Divided Catalytic Processes

  • Harald Seiler
  • Gerhard Emig
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 75)


This chapter is concerned with divided catalytic processes, a topic which is still an innovative concept in chemical reaction engineering, but which has meanwhile become a known and applied one. Divided catalytic processes belong to the class of unsteady state reaction processes, specifically to the class of forced periodic processes (see for example [1,2]). They are an extreme form of modulation of initial concentrations and can only be used in heterogeneous catalysis. A description of the principle and history of divided catalytic processes will be given, together with specific examples. After a short view on reactor designs with industrial potential, advantages and disadvantages of the processes will also be considered. Finally, industrial application of this concept in reaction engineering will be described. Not only scientific research associations assume that, with increasing research, thus increasing knowledge and experience, periodic operation of chemical reactors will establish itself as a possible method of operation which promises success [3].


Maleic Anhydride Catalytic Process Oxidative Dehydrogenation Solid Catalyst Oxidation Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Silveston, R. Hudgins, and A. Renken, Periodic operation of catalytic reactors —introduction and overview, Catal. Today, Vol. 25, pp. 91–112, 1995.CrossRefGoogle Scholar
  2. 2.
    C. Bennett, Experiments and processes in the transient regime for heterogeneous catalysis, Adv. Catal., Vol. 44, pp. 329–416, 1999.Google Scholar
  3. 3.
    A. Stankiewicz and M. Kuczynski, An industrial view on the dynamic operation of chemical converters, Chem. Engng. Proc., Vol. 34, pp. 367–377, 1995.CrossRefGoogle Scholar
  4. 4.
    P. Mars and D. van Krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci.; Spec. Suppl., Vol. 3, pp. 41–59, 1954.CrossRefGoogle Scholar
  5. 5.
    P. Silveston and M. Forrisier, Influence of composition modulation on product yields and selectivity in the partial oxidation of propylene over an antimony-tin oxide catalyst, Ind. Eng. Chem. Process Des. Dev., Vol. 24, pp. 320–325, 1985.CrossRefGoogle Scholar
  6. 6.
    W. Lewis, E. Gilliland, and W. Reed, Reaction of methane with copper oxide in a fluidized bed, Ind. Eng. Chem., Vol. 41, No. 6, pp. 1227–1237, 1949.Google Scholar
  7. 7.
    L. Mond and G. Eschellmann, Process of obtaining chlorine, Patent US 416,038, Nov., 1889.Google Scholar
  8. 8.
    H. Deacon, Improvement in manufacture of chlorine, Patent US 165,802, Jul., 1875.Google Scholar
  9. 9.
    R. Minet, S. Benson, and T. Tsotsis, Recovery of chlorine from hydrogen chloride by carrier catalyst process, Patent US 4,994,256, Feb., 1991.Google Scholar
  10. 10.
    H. Pan, R. Minet, S. Benson, and T. Tsotsis, Process for converting hydrogen chloride to chlorine, Ind. Eng. Chem. Res., Vol. 33, pp. 2996–3003, 1994.CrossRefGoogle Scholar
  11. 11.
    M. Mortensen, R. Minet, T. Tsotsis, and S. Benson, A two-stage cyclic fluidized bed process for converting hydrogen chloride to chlorine, Chem. Eng. Sci., Vol. 51, No. 10, pp. 2031–2039, 1996.CrossRefGoogle Scholar
  12. 12.
    M. Mortensen, R. Minet, T. Tsotsis, and S. Benson, The development of a dual fluidized-bed reactor system for the conversion of hydrogen chloride to chlorine, Chem. Engng. Sci., Vol. 54, pp. 2131–2139, 1999.CrossRefGoogle Scholar
  13. 13.
    U. Nieken and O. Watzenberger, Periodic operation of the Deacon process, Chem. Engng. Sci., Vol. 54, pp. 2619–2626, 1999.CrossRefGoogle Scholar
  14. 14.
    W. Krönig, O. Tegtmeyer, and W. Schmidt, Verfahren zur Dehydrierung von Kohlenwasserstoffen, Patent DE 1 161 257, 24.09.56, Bayer AG, 1956.Google Scholar
  15. 15.
