP, trehalase and germination of Phycornyces blakesleeanus spores. J Gen Microbiol 130:541–547Google Scholar
  324. Van Vaeck C, Wera S, van Dijck P, Thevelein JM (2001) Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochem J 353:157–162PubMedCrossRefGoogle Scholar
  325. Vandercammen A, François J, Hers H-G (1989) Characterization of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur J Biochem 182:613–620PubMedCrossRefGoogle Scholar
  326. Vanhalewyn M, Dumortier F, Debast G, Colombo S, Ma P, Winderickx J, van Dijck P, Thevelein JM (1999) A mutation in Saccharomyces cerevisiae adenylate cyclase, CyrlK1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Mol Microbiol 33:363–376PubMedCrossRefGoogle Scholar
  327. Versele M, de Winde JH, Thevelein JM (1999) A novel regulator of G protein signalling in yeast, Rgs2, down-regulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 18:5577–5591PubMedCrossRefGoogle Scholar
  328. Versele M, Lemaire K, Thevelein JM (2001) Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep 2: 574–579PubMedCrossRefGoogle Scholar
  329. Vicente-Soler J, Argüelles JC, Gacto M (1989) Presence of two trehalose-6-phosphate synthase enzymes in Candida utilis. FEMS Microbiol Lett 61:273–278CrossRefGoogle Scholar
  330. Vicente-Soler J, Argüelles JC, Gacto M (1991) Proteolytic activation of alpha,alpha-trehalose 6-phosphate synthase in Candida utilis. FEMS Microbiol Lett 66:157–161PubMedGoogle Scholar
  331. Von Meyenburg HK (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66:289–303CrossRefGoogle Scholar
  332. Vuorio O, Londesborough J, Kalkkinen N (1992) Trehalose synthase: purification of the intact enzyme and cloning of the structural genes. Yeast 8 (Special Issue): S626Google Scholar
  333. Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861PubMedCrossRefGoogle Scholar
  334. Walton EF, Carter BLA, Pringle JR (1979) An enrichment method for temperature-sensitive and auxotrophic mutants of yeast. Mol Gen Genet 171:111–114CrossRefGoogle Scholar
  335. Wannet WJB, den Camp HJMO, Wisselink HW, van der Drift C, van Griensven LJLD, Vogels GD (1998) Purification and characterization of trehalose Phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta Gen Subjects 1425: 177–188CrossRefGoogle Scholar
  336. Wannet WJB, Aben EMJ, van der Drift C, van Griensven LJLD, Vogels GD, den Camp JMO (1999) Trehalose Phosphorylase activity and carbohydrate levels during axenic fruiting in three Agaricus bisporus strains. Curr Microbiol 39:205–210PubMedCrossRefGoogle Scholar
  337. Welton RM, Hoffman CS (2000) Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics 156:513–521PubMedGoogle Scholar
  338. Wera S, de Schrijver E, Geyskens I, Nwaka S, Thevelein JM (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J 343:621–626PubMedCrossRefGoogle Scholar
  339. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwen-hoek J Microbiol 58:209–217CrossRefGoogle Scholar
  340. Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 Gene encoding the cytosolic Catalase-T of Saccharomyces cerevisiae. J Biol Chem 266:12406–12411PubMedGoogle Scholar
  341. Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S, van Dijck P, Thevelein JM (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet 252:470–482PubMedGoogle Scholar
  342. Winkler K, Kienle I, Burgert M, Wagner JC, Holzer H (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett 291:269–272PubMedCrossRefGoogle Scholar
  343. Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42:79–87PubMedCrossRefGoogle Scholar
  344. Wolschek MF, Kubicek CP (1997) The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem 272:2729–2735PubMedCrossRefGoogle Scholar
  345. Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159: 1491–1499PubMedGoogle Scholar
  346. Xue Y, Batlle M, Hirsch JP (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17:1996–2007PubMedCrossRefGoogle Scholar
  347. Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11:1062–1068PubMedGoogle Scholar
  348. Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H (1997) G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 240:287–292PubMedCrossRefGoogle Scholar
  349. Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nthl by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406PubMedCrossRefGoogle Scholar
  350. Zaragoza O, Blazquez MA, Gancedo C (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 180:3809–3815PubMedGoogle Scholar
  351. Zaragoza O, de Virgilio C, Ponton J, Gancedo C (2002) Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. Microbiology 148: 1281–1290PubMedGoogle Scholar
  352. Zentella R, Mascorro-Gallardo JO, van Dijck P, Folch-Mallol J, Bonini BM, van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) A Selaginella lepidophylla tre-halose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tpsl mutant. Plant Physiol 119:1473–1482PubMedCrossRefGoogle Scholar
  353. Zevenhuizen LPTM (1992) Levels of trehalose and glycogen in Athrobacter globiformis under conditions of nutrient starvation and osmotic stress. Antonie Van Leeuwenhoek 61:61–68PubMedCrossRefGoogle Scholar
  354. Zikmanis PB, Laivenieks MG, Auzinya LP, Kulaev IS, Beker ME (1985) Relationship between the content of high-molecular-weight polyphosphates and trehalose and viability of populations following dehydratation of the yeast Saccharomyces cerevisiae. Microbiology 54: 326–330Google Scholar
  355. Zikmanis PB, Kruche RV, Auzinya LP, Margevicha MV, Becker E (1988) Distribution of trehalose between dehydrated Saccharomyces cerevisiae cells and the rehydratation medium. Microbiology 57:414–416Google Scholar
  356. Zimmermann ALS, Terenzi HF, Jorge JA (1990) Purification and properties of an extracellular conidial trehalase from Humicola grisea Var Thermoidea. Biochim Biophys Acta 1036:41–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. M. Bonini
  • P. Van Dijck
  • J. M. Thevelein
    • 1
    • 2
  1. 1.Laboratorium voor Moleculaire Celbiologie, Instituut voor Plantkunde en MicrobiologieKatholieke Universiteit LeuvenBelgium
  2. 2.Departement Moleculaire MicrobiologieVlaams Interuniversitair Instituut voor Biotechnologie (VIB)Leuven-Heverlee, FlandersBelgium

Personalised recommendations