Advertisement

Structure and Function of Cholera Toxin and Related Enterotoxins

  • F. van den Akker
  • E. Merritt
  • W. G. J. Hol
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 145)

Abstract

Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) both cause diarrheal disease and represent a major health problem, especially among children in developing countries. Cholera is one of the great epidemic diseases; seven pandemics have been recorded in history, the last three of which are known to be due to V. cholerae serogroup O1. In 1992, a new cholera epidemic emerged, caused by the new serotype V. cholerae 0139 Bengal (Albert 1994). The new epidemic quickly spread through India and Bangladesh.

Keywords

Cholera Toxin Pertussis Toxin Nicotinamide Adenine Dinucleotide Diphtheria Toxin Bacterial Protein Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya KR, Passalacqua EF, Jones EY, Harlos K, Stuart DI, Brehm RD, Tranter HS (1994) Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature 367: 94–97PubMedCrossRefGoogle Scholar
  2. Albert MJ (1994) Vihrio cholerae 0139 Bengal. J Clin Microbiol 32:2345–2349Google Scholar
  3. Amin T, Larkins A, James RFL, Hirst TR (1995) Generation of a monoclonal antibody that recognizes the amino-terminal decapeptide of the B-subunit of Escherichia coli heat-labile enterotoxin. J Biol Chem 270: 20143–20150PubMedCrossRefGoogle Scholar
  4. Bastiaens PIH, Majoul IV, Verveer PJ, Soling H-D, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB quaternary structure of cholera toxin. EMBO J 15: 4246–4253PubMedGoogle Scholar
  5. Bell CE, Eisenberg D (1996) Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35: 1137–1149PubMedCrossRefGoogle Scholar
  6. Bell CE, Eisenberg D (1997) Crystal structure of nucleotide-free diphtheria toxin. Biochemistry 36: 481–488PubMedCrossRefGoogle Scholar
  7. Celemin C, Anguita J, Naharro G, Suarez S (1994) Evidence that Escherichia coli isolated from the intestine of healthy pigs hybridize with LT-II, ST-lb and SLT-II DNA probes. Microb Pathog 16: 77–81Google Scholar
  8. Chang PP, Moss J, Twiddy EM, Holmes RK (1987) Type-II heat-labile enterotoxin of Escherichia coli activates adenylate cyclase in human fibroblasts by ADP— ribosylation. Infect Immun 55: 1854–1858PubMedGoogle Scholar
  9. Cieplak W Jr, Mead DJ, Messer RJ, Grant CCR (1995) Site-directed mutagenic alteration of potential active-site residues of the A subunit of Escherichia coli heat-labile enterotoxin. J Biol Chem 270: 30545–30550PubMedCrossRefGoogle Scholar
  10. Connell TD, Holmes RK (1992a) Molecular genetic analysis of ganglioside GDIbbinding activity of Escherichia coli type-IIa heat-labile enterotoxin by use of random and site-directed mutagenesis. Infect Immun 60: 63–70PubMedGoogle Scholar
  11. Connell TD, Holmes RK (19926) Characterization of hybrid toxins produced in Escherichia coli by assembly of A and B polypeptides from type-1 and type-II heat-labile enterotoxins. Infect Immun 60: 1653–1661Google Scholar
  12. Connell TD, Holmes RK (1995) Mutational analysis of the ganglioside-hinding activity of the type-II Escherichia coli heat-labile enterotoxin LT-IIb. Mol Microbiol 16: 21–31PubMedCrossRefGoogle Scholar
  13. Connell TD, Metzger DJ, Wang M, Jobling MG, Holmes RK (1995) Initial studies of the structural signal for extracellular transport of cholera toxin and other proteins recognized by Vibrio cholerae. Infect Immun 63: 4091–4098PubMedGoogle Scholar
  14. De SN (1959) Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533–1534PubMedCrossRefGoogle Scholar