    J. Callahan, R. Grasselli, E. Milberger, and H. Strecker, Oxidation and ammoxidation of propylene over bismuth molybdate catalyst, Ind. Eng. Chem. Prod. Res. Develop., Vol. 9, No. 2, pp. 134–142, 1970.CrossRefGoogle Scholar
  16. 16.
    M. Sze and A. Gelbein, Make aromatic nitriles this way, Hydrocarbon Processing, pp. 103–106, Feb., 1976.Google Scholar
  17. 17.
    R. Contractor, H. Bergna, H. Horowitz, C. Blackstone, B. Malone, C. Torardi, B. Griffiths, U. Chowdhry, and A. Sleight, Butane oxidation to maleic anhydride over vanadium phosphate catalysts, Catal. Today, Vol. 1, pp. 49–58, 1987.CrossRefGoogle Scholar
  18. 18.
    R. Contractor, Du Pont’s CFB technology for maleic anhydride, Chem. Engng. Sci., Vol. 54, pp. 5627–5632, 1999.CrossRefGoogle Scholar
  19. 19.
    E. Müller-Erlwein and J. Guba, Experimentelle Untersuchung zum periodischen Reaktorbetrieb bei der heterogen katalysierten Oxidehydrierung von Isobutyraldehyd zu Methacrolein, Chem.-Ing.-Tech., Vol. 60, No. 12, pp. 1072–1073, 1988.CrossRefGoogle Scholar
  20. 20.
    R. Burch and R. Swarnakar, Oxidative dehydrogenation of ethane on vanadium-molybdenum oxide and vanadium-niobium-molybdenum oxide catalysts, Appl. Catal., Vol. 70, pp. 129–148, 1991.Google Scholar
  21. 21.
    A. Hagemeyer, O. Watzenberger, and A. Deimling, Katalysator und Verfahren für die katalytische oxidative Dehydrierung von Alkylaromaten und Paraffinen, Patent DE 44 37 252 Al, 18.10.94, BASF AG, 1994.Google Scholar
  22. 22.
    A. Hagemeyer, Th. Lautensack, O. Watzenberger, and A. Deimling, Verfahren zur katalytischen oxidativen Dehydrierung von Alkylaromaten und Paraffinen, Patent DE 44 36 385 Al, 12.10.94, BASF AG, 1994.Google Scholar
  23. 23.
    O. Watzenberger and A. Hagemeyer, Verfahren zur Herstellung von Styrol aus Ethylbenzol und Xylole enthaltenden C8-Gemischen, Patent DE 195 45 095 Al, 04.12.95, BASF AG, 1995.Google Scholar
  24. 24.
    O. Watzenberger, E. Ströfer, and A. Anderlohr, Instationär-oxidative Dehydrierung von Ethylbenzol zu Styrol, Chem.-Ing.-Tech., Vol. 71, No. 1+2, pp. 150–152, 1999.Google Scholar
  25. 25.
    L. Weismantel, Zweistufige Reaktionsführung bei heterogen katalysierten Oxidationsreaktionen am Beispiel der Methacrylsäuresynthese an Heteropolyverbindungen, Dissertation, Universität Erlangen-Nürnberg, 1996.Google Scholar
  26. 26.
    L. Weismantel, J. Stöckel, and G. Emig, Improvement of selectivity with a two-step process for the oxidation of isobutyric acid, Appl. Catal. A, Vol. 137, pp. 129–147, 1996.CrossRefGoogle Scholar
  27. 27.
    J. Sloczynski, Kinetics and mechanism of reduction and reoxidation of the alkali metal promoted vanadia-titania catalysts, Appl. Catal. A, Vol. 146, pp. 401–423, 1996.CrossRefGoogle Scholar
  28. 28.
    D. Creaser, B. Andersson, R. Hudgins, and P. Silveston, Transient kinetic analysis of the oxidative dehydrogenation of propane, J. Catal., Vol. 182, pp. 264–269, 1999.CrossRefGoogle Scholar
  29. 29.
    D. Creaser, B. Andersson, R. Hudgins, and P. Silveston, Transient study of oxidative dehydrogenation of propane, Appl. Catal. A, Vol. 187, pp. 147–160, 1999.CrossRefGoogle Scholar
  30. 30.
