Genetics and Molecular Biology of Circadian Rhythms

  • J. C. Dunlap
  • J. J. Loros
  • D. Denault
  • K. Lee
  • A. Froehlich
  • H. Colot
  • M. Shi
  • A. Pregueiro
Part of the The Mycota book series (MYCOTA, volume 3)


Biological rhythms represent a ubiquitous form of cellular and organismal temporal regulation. Circadian rhythms provide organisms with the ability to anticipate environmental cycles imposed by the earth’s rotation. Most eukaryotic organisms express this endogenous program allowing them to adapt to cyclic environmental conditions.


Circadian Rhythm Period Length Neurospora Crassa Temperature Compensation Circadian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht U, Sun Z, Eichele G, Lee C (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064PubMedCrossRefGoogle Scholar
  2. Aronson B, Johnson K, Loros JJ, Dunlap JC (1994a) Negative feedback defining a circadian clock: auto-regulation in the clock gene frequency. Science 263: 1578–1584PubMedCrossRefGoogle Scholar
  3. Aronson BD, Johnson KA, Dunlap JC (1994b) The circadian clock locus frequency: a single ORF defines period length and temperature compensation. Proc Natl Acad Sci USA 91:7683–7687PubMedCrossRefGoogle Scholar
  4. Arpaia G, Cerri F, Baima S, Macino G (1999) Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol Gen Genet 262:314–322PubMedCrossRefGoogle Scholar
  5. Ballario P, Macino G (1997) White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol 5:458–462PubMedCrossRefGoogle Scholar
  6. Ballario P, Vittorioso P, Magrelli A et al. (1996) White collar-1, a central regulator of blue-light responses in Neurospora crassa, is a zinc-finger protein. EMBO J 15: 1650–1657PubMedGoogle Scholar
  7. Ballario P, Talora C, Galli D, Linden H, Macino G (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa WHITE COLLAR proteins. Mol Microbiol 29:719–729PubMedCrossRefGoogle Scholar
  8. Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394PubMedCrossRefGoogle Scholar
  9. Bell-Pedersen D, Dunlap JC, Loros JJ (1996a) Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol 16:513–521PubMedGoogle Scholar
  10. Bell-Pedersen D, Shinohara M, Loros J, Dunlap JC (1996b) Circadian clock-controlled genes isolated from Neurospora crassa are late night to early morning specific. Proc Natl Acad Sci USA 93:13096–13101PubMedCrossRefGoogle Scholar
  11. Bell-Pedersen D, Loros J, Dunlap JC (2001) The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Mol Microbiol 41:897–909PubMedCrossRefGoogle Scholar
  12. Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804PubMedCrossRefGoogle Scholar
  13. Brody S, MacKensie L, Chuman L (1987) Circadian rhythms in Neurospora crassa: the effects of mitochondrial mutations and inhibitors. Genetics 116: S30Google Scholar
  14. Brody S, Willert K, Chuman L (1988) Circadian rhythms in Neurospora crassa: the effects of mutations at the ufa and cla-1 loci. Genome 30 [Suppl]:299CrossRefGoogle Scholar
  15. Bünning E (1973) The physiological clock. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Chang B, Nakashima H (1998) Isolation of temperature sensitive rhythm mutant in Neurospora crassa. Genes Genet Syst 73:71–73CrossRefGoogle Scholar
  17. Cheng P, Yang Y, Heintzen C, Liu Y (2001a) Coiled coil mediated FRQ-FRQ interaction is essential for circadian clock function in Neurospora. EMBO J 20:101–108PubMedCrossRefGoogle Scholar
  18. Cheng P, Yang Y, Liu Y (2001b) Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc Natl Acad Sci USA 98:7408–7413PubMedCrossRefGoogle Scholar
  19. Cheng P, Yang Y, Gardner KH, Liu Y (2002) PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol Cell Biol 22:517–524PubMedCrossRefGoogle Scholar
  20. Cheng P, Yang Y, Wang L, He Q, Liu Y (2003) WHITE COLLAR-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J Biol Chem 278:3801–3808PubMedCrossRefGoogle Scholar
  21. Christensen M, Falkeid G, Loros J et al. (2003) A frequency-independent nitrate reductase rhythm in Neurospora crassa. (submitted)Google Scholar
  22. Collett M, Dunlap JC, Loros JJ (2001a) Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol Cell Biol 21:2619–2628PubMedCrossRefGoogle Scholar
  23. Collett M, Dunlap JC, Loros JJ (2001b) Rhythm defects in the clock-affecting strain cla-1 are due to a reisolation of the frq 7 allele. Fungal Genet Newsl 48:7–9Google Scholar
  24. Collett MA, Garceau N, Dunlap JC, Loros JJ (2002) Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2. Genetics 160:149–158PubMedGoogle Scholar
  25. Correa A, Bell-Pedersen D (2002) Distinct signaling pathways from the circadian clock participate in regulation of rhythmic conidiospore development in Neurospora crassa. Eukaryot Cell 1:273–280PubMedCrossRefGoogle Scholar
  26. Crosthwaite SC, Loros JJ, Dunlap JC (1995) Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81:1003–1012PubMedCrossRefGoogle Scholar
  27. Crosthwaite SC, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: Transcription, photo responses, and the origins of circadian rhythmicity. Science 276:763–769PubMedCrossRefGoogle Scholar
  28. Cyran SA, Buchsbaum AM, Reddy KL et al. (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112:329–341PubMedCrossRefGoogle Scholar
  29. Degli Innocenti F, Russo VEA (1984) Genetic analysis of blue light-induced responses in Neurospora crassa. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin Heidelberg New York, pp 213–219Google Scholar
  30. Denault DL, Loros JJ, Dunlap JC (2001) WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora crassa. EMBO J 20:109–117PubMedCrossRefGoogle Scholar
  31. Dieckmann C, Brody S (1980) Circadian rhythms in Neurospora crassa: oligomycin-resistant mutations affect periodicity. Science 207:896–898CrossRefGoogle Scholar
  32. Dunlap JC (1998) An end in the beginning. Science 280: 1548–1549PubMedCrossRefGoogle Scholar
  33. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290PubMedCrossRefGoogle Scholar
  34. Dunlap JC, Loros JJ, Decoursey P (eds) (2003) Chronobiol-ogy: biological timekeeping. Sinauer Assoc, Sunderland, MAGoogle Scholar
  35. Feldman JF (1967) Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis. Proc Natl Acad Sci USA 57:1080–1087PubMedCrossRefGoogle Scholar
  36. Feldman JF (1982) Genetic approaches to circadian clocks. Annu Rev Plant Physiol 33:583–608CrossRefGoogle Scholar
  37. Feldman JF, Hoyle M (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75:605–613PubMedGoogle Scholar
  38. Feldman JF, Hoyle MN (1974) A direct comparison between circadian and noncircadian rhythms in Neurospora crassa. Plant Physiol 53:928–930PubMedCrossRefGoogle Scholar
  39. Feldman JF, Widelitz R (1977) Manipulation of circadian periodicity in cysteine auxotrophs of Neurospora crassa. Abst Annu Meet Am Soc Microbiol 158Google Scholar
  40. Feldman JF, Atkinson CA (1978) Genetic and physiological characterization of a slow growing circadian clock mutant of Neurospora crassa. Genetics 88:255–265PubMedGoogle Scholar
  41. Feldman JF, Gardner GF, Dennison RA (1979) Genetic analysis of the circadian clock of Neurospora. In: Suda M (ed) Biological rhythms and their central mechanism. Elsevier, Amsterdam, pp 57–66Google Scholar
  42. Froehlich AC, Loros JJ, Dunlap JC (2002) WHITE COLLAR-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819PubMedCrossRefGoogle Scholar
  43. Froehlich AC, Loros JJ, Dunlap JC (2003) Rhythmic binding of a WHITE COLLAR containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci USA 100:5914–5919PubMedCrossRefGoogle Scholar
  44. Galagan J, Calvo S, Borkovich K et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  45. Garceau N (1996) Molecular and genetic studies on the frq and ccg-1 loci of Neurospora. PhD Thesis, Dartmouth University, Hanover, NH, USAGoogle Scholar
  46. Garceau N, Liu Y, Loros JJ, Dunlap JC (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89:469–476PubMedCrossRefGoogle Scholar
  47. Gardner GF, Feldman JF (1980) The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics 96:877–886PubMedGoogle Scholar
  48. Gardner GF, Feldman JF (1981) Temperature compensation of circadian periodicity in clock mutants of Neurospora crass. Plant Physiol 68:1244–1248PubMedCrossRefGoogle Scholar
  49. Glossup NJR, Lyons LC, Hardin PE (1999) Interlocked feedback loops within the Drosophila circadian oscillator. Science 286:766–769CrossRefGoogle Scholar
  50. Gorl M, Merrow M, Huttner B et al. (2001) A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J 20:7074–84PubMedCrossRefGoogle Scholar
  51. Goto R, Kaue R, Morishita M, Nakashima H (1994) Effects of temperature on the circadian conidiation rhythm of temperature sensitive mutants of Neurospora crassa. Plant Cell Physiol 25:613–618Google Scholar
  52. Greene AV, Keller N, Haas H, Bell-Pedersen D (2003) A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237PubMedCrossRefGoogle Scholar
  53. Hafker T, Techel D, Steier G, Rensing L (1998) Differential expression of glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes during asexual development of Neurospora crassa. Microbiology 144: 37–43PubMedCrossRefGoogle Scholar
  54. Harmer SL, Hogenesch JB, Straume M et al. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  55. He Q, Cheng P, Yang Y et al. (2002) WHITE COLLAR-1, a DNA binding transcription factor and a light sensor. Science 297:840–842PubMedCrossRefGoogle Scholar
  56. Heintzen C, Loros JJ, Dunlap JC (2001) VIVID, gating and the circadian clock: the PAS protein WD defines a feedback loop that represses light input pathways and regulates clock resetting. Cell 104:453–464PubMedCrossRefGoogle Scholar
  57. Hochberg ML, Sargent ML (1974) Rhythms of enzyme activity associated with circadian conidiation in Neurospora crassa. J Bacteriol 120:1164–1175PubMedGoogle Scholar
  58. Ingold CT (1971) Fungal spores. Clarendon Press, OxfordGoogle Scholar
  59. Iwasaki H, Dunlap JC (2000) Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr Opin Microbiol 3:189–196PubMedCrossRefGoogle Scholar
  60. Jerebzoff S (1976) Metabolic steps involved in periodicity. In: Hastings JW, Schweiger H-G (eds) Dahlem workshop on the molecular basis of circadian thythms, Dahlem Conference, Berlin, pp 193–213Google Scholar
  61. Katagiri S, Onai K, Nakashima H (1998) Spermidine determines the sensitivity to the calmodulin antagonist, chlorpromazine, for the circadian conidiation rhythm but not for the mycelial growth in Neurospora crassa. J Biol Rhythms 13:452–460PubMedCrossRefGoogle Scholar
  62. King D, Zhao Y, Sangoram A et al. (1997) Positional cloning of the mouse circadian CLOCK gene. Cell 89:641–653PubMedCrossRefGoogle Scholar
  63. Kloss B, Price JL, Saez L et al. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94:97–107PubMedCrossRefGoogle Scholar
  64. Kramer C, Loros JJ, Dunlap JC, Crosthwaite SK (2003) Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421:948–952PubMedCrossRefGoogle Scholar
  65. Lakin-Thomas P (1996) Effects of choline depletion on the circadian rhythm in Neurospora crassa. Biol Rhythm Res 27:12–30CrossRefGoogle Scholar
  66. Lakin-Thomas P (1998) Choline depletion, frq mutations, and temperature compensation of the circadian rhythm in Neurospora crassa. J Biol Rhythms 13:268–277PubMedCrossRefGoogle Scholar
  67. Lakin-Thomas PL (2000) New functions for old clock genes? Trends Genet 16:135–142PubMedCrossRefGoogle Scholar
  68. Lakin-Thomas PL, Brody S (2000) Circadian rhythms in Neurospora crassa. Proc Natl Acad Sci USA 97:256–261PubMedCrossRefGoogle Scholar
  69. Lakin-Thomas PL, Coté G, Brody S (1990) Circadian rhythms in Neurospora. CRC Crit Rev Micro 17:365–416CrossRefGoogle Scholar
  70. Lauter F, Russo V, Yanofsky C (1992) Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev 6:2373–2381PubMedCrossRefGoogle Scholar
  71. Lauter F-R, Yanofsky C (1993) Day/night and circadian rhythm control of con gene expression in Neurospora. Proc Natl Acad Sci USA 90:8249–8253PubMedCrossRefGoogle Scholar
  72. Lee K, Loros JJ, Dunlap JC (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289:107–110PubMedCrossRefGoogle Scholar
  73. Lewis M, Feldman JF (1997) Evolution of the frequency clock locus in ascomycete fungi. Mol Biol Evol 13: 1233–1241CrossRefGoogle Scholar
  74. Lewis M, Morgan L, Feldman JF (1997) Cloning of (frq) clock gene homologs from the Neurospora sitophila and Neurospora tetrasperma, Chromocrea spinulosa and Leptosphaeria australiensis. Mol Gen Genet 253:401–414PubMedCrossRefGoogle Scholar
  75. Lillo C, Meyer C, Ruoff P (2001) The nitrate reductase circadian system. Plant Physiol 125:1554–1557PubMedCrossRefGoogle Scholar
  76. Linden H, Macino G (1997) White collar-2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109PubMedCrossRefGoogle Scholar
  77. Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150PubMedCrossRefGoogle Scholar
  78. Lindgren KM (1994) Characterization of ccg-1, a clock-controlled gene of Neurospora crassa. PhD Thesis, Dartmouth University, Hanover, NH, USAGoogle Scholar
  79. Liu Q, Dunlap JC (1996) Isolation and analysis of the arg-13 gene of Neurospora crassa. Genetics 142:1163–1174Google Scholar
  80. Liu Y, Garceau N, Loros JJ, Dunlap JC (1997) Thermally regulated translational control mediates an aspect of temperature compensation in the Neurospora circadian clock. Cell 89:477–486PubMedCrossRefGoogle Scholar
  81. Liu Y, Merrow M, Loros JJ, Dunlap JC (1998) How temperature changes reset a circadian oscillator. Science 281:825–829PubMedCrossRefGoogle Scholar
  82. Liu Y, Loros J, Dunlap JC (2000) Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci USA 97:234–239PubMedCrossRefGoogle Scholar
  83. Loros JJ, Feldman JF (1986) Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms 1:187–198PubMedCrossRefGoogle Scholar
  84. Loros JJ, Richman A, Feldman JF (1986) A recessive circadian clock mutant at the frq locus in Neurospora crassa. Genetics 114:1095–1110PubMedGoogle Scholar
  85. Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under the control of the circadian clock in Neurospora. Science 243:385–388PubMedCrossRefGoogle Scholar
  86. Luo C, Loros JJ, Dunlap JC (1998) Nuclear localization is required for function of the essential clock protein FREQUENCY. EMBO J 17:1228–1235PubMedCrossRefGoogle Scholar
  87. Martens CL, Sargent ML (1974) Conidiation rhythms of nucleic acid metabolism in Neurospora crassa. J Bac-teriol 117:1210–1215Google Scholar
  88. Mattern DL (1985) Unsaturated fatty acid isomers: effects on the circadian rhythm of a fatty-acid-deficient Neurospora crassa mutant. Arch Biochem Biophys 237: 402–410PubMedCrossRefGoogle Scholar
  89. Mattern DL, Brody S (1979) Circadian rhythms in Neurospora crassa: effects of unsaturated fatty acids. J Bac-teriol 139:977–988Google Scholar
  90. Mattern DL, Forman LR, Brody S (1982) Circadian rhythms in Neurospora crassa: a mutation affecting temperature compensation. Proc Natl Acad Sci USA 79:825–829PubMedCrossRefGoogle Scholar
  91. McClung CR, Fox BA, Dunlap JC (1989) The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 339:558–562PubMedCrossRefGoogle Scholar
  92. McNally M, Free S (1988) Isolation and characterization of a Neurospora glucose repressible gene. Curr Gen 14: 545–551CrossRefGoogle Scholar
  93. Mehra A, Morgan L, Bell-Pedersen D, Loros J, Dunlap JC (2002) Watching the Neurospora clock tick. Society for Research on Biological Rhythms, Amelia Island, FL, Society for Research on Biological RhythmsGoogle Scholar
  94. Merrow M, Dunlap JC (1994) Intergeneric complementation of a circadian rhythmicity defect: phylogenetic conservation of the 989 amino acid open reading frame in the clock gene frequency. EMBO J 13:2257–2266PubMedGoogle Scholar
  95. Merrow M, Garceau N, Dunlap JC (1997) Dissection of a circadian oscillation into discrete domains. Proc Natl Acad Sci USA 94:3877–3882PubMedCrossRefGoogle Scholar
  96. Merrow M, Bruner M, Roenneberg T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399:584–586PubMedCrossRefGoogle Scholar
  97. Merrow M, Franchi L, Dragovic Z et al. (2001) Circadian regulation of the light input pathway in Neurospora crassa. EMBO J 20:307–315PubMedCrossRefGoogle Scholar
  98. Morgan L, Feldman J (1997) Isolation and characterization of a temperature-sensitive circadian clock mutant in Neurospora crassa. Genetics 146:525–530PubMedGoogle Scholar
  99. Morgan LW, Greene AV, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38:327–332PubMedCrossRefGoogle Scholar
  100. Nakashima H (1981) A liquid culture system for the biochemical analysis of the circadian clock of Neurospora. Plant Cell Physiol 22:231–238Google Scholar
  101. Nakashima H, Onai K (1996) The circadian conidiation rhythm in Neurospora crassa. Semin Cell Dev Biol 7:765–774CrossRefGoogle Scholar
  102. Nowrousian M, Duffield G, Loros JJ, Dunlap JC (2003) The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164:922–933Google Scholar
  103. Onai K, Nakashima H (1997) Mutation of the cys-9 gene, which encodes thioredoxin reductase, affects the circadian conidiation rhythm in Neurospora crassa. Genetics 146:101–110PubMedGoogle Scholar
  104. Perkins DD, Radford A, Newmeyer D, Bjorkman M (1982) Chromosomal loci of Neurospora crassa. Microbiol Rev 46:426–570PubMedGoogle Scholar
  105. Perlman J, Nakashima H, Feldman J (1981) Assay and characteristics of circadian rhythmicity in liquid cultures of Neurospora crassa. Plant Physiol 67:404–407PubMedCrossRefGoogle Scholar
  106. Pittendrigh C, Bruce V (1959) Daily rhythms as coupled oscillator systems and their relation to thermoperi-odism and photoperiodism. In: Withrow RB (eds) Photoperiodism and related phenomena in plants and animals. AAAS, Washington, DC, pp 475–505Google Scholar
  107. Pittendrigh CS, Bruce VG, Rosenzweig NS, Rubin ML (1959) A biological clock in Neurospora. Nature 184:169–170CrossRefGoogle Scholar
  108. Preitner N, Damiola F, Lopez-Molina L et al. (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260PubMedCrossRefGoogle Scholar
  109. Price JL, Blau J, Rothenfluh A et al. (1998) Double-time is a new Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95PubMedCrossRefGoogle Scholar
  110. Ramsdale M, Lakin-Thomas PL (2000) sn-1,2-Diacylglyc-erol levels in the fungus Neurospora crassa display cir-cadian rhythmicity. J Biol Chem 275:27541–27550PubMedGoogle Scholar
  111. Rensing L, Bos A, Kroeger J, Cornelius G (1987) Possible link between circadian rhythm and heat shock response in Neurospora crassa. Chronobiol Int 4:543–549PubMedCrossRefGoogle Scholar
  112. Roeder PE, Sargent ML, Brody S (1982) Circadian rhythms in Neurospora crassa: oscillations in fatty acids. Biochemistry 21:4909–4916PubMedCrossRefGoogle Scholar
  113. Ruoff P, Slewa I (2002) Circadian period lengths of lipid synthesis mutants (eel, chol-1) of Neurospora show defective temperature, but intact pH-compensation. Chronobiol Int 19:517–529PubMedCrossRefGoogle Scholar
  114. Ruoff P, Vinsjevik M, Mohsenzadeh S, Rensing L (1999) The Goodwin Oscillator: on the importance of degradation reaction in the circadian clock. J Biol Rhythms 14:469–479PubMedCrossRefGoogle Scholar
  115. Ruoff P, Behzadi A, Hauglid M, Vinsjevik M, Havas H (2000) pH homeostasis of the circadian sporulation rhythm in clock mutants of Neurospora crassa. Chronobiol Int 17:733–50PubMedCrossRefGoogle Scholar
  116. Ryan FJ, Beadle GW, Tatum EL (1943) The tube method for measuring the growth rate of Neurospora. Am J Bot 30:784–799CrossRefGoogle Scholar
  117. Sargent ML, Briggs WR, Woodward DO (1966) The circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 41:1343–1349PubMedCrossRefGoogle Scholar
  118. Sargent ML, Kaltenborn SH (1972) Effects of medium composition and carbon dioxide on circadian conidiation in Neurospora. Plant Physiol 50:171–175PubMedCrossRefGoogle Scholar
  119. Schwerdtfeger C, Linden H (2000) Localization and light-dependent phosphorylation of White Collar-1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem 267:414–422PubMedCrossRefGoogle Scholar
  120. Schwerdtfeger C, Linden H (2001) Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol Microbiol 39:1080–1086PubMedCrossRefGoogle Scholar
  121. Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855PubMedCrossRefGoogle Scholar
  122. Shearman L, Zylka M, Weaver D, Kolakowski L, Reppert S (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269PubMedCrossRefGoogle Scholar
  123. Shearman L, Sriram S, Weaver D et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019PubMedCrossRefGoogle Scholar
  124. Shigeyoshi Y, Taguchi K, Yamamota S et al. (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPerl transcript. Cell 91:1043–1053PubMedCrossRefGoogle Scholar
  125. Shinohara M, Loros J J, Dunlap JC (1998) Glyceraldehyde-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock. J Biol Chem 273:446–452PubMedCrossRefGoogle Scholar
  126. Shinohara ML, Correa A, Bell-Pedersen D, Loros JJ, Dunlap JC (2002) The Neurospora crassa clock-controlled gene-9 (ccg-9) encodes a novel form of trehalose synthase required for circadian-regulated conidiation. Eukaryotic Cell 1:33–43PubMedCrossRefGoogle Scholar
  127. Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ (2001) vvd is required for light adaptation conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol 32:169–181PubMedCrossRefGoogle Scholar
  128. Sun S, Aisbrecht U, Zhuchenko O et al. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011PubMedCrossRefGoogle Scholar
  129. Sussman AS, Lowrey RJ, Durkee T (1964) Morphology and genetics of a periodic colonial mutant of Neurospora crassa. Am J Botan 51:243–252CrossRefGoogle Scholar
  130. Sussman AS, Durkee T, Lowrey RJ (1965) A model for rhythmic and temperature-independent growth in the “clock” mutants of Neurospora. Mycopathol Mycol Appl 25:381–396PubMedCrossRefGoogle Scholar
  131. Susuki S, Katagiri S, Nakashima H (1996) Mutants with altered sensitivity to a calmodulin antagonist affect the circadian clock in Neurospora. Genetics 143:1175–1180Google Scholar
  132. Talbot N (1999) Fungal biology. Coming up for air and sporulation. Nature 398:295–296PubMedCrossRefGoogle Scholar
  133. Talora C, Franchi L, Linden H, Ballario P, Macino G (1999) Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J 18:4961–4968PubMedCrossRefGoogle Scholar
  134. Taylor WR, Feldman JF (1982) Nutritional manipulation of circadian period length of auxotrophic mutants. Neurosp News 29:12Google Scholar
  135. Tei H, Okamura H, Shigeyoshi Y et al. (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516PubMedCrossRefGoogle Scholar
  136. Toyota K, Onai K, Nakashima H (2002) A new wc-1 mutant of Neurospora crassa shows unique light sensitivity in the circadian conidiation rhythm. Mol Genet Genom 268:56–61CrossRefGoogle Scholar
  137. Wessels JG (1999) Fungi in their own right. Fungal Genet Biol 27:134–145PubMedCrossRefGoogle Scholar
  138. Yang Y, Cheng P, Zhi G, Liu Y (2001) Identification of a calcium/calmodulin-dependent protein kinase that phosphorylates the Neurospora circadian clock protein FREQUENCY. J Biol Chem 276:41064–41072PubMedCrossRefGoogle Scholar
  139. Yang Y, Cheng P, Liu Y (2002) Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev 16:994–1006PubMedCrossRefGoogle Scholar
  140. Zhu H, Nowrousian M, Kupfer D et al. (2001) Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics 157:1057–1065PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. C. Dunlap
  • J. J. Loros
  • D. Denault
  • K. Lee
  • A. Froehlich
  • H. Colot
  • M. Shi
  • A. Pregueiro
    • 1
  1. 1.Department of GeneticsDartmouth Medical SchoolHanoverUSA

Personalised recommendations