  15. Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP—ribosylating toxins. Mol Microbiol 14: 41–50PubMedCrossRefGoogle Scholar
  16. Donta ST, Tomicic T, Holmes RK (1992) Binding of class-II Escherichia coli enterotoxins to mouse YI and intestinal cells. Infect Immun 60: 2870–2873PubMedGoogle Scholar
  17. Feil IK, Reddy R, de Haan L, Merritt EA, van den Akker F, Storm DR, Hol WGJ (1996) Protein engineering studies of A-chain loop 47–56 of Escherichia coli heatlabile enterotoxin point to a prominent role of this loop for cytotoxicity. Mol Microbiol 20: 823–832PubMedCrossRefGoogle Scholar
  18. Feil IK, Platas AA, Van den Akker F, Reddy R, Merritt EA, Storm DR, HoI WGJ (1998) Stepwise transplantation of an active site loop between heat-labile enterotoxins LT-II and LT-I and characterization of the obtained hybrid toxins. Protein Eng 11: 1103–1109PubMedCrossRefGoogle Scholar
  19. Finkelstein RA, LoSpalluto JJ (1969) Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J Exp Med 130: 185–202PubMedCrossRefGoogle Scholar
  20. Finkelstein RA, Boesman-Finkelstein M, Holt P (1983) Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc Natl Acad Sci USA 80: 1092–1095PubMedCrossRefGoogle Scholar
  21. Fraser ME, Chernaia MM, Kozlov YV, James MNG (1994) Crystal structure of the holotoxin from Shigella dysenteriae at 2.5-A resolution. Nat Struct Biel 1: 59–64CrossRefGoogle Scholar
  22. Fukuta S, Magnani JL,Twiddy EM, Holmes RK. Ginsburg V (1988) Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia celi heat-labile enterotoxins LTh-1, LT-IIa, and LT-IIb. Infect Immun 56: 1748–1753PubMedGoogle Scholar
  23. Galloway TS, Van Heyningen S (1987) Binding of NAD+ by cholera toxin. Biochem J 244: 225–230PubMedGoogle Scholar
  24. Goins B, Freire E (1988) Thermal stability of intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside GM1. Biochemistry 27: 2046–2052PubMedCrossRefGoogle Scholar
  25. Green BA, Neill RJ, Ruyechan WT, Holmes RK (1983) Evidence that a new enterotoxin of Escherichia coli which activates adenylate cyclase in eukaryotic target cells is not plasmid mediated. Infect Immun 41: 383–390PubMedGoogle Scholar
  26. Guth BEC, Pickett CL, Twiddy EM, Holmes RK, Gomes TAT, Lima AAM, Guerrant RL, Franco B DGM, Trabulsi LR (1986a) Production of type-II heat-labile enterotoxin by Escherichia coli isolated from food and human feces. Infect Immun 59: 587–589Google Scholar
  27. Guth BEC, Twiddy EM, Trabulsi LR, Holmes RK (1986b) Variation in chemical properties and antigenic determinants among type-II heat-labile enterotoxins of Escherichia coli. Infect Immun 54: 529–536PubMedGoogle Scholar
  28. Hardy SJS, Holmgren J, Johansson S, Sanchez J, Hirst TR (1988) Coordinated assembly of multisubunit proteins: oligomerization of bacterial enterotoxins in vivo and in vitro. Proc Natl Acad Sci USA 85: 7109–7113PubMedCrossRefGoogle Scholar
  29. Hirst TR, Holmgren J (1987) Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci USA 84: 7418–7422PubMedCrossRefGoogle Scholar
  30. Hirst TR, Sanchez J, Kaper JB, Hardy SJS, Holmgren J (1984) Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc Natl Acad Sci USA 81: 7752–7756PubMedCrossRefGoogle Scholar
  31. Hofstra H, Witholt B (1984). Kinetics of synthesis, processing, and membrane transport of heat-labile enterotoxin, a periplasmic protein in Escherichia coli. J Biol Chem 259: 15182–15187PubMedGoogle Scholar
  32. Hol WGJ (1986) Protein crystallography and computer graphics toward rational drug design. Angewandte Chemie (Int Ed) 25: 767–778CrossRefGoogle Scholar
  33. Hol WGJ, Sixma TK, Merritt EA (1995) Structure and function of E. coli heat-labile enterotoxin and cholera toxin B pentamer. In Bacterial toxins and virulence factors in disease. Handbook of natural toxins, Vol 8. ( Moss J, Iglewski B, Vaughan M, Tu AT, eds), pp 185–223, Marcel Dekker, Inc., New York, USAGoogle Scholar
  34. Holmes RK, Twiddy EM, Pickett CL (1986) Purification and characterization of type-II heat-labile enterotoxin of Escherichia coli. Infect Immun 53: 464–473PubMedGoogle Scholar
  35. Holmgren J (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature 292: 413–417PubMedCrossRefGoogle Scholar
  36. Holmgren J (1994). Receptors for cholera toxin and Escherichia coli heat-labile enterotoxin revisited. Prog in Brain Res 101: 163–177CrossRefGoogle Scholar
  37. Holmgren J, Svennerholm A,-M (1992) Bacterial enteric infections and vaccine development. Gastroenterol. Clin North Am 21: 283–302Google Scholar
  38. Hovey B, Verlinde CLMJ, Merritt EA, Hol WGJ (1999) Structure-based discovery of a pore-binding ligand: towards assembly inhibitors for cholera and related AB, toxins. J Mol Biol 285: 1169–1178PubMedCrossRefGoogle Scholar
  39. Jobling MG, Holmes RK (1991) Analysis of structure and function of the B subunit of cholera toxin by the use of site-directed mutagenesis. Mol Microbiol 5: 1755–1767PubMedCrossRefGoogle Scholar
  40. Kaslow HR, Platter B, Takada T, Moss J, Mar VL, Burnette WN (1992) Effects of site-directed mutagenesis on cholera toxin Al subunit ADP—ribosyltransferase activity. In Bacterial protein toxins. Zbl. Bakt. Suppl. 23. (Witholt et al., eds), pp 197–198, Gustav Fisher, Stuttgart, Jena, New YorkGoogle Scholar
  41. Kharadia SV, Graves DJ (1987) Relationship of phosphorylation and ADP—ribosyla-tion using a synthetic peptide as a model substrate. J Biol Chem 262: 17379–17383PubMedGoogle Scholar
  42. Koch R (1884) An address on cholera and its bacillus. Br Med J 2: 403–407PubMedCrossRefGoogle Scholar
  43. Lai C-Y, Cancedda F, Duffy LK (1981) ADP—ribosyltransferase activity of cholera toxin polypeptide Al and the effect of limited trypsinolysis. Biochem. Biophys Res Commun 102: 1021–1027Google Scholar
  44. Lai C-Y, Xia Q-C, Salotra PT (1983) Location and amino acid sequence around the ADP—ribosylation site in cholera toxin active subunit AI. Biochem. Biophys Res Commun 116: 341–348Google Scholar
  45. Larew JS-A, Peterson JE, Graves DJ (1991). Determination of the kinetic mechanism of arginine-specific ADP—ribosyltransferases using a high performance liquid chromatographic assay. J Biol Chem 266: 52–57PubMedGoogle Scholar
  46. Lee C-M, Chang PP, Tsai S-C, Adamik R, Price SR, Kunz BC, Moss J, Twiddy EM, Holmes RK (1991) Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-k D guanine nucleotide-binding proteins. J Clin Invest 87: 1780–1786PubMedCrossRefGoogle Scholar
  47. Lencer WI, Constable C, Moe S, Jobling MG, Webb HM, Ruston S, Madara JL, Hirst TR, Holmes RK (1995b) Targeting of cholera toxin and Escherichia coli heat-labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol 131: 951–962PubMedCrossRefGoogle Scholar
  48. Li M, Dyda F, Benhar I, Pastan I, Davies DR (1995) The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin. Proc Natl Acad Sci USA 92: 9308–9312PubMedCrossRefGoogle Scholar
  49. Li M, Dyda F, Benhar I, Pastan I, Davies DR (1996) Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADPribosylation. Proc Natl Acad Sci USA 93: 6902–6906PubMedCrossRefGoogle Scholar
  50. Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL, Read R.I (1998) Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochem 37: 1777–1788CrossRefGoogle Scholar
  51. Locht C, Antoine R (1995) A proposed mechanism of ADP—ribosylation catalyzed by the pertussis toxin S1 subunit. Biochimie 77: 333–340PubMedCrossRefGoogle Scholar
  52. Loesberg C, Van Rooij H, Smets LA (1990). Meta-iodohenzylguanidine ( MIBG), a novel high-affinity substrate for cholera toxin that interferes with cellular mono(ADP—ribosylation ). Biochim Biophys Acta 1037: 92–99Google Scholar
  53. Majoul IV, Bastiaens PIH, Söling H-D (1996) Transport of an external Lys-Asp-GluLeu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: Studies with cholera toxin in Vero cells. J Cell Biol 133: 777–789Google Scholar
  54. McCann JA, Mertz JA, Czworkowski J, Picking WD (1998) Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. Biochemistry 36: 9169–9178CrossRefGoogle Scholar
  55. Mekalanos JJ, Collier RJ, Romig WR (1979a) Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP—ribosyl transfer. J Biol Chem 254:5849–58. 54Google Scholar
  56. Merritt EA, Sixma TK, Kalk KH, Van Zanten BAM, HoI WGJ (1994a) Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin ( CT ). Mol Microbiol 13: 745–753Google Scholar
  57. Merritt EA, Pronk SE, Sixma TK, Kalk KH, Van Zanten BAM, HoI WGJ (1994b) Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6-A resolution. FEBS Lett 337: 88–92PubMedCrossRefGoogle Scholar
  58. Merritt EA, Sarfaty S, Van den Akker F, L’Hoir C, Martial JA, Hol WGJ (1994e) Crystal structure of cholera toxin B-pentamer bound to receptor GM pentasaccharide. Protein Sci 3: 166–175PubMedCrossRefGoogle Scholar
  59. Merritt EA, Sarfaty S, Chang T-T, Palmer LM, Jobling MG, Holmes RK, HoI WGJ (1995a) Surprising leads for a cholera toxin receptor-binding antagonist: crystallographic studies of CTB mutants. Structure 3: 561–570PubMedCrossRefGoogle Scholar
  60. Merritt EA, Sarfaty S, Pizza M, Domenighini M, Rappuoli R, Hol WGJ (1995b) Mutation of a buried residue causes loss of activity but no conformational change in the heat-labile enterotoxin of Escherichia coli. Nat Struct Biol 2: 269–272PubMedCrossRefGoogle Scholar
  61. Merritt EA, Sarfaty S, Jobling MG, Chang T, Holmes RK, Hirst l’R. Hol WGJ (1997a) Structural studies of receptor binding by cholera toxin mutants. Protein Sci 6: 1516–1528Google Scholar
  62. Merritt EA, Sarfaty S, Feil IK, Hol WGJ (1997b) Structural foundation for the design of receptor antagonists targeting E. coli heat-labile enterotoxin. Structure 5: 1485–1499PubMedCrossRefGoogle Scholar
  63. Merritt EA, Kuhn P, Sarfaty S, Erbe J.L., Holmes, R.K., Hol, W.G.J (1998) 1.25-A-resolution refinement of the cholera-toxin B pentamer: evidence of peptide backbone strain at the receptor-binding site. J Mol Biol 282: 1043–1059Google Scholar
  64. Minke WE, Roach C, Hol WGJ, Verlinde CLMJ (1999) Structure-based exploration of the ganglioside GM1 binding sites of E. coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry 38: 5684–5692PubMedCrossRefGoogle Scholar
  65. Moss J, Manganiello VC, Vaughan M (1976) Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase. Proc Natl Acad Sci USA 73: 4424–4427PubMedCrossRefGoogle Scholar
  66. Moss J, Garrison S, Oppenheimer NJ, Richardson SH (1979) NAD-dependent ADP—ribosylation of arginine and proteins by Escherichia coli heat-labile enterotoxin. J Biol Chem 254: 6270–6272PubMedGoogle Scholar
  67. Murzin AG (1993) OB (oligonucleotide/oligosaccharide binding)-fold: common struc-tural and functional solution for non-homologous sequences. EMBO J 12: 861–867PubMedGoogle Scholar
  68. Narayanan J, Hartman PA, Graves DJ (1989). Assay of heat-labile enterotoxins by their ADP—ribosyltransferase activities. J Clinic Microbiol 27: 2414–2419Google Scholar
  69. Okamoto K, Okamoto K, Miyama A, Tsuji T, Honda T, Miwatani T (1988) Effect of substitution of glycine for arginine at position 146 of the Al subunit on biological activity of Escherichia coli heat-labile enterotoxin. J Bacteriol 170: 2208–2211PubMedGoogle Scholar
  70. Okamoto K,Takatori R, Okamoto K (1995). Effect of substitution for arginine residues near position 146 of the A subunit of Escherichia coli heat-labile enterotoxin on the holotoxin assembly. Microbiol Immunol 39 193–200Google Scholar
  71. Oppenheimer NJ (1978) Structural determination and stereospecificity of the choleragen-catalyzed reaction of NAD+ with guanidines. J Biol Chem 253: 4907–4910PubMedGoogle Scholar
  72. Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141.905–915Google Scholar
  73. Osborne JC, Jr Stanley SJ, Moss J (1985). Kinetic mechanism of two NAD—arginine ADP—ribosyltransferases: the soluble, salt-stimulated transferase from Turkey erythrocytes and choleragen, a toxin from Vibio cholerae. Biochemistry 24: 5235–5240PubMedCrossRefGoogle Scholar
  74. Overbye LJ, Sandkvist M, Bagdasarian M (1993) Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 132: 101–106PubMedCrossRefGoogle Scholar
  75. Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127: 1199–1215PubMedCrossRefGoogle Scholar
  76. Pelham HRB (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5: 1–23PubMedCrossRefGoogle Scholar
  77. Pickett CL, Twiddy EM, Belisle BW, Holmes RK (1986) Cloning of genes that encode a new heat-labile enterotoxin of Escherichia coli. J Bacteriol 165: 348–352PubMedGoogle Scholar
  78. Pickett CL, Weinstein DL, Holmes RK (1987) Genetics of type-IIa heat-labile enterotoxin of Escherichia coli: operon fusions, nucleotide sequence, and hybridization studies. J Bacteriol 169: 5180–5187PubMedGoogle Scholar
  79. Pickett CL, Twiddy EM, Coker C, Holmes RK (1989) Cloning, nucleotide sequence, and hybridization studies of the type-IIb heat-labile enterotoxin gene of Escherichia coli. J Bacteriol 171: 4945–4952PubMedGoogle Scholar
  80. Rabbani GH (1996) Mechanism and treatment of diarrhoea due to Vibrio cholerae and Escherichia coli: roles of drugs and prostaglandins. Dan Med Bull 43: 173–185PubMedGoogle Scholar
  81. Sandkvist M, Bagdasarian M (1993) Suppresion of temperature-sensitive assembly mutants of heat-labile enterotoxin B subunits. Mol Microbiol 10: 635–645PubMedCrossRefGoogle Scholar
  82. Sandvig K, Van Deurs B (1996) Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev 76: 949–966PubMedGoogle Scholar
  83. Saukkonen K, Burnette WN, Mar VL, Masure HR,Tuomanen EI (1992) Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci USA 89: 118–122PubMedCrossRefGoogle Scholar
  84. Seriwatana J, Echeverria P, Taylor DN, Rasrinaul L, Brown JE, Peiris,ISM, Clayton CL (1988) Type-II heat-labile enterotoxin-producing Escherichia coli isolated from animals and humans. Infect Immun 56: 1158–1161PubMedGoogle Scholar
  85. Sixma TK (1992) General introduction. In The three-dimensional structure of Escherichia coli heat-labile enterotoxin. pp 7–39, Thesis, University of Groningen, The NetherlandsGoogle Scholar
  86. Sixma TK, Pronk SE, Kalk KH, Wartna ES, Van Zanten BAM, Witholt B, Hol WGJ (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371–377PubMedCrossRefGoogle Scholar
  87. Sixma TK, Aguirre A, Terwisscha Van Scheltinga AC, Wartna ES, Kalk KH, Hol WGJ (1992a) Heat-labile enterotoxin crystal forms with variable A/B5 orientation. FEBS Lett 305: 81–85PubMedCrossRefGoogle Scholar
  88. Sixma TK, Pronk SE, Kalk KU, Van Zanten BAM, Berghuis AM, Hol WGJ (1992h) Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 355: 561–564PubMedCrossRefGoogle Scholar
  89. Sixma TK, Kalk KH, Van Zanten BAM, Dauter Z, Kingma J, Witholt H, Hol WGJ (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230: 890–918PubMedCrossRefGoogle Scholar
  90. Slama JT, Simmons AM (1989). Inhibition of NAD glycohydrolase and ADP—rihosyl transferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide. Biochemistry 28: 7688–7694PubMedCrossRefGoogle Scholar
  91. Smith HW, Halls S (1967) Studies on Escherichia coli enterotoxin. J Pathol Bacteriol 93: 531–543PubMedCrossRefGoogle Scholar
  92. Sofer A, Futerman AH (1995) Cationic amphiphilic drugs inhibit the internalization of cholera toxin to the golgi apparatus and the subsequent elevation of cyclic AMP. J Biol Chem 270: 12117–12122PubMedCrossRefGoogle Scholar
  93. Spangler BD (1992). Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56: 622–647PubMedGoogle Scholar
  94. Stein PE, Boodhoo, A, Tyrrell GJ, Brunton JL, Read RJ (1992) Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 355: 748–750PubMedCrossRefGoogle Scholar
  95. Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ (1994) The crystal structure of pertussis toxin. Structure 2: 45–57PubMedCrossRefGoogle Scholar
  96. Streatfield SJ, Sandkvist M, Sixma TK, Bagdasarian M, Hol WG. Hirst TR (1992) Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc Natl Acad Sci USA 89:12140–12144PubMedCrossRefGoogle Scholar
  97. Swaminathan S, Furey W, Pletcher J, Sax M (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359: 801–806PubMedCrossRefGoogle Scholar
  98. Tran D, Carpentier J-L, Sawano F, Gordon P, Orci L (1987) Ligand internalized through coated or non-coated invaginations follow a common intracellular pathway. Proc Natl Acad Sci USA 84: 7957–7961PubMedCrossRefGoogle Scholar
  99. Van den Akker F, Merritt EA, Pizza M, Domenighini M, Rappuoli R, Hol WGJ (1995) The Arg7Lys mutant of heat-labile enterotoxin exhibits great flexibility of active site loop 47–56 of the A subunit. Biochem 34: 10996–11004CrossRefGoogle Scholar
  100. Van den Akker F, Steensma E, Hol WGJ (1996a) Tumor marker disaccharide D-Galß1,3-Ga1NAc complexed to heat-labile enterotoxin from Escherichia coli. Protein Sci 5: 1184–1188PubMedCrossRefGoogle Scholar
  101. van den Akker F, Sarfaty S, Twiddy EM, Connell TD, Holmes RK, Hol WGJ (1996b) Crystal structure of a new heat-labile enterotoxin, LE-I1h. Structure 4: 665–678PubMedCrossRefGoogle Scholar
  102. Van den Akker F, Feil IK, Roach C, Platas AA, Merritt EA, Hol WGJ (1997) Crystal structure of a heat-labile enterotoxin from Escherichia coli with increased thermostability introduced by an engineered disulfide bond in the A subunit. Protein Sci 6: 2644–2649PubMedCrossRefGoogle Scholar
  103. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1914PubMedCrossRefGoogle Scholar
  104. Williamson RA, Martorell G, Carr MD, Murphy G, Docherty AJP, Freedman RB, Feeney J (1994) Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 33: 11745–11759PubMedCrossRefGoogle Scholar
  105. Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK, Lencer WI (1998) Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 141: 917–927PubMedCrossRefGoogle Scholar
  106. Xu Y, Barbanyon-Finck V, Barbieri JT (1994) Role of histidine 35 of the S1 subunit of pertussis toxin in the ADP—ribosylation of transducin. J Biol Chem 269: 9993–9999PubMedGoogle Scholar
  107. Zhang R-G, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995b) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251: 563–573PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • F. van den Akker
  • E. Merritt
  • W. G. J. Hol

There are no affiliations available

Personalised recommendations