    H.-W. Zanthoff, J.-C. Jalibert, Y. Schuurmann, P. Slama, J.-M. Herrmann, and C. Mirodatos, Dynamics of the oxidative dehydrogenation of propane over VMgO catalysts studied by in situ electrical conductivity and step transients. In: A. Corma and F. Melo and S. Mensioros and J. Fierro (Ed.), 12th Int. Congress Catal., Granada, E, June 2000, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 2000.Google Scholar
  31. 31.
    S. Dubuis, M. Lorenzi, R. Doepper, and A. Renken, Oxidative coupling of toluene under periodic conditions on Pb/Li/MgO: A selective path to 1,2-diphenylethane. In: G. Froment and K. Waugh, (Eds.), Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, pp. 469–477, Elsevier, Amsterdam, 1997.CrossRefGoogle Scholar
  32. 32.
    H. Hiltner and G. Emig, Oxidative coupling of isobutene in a two step process. In: 3rd World Congress on Oxidation Catalysis, pp. 593–603, Elsevier, Amsterdam, 1997.CrossRefGoogle Scholar
  33. 33.
    H. Hiltner, Reaktionstechnische Untersuchungen zur oxidativen Kopplung von Isobuten zu 2,5-Dimethyl-1,5-Hexadien, Dissertation, Universität Erlangen-Nürnberg, 1998.Google Scholar
  34. 34.
    R. Contractor, M. Anderson, D. Campos, G. Hecquet, R. Kotwica, C. Pham, and M. Simon, Improved vapor phase oxidation of propylene to acrolein, Patent WO 99/03809, 28.01. 99, E.I. Du Pont de Nemours and Elf Atochem S.A., 1999.Google Scholar
  35. 35.
    R. Böhling, A. Drochner, M. Fehlings, D. König, and H. Vogel, Konzentrationsprogrammierte Reaktionstechnik Eine Methode zur Beurteilung des Anwendungspotentials instationärer Prozeßfiihrungen bei Partialoxidationen, Chem. Ing. Tech., Vol. 71, No. 3, pp. 226–230, 1999.CrossRefGoogle Scholar
  36. 36.
    Yu Zhiqing, Application collocation. In: M. Kwauk, (Ed.), Fast fluidization, Vol. 20 in Advances in Chemical Engineering, pp. 39–63, Academic Press, 1994.Google Scholar
  37. 37.
    T. Ilkenhans, H. Siegert, and R. Schlögl, The mechanism of the synthesis in connection with assignments for a solid reaction cycle of the HPA catalyst during catalytic reactions, Catal. Today, Vol. 32, pp. 337–347, 1996.CrossRefGoogle Scholar
  38. 38.
    K. Westerterp, W. van Swaaij, and H. Beenackers, Chemical Reactor-Design and Operation, rev. ed., John Wiley, Chichester, 1984.Google Scholar
  39. 39.
    M. Casper, (Ed.), Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques, Vol. 102 in Chemical Technology Review, Noyes Data Corp., Park Ridge, NJ, USA, 1978.Google Scholar
  40. 40.
    F. Cavani and F. Trifirô, Some aspects that affect the selective oxidation of paraffins, Catal. Today, Vol. 36, pp. 431–439, 1997.Google Scholar
  41. 41.
    R. Contractor and A. Sleight, Maleic anhydride from C-4 feedstocks using fluidized bed reactors, Catal. Today, Vol. 1, pp. 587–607, 1987.CrossRefGoogle Scholar
  42. 42.
    R. Contractor and A. Sleight, Selective oxidation in a riser reactor, Catal. Today, Vol. 3, pp. 175–184, 1988.CrossRefGoogle Scholar
  43. 43.
    T. Pugsley, G. Patience, F. Berruti, and J. Chaouki, Modeling the catalytic oxidation of n-butane to maleic anhydride in a circulation fluidized bed reactor, Ind. Eng. Chem. Res., Vol. 31, pp. 2652–2660, 1992.CrossRefGoogle Scholar
  44. 44.
    R. Contractor, H. Bergna, H. Horowitz, C. Blackstone, U. Chowdry, and A. Sleight, Butane oxidation to maleic anhydride in a recirculating solids reactor. In: J. Ward, (Ed.), Catalysis 1987, pp. 645–654, Elsevier, Amsterdam, 1988.Google Scholar
  45. 45.
    R. Contractor, H. Horowitz, G. Sisler, and E. Bordes, The effects of steam on n-butane oxidation over VPO as studied in a riser reactor, Catal. Today, Vol. 37, pp. 5157, 1997.CrossRefGoogle Scholar
  46. 46.
    K. Golbig and J. Werther, Selective synthesis of maleic anhydride by spatial separation of n-butane oxidation and catalyst reoxidation, Chem. Eng. Sci., Vol. 52, No. 4, pp. 583–595, 1997.CrossRefGoogle Scholar
  47. 47.
    Y. Schuurman and J. Gleaves, Activation of vanadium phosphorus oxide catalysts for alkane oxidation: The influence of the oxidation state on catalyst selectivity, Ind. Eng. Chem. Res., Vol. 33, pp. 2935–2941, 1994.CrossRefGoogle Scholar
  48. 48.
    Th. Ilkenhans, B. Herzog, Th. Braun, and R. Schlögl, The nature of the active phase in the heteropoly acid catalyst H4PVMo11O40 • 32 H2O used for the selective oxidation of isobutyric acid, J. Catal., Vol. 153, pp. 275–292, 1995.CrossRefGoogle Scholar
  49. 49.
    G. Emig, K. Uihlein, and C.-J. Häcker, Separation of catalyst oxidation and reduction — An alternative to the conventional oxidation of n-butane to maleic anhydride. In: V. Cortés Corberân and X. Victor Bellôn, (Eds.), New Developments in Selective Oxidation II, pp. 243–251, Elsevier, Amsterdam, 1994.Google Scholar
  50. 50.
    A. Bielanski and J. Haber, Oxygen in catalysis on transition metal oxides, Catal. Rev.-Sci. Eng., Vol. 19, No. 1, pp. 1–41, 1979.CrossRefGoogle Scholar
  51. 51.
    U. Rodemerck, B. Kubias, H.-W. Zanthoff, and M. Baerns, The reaction mechanism of the selective oxidation of butane on (V0)2P2O 7 catalysts: The role of oxygen in the reaction chain to maleic anhydride, Appl. Catal. A, Vol. 153, pp. 203–216, 1997.CrossRefGoogle Scholar
  52. 52.
    M. Abon, K. Béré, and P. Delichère, Nature of active oxygen in the n-butane selective oxidation over well defined V-P-O catalysts: an oxygen isotopic labelling study, Catal. Today, Vol. 33, pp. 15–23, 1997.CrossRefGoogle Scholar
  53. 53.
    Xiaosu Lang, R. Hudgins, and P. Silveston, Application of periodic operation to maleic anhydride production, Can. J. Chem. Eng., Vol. 67, pp. 635–645, 1989.CrossRefGoogle Scholar
  54. 54.
    H. Seiler, and G. Emig, Reduction-oxidation cycles in a fixed-bed reactor with periodic flow reversal, Chem. Eng. Technol., Vol. 21, No. 6, pp. 479–484, 1999.CrossRefGoogle Scholar
  55. 55.
    A. Zwijnenburg, A. Stankiewicz, and J. Moulijn, Dynamic operation of chemical reactors: Friend or foe?, Chem. Eng. Progr., pp. 39–47, Nov., 1998.Google Scholar
  56. 56.
    P. Silveston. In: R. Mashelkar and R. Kumar, (Eds.), Reactors and Reaction Engineering. Indian Academy of Sciences, Bangalore, India, 1987.Google Scholar
  57. 57.
    R. Contractor, Du Pont’s new process for n-butane to tetrahydrofuran, Appl. Catal. B, Vol. 6, No. 1, pp. N3, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Harald Seiler
    • 1
  • Gerhard Emig
    • 2
  1. 1.Degussa AGVerfahrens- & ProzesstechnikMarlGermany
  2. 2.Technische Chemie IUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations