Skip to main content

Stoffwechsel der Purine und Pyrimidine

  • Chapter
Biochemie und Pathobiochemie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 454 Accesses

Zusammenfassung

Purine und Pyrimidine haben als Bausteine von Coenzymen wichtige Aufgaben, darüber hinaus dienen sie in Form ihrer zugehörigen Nucleinsäuren der Informationsspeicherung und -weitergabe in biologischen Systemen. Bei der Biosynthese der Purin- und Pyrimidinbasen dienen einfache Bausteine als Substrate, wobei häufig die Form der reaktionsfreudigeren Nucleotide als Zwischenprodukte benutzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Monographien und Lehrbücher

  • Wehnert M: Störungen des Purin-und Pyrimidinstoffwechsels. In: Ganten D, Ruckpaul K (Hrsg) (2000) Monogen bedingte Erbkrankheiten. Springer, Berlin Heidelberg New York, pg 278–333

    Google Scholar 

  • Llner N (ed) (1990) Hyperuricämie, Gicht und andere Störungen des Purinhaushaltes. 2. Aufl., Springer, Berlin Heidelberg New York

    Google Scholar 

Original- und Übersichtsarbeiten

  • Baldwin SA, Mackey JR, Cass CE, Young JD (1999) Nucleoside transporters: molecular biology and implications for therapeutic development. Molecular Medicine Today 5: 216–224

    Article  CAS  PubMed  Google Scholar 

  • Bera AK, Chen S, Smith JL, Zalkin H (1999) Interdomain Signalling in Glutamine Phosphoribosylpyrophosphate Amidotransferase. J Biol Chem 274: 36498–36504

    Article  CAS  PubMed  Google Scholar 

  • Brodsky G et al (1997) The human Gars-Airs-Gart gene encodes two proteins which are differentially expressed during brain development and temporally overexpressed in cerebellum of individuals with Down syndrome. Hum Mol Gen 6: 2043–2050

    Article  CAS  PubMed  Google Scholar 

  • Carreras CW (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64: 721–762

    Article  CAS  PubMed  Google Scholar 

  • Carrey EA (1995) Key enzymes in the biosynthesis of purines and pyrimidines: their regulation by allosteric effectors and by phosphorylation. Biochem Soc Transact 23: 899–902

    CAS  Google Scholar 

  • Chu E, Allegra CJ (1996) The role of thymidylate synthase as an Rna binding protein. Bioessays 18: 191–198

    Article  CAS  PubMed  Google Scholar 

  • Chu E et al (1999) Thymidylate Synthase Protein and p53 mRna Form an In Vivo Ribonucleoprotein Complex. Mol Cell Biol 19: 1582–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graves LM et al (2000) Regulation of carbamoylphosphate synthetase by Map-kinase. Nature 403: 328–332

    Article  CAS  PubMed  Google Scholar 

  • Hatse S, Declercq E, Balzarini J (1999) Role of Antimetabolites of Purine and Pyrimidine Nucleotide Metabolism in Tumor Cell Differentiation. Biochem Pharmacol 55: 539–555

    Article  Google Scholar 

  • Horie N, Takeishi K (1997) Identification of Functional Elements in the Promoter Region of the Human Gene for Thymidylate Synthase and Nuclear Factors That Regulate the Expression of the Gene. J Biol Chem 272: 18 375–18 381

    Google Scholar 

  • Jordan A, Reichard P (1998) Ribonucleotide Reductases.Annu Rev Biochem 67: 71–98

    Article  CAS  Google Scholar 

  • Kappock TJ, Ealick SE, Stubbe JA (2000) Modular evolution of the purine biosynthetic pathway. Current Opinion in Chemical Biology 2000: 4: 567–572

    Article  Google Scholar 

  • Maqbool A, Taylor W, Smith PR, Becker MA (1999) Accelerated transcription of Prps1 in X-linked Overactivity of normal human Phosphoribosylpy- rophosphate Synthetase. J Biol Chem 274: 7482–7488

    Article  Google Scholar 

  • Metz SA, Kowluru A (1999) Inosine Monophosphate Dehydrogenase: A Molecular Switch Integrating Pleiotropic Gtp-Dependent b-Cell Functions. Proc Ass Am Phys 111: 335–346

    Google Scholar 

  • Powell Cmh et al (2000) Inhibition of the mammalian transcription factor Lsf induces S-phase-dependent apoptosis by downregulating thymidylate synthase expression. Embo J 19: 4665–4675

    Article  CAS  PubMed  Google Scholar 

  • Siddhartha R (1999) Multifunctional Enzymes and Evolution of Biosynthetic Pathways: Retro-Evolution by Jumps. Proteins 37: 303–309

    Article  Google Scholar 

  • Smith JL (1998) Glutamine Prpp amidotransferase: snapshots of an enzyme in action. Current Opinion in Structural Biology 8: 686–694

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löffler, G. (2003). Stoffwechsel der Purine und Pyrimidine. In: Löffler, G., Petrides, P.E. (eds) Biochemie und Pathobiochemie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06058-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06058-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06059-9

  • Online ISBN: 978-3-662-06058-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics