Skip to main content

Structure and Function of Cholera Toxin and Related Enterotoxins

  • Chapter
Bacterial Protein Toxins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 145))

Abstract

Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) both cause diarrheal disease and represent a major health problem, especially among children in developing countries. Cholera is one of the great epidemic diseases; seven pandemics have been recorded in history, the last three of which are known to be due to V. cholerae serogroup O1. In 1992, a new cholera epidemic emerged, caused by the new serotype V. cholerae 0139 Bengal (Albert 1994). The new epidemic quickly spread through India and Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya KR, Passalacqua EF, Jones EY, Harlos K, Stuart DI, Brehm RD, Tranter HS (1994) Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature 367: 94–97

    Article  PubMed  CAS  Google Scholar 

  • Albert MJ (1994) Vihrio cholerae 0139 Bengal. J Clin Microbiol 32:2345–2349

    Google Scholar 

  • Amin T, Larkins A, James RFL, Hirst TR (1995) Generation of a monoclonal antibody that recognizes the amino-terminal decapeptide of the B-subunit of Escherichia coli heat-labile enterotoxin. J Biol Chem 270: 20143–20150

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens PIH, Majoul IV, Verveer PJ, Soling H-D, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB quaternary structure of cholera toxin. EMBO J 15: 4246–4253

    PubMed  CAS  Google Scholar 

  • Bell CE, Eisenberg D (1996) Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35: 1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Bell CE, Eisenberg D (1997) Crystal structure of nucleotide-free diphtheria toxin. Biochemistry 36: 481–488

    Article  PubMed  CAS  Google Scholar 

  • Celemin C, Anguita J, Naharro G, Suarez S (1994) Evidence that Escherichia coli isolated from the intestine of healthy pigs hybridize with LT-II, ST-lb and SLT-II DNA probes. Microb Pathog 16: 77–81

    Google Scholar 

  • Chang PP, Moss J, Twiddy EM, Holmes RK (1987) Type-II heat-labile enterotoxin of Escherichia coli activates adenylate cyclase in human fibroblasts by ADP— ribosylation. Infect Immun 55: 1854–1858

    PubMed  CAS  Google Scholar 

  • Cieplak W Jr, Mead DJ, Messer RJ, Grant CCR (1995) Site-directed mutagenic alteration of potential active-site residues of the A subunit of Escherichia coli heat-labile enterotoxin. J Biol Chem 270: 30545–30550

    Article  PubMed  CAS  Google Scholar 

  • Connell TD, Holmes RK (1992a) Molecular genetic analysis of ganglioside GDIbbinding activity of Escherichia coli type-IIa heat-labile enterotoxin by use of random and site-directed mutagenesis. Infect Immun 60: 63–70

    PubMed  CAS  Google Scholar 

  • Connell TD, Holmes RK (19926) Characterization of hybrid toxins produced in Escherichia coli by assembly of A and B polypeptides from type-1 and type-II heat-labile enterotoxins. Infect Immun 60: 1653–1661

    Google Scholar 

  • Connell TD, Holmes RK (1995) Mutational analysis of the ganglioside-hinding activity of the type-II Escherichia coli heat-labile enterotoxin LT-IIb. Mol Microbiol 16: 21–31

    Article  PubMed  CAS  Google Scholar 

  • Connell TD, Metzger DJ, Wang M, Jobling MG, Holmes RK (1995) Initial studies of the structural signal for extracellular transport of cholera toxin and other proteins recognized by Vibrio cholerae. Infect Immun 63: 4091–4098

    PubMed  CAS  Google Scholar 

  • De SN (1959) Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533–1534

    Article  PubMed  CAS  Google Scholar 

  • Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP—ribosylating toxins. Mol Microbiol 14: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Donta ST, Tomicic T, Holmes RK (1992) Binding of class-II Escherichia coli enterotoxins to mouse YI and intestinal cells. Infect Immun 60: 2870–2873

    PubMed  CAS  Google Scholar 

  • Feil IK, Reddy R, de Haan L, Merritt EA, van den Akker F, Storm DR, Hol WGJ (1996) Protein engineering studies of A-chain loop 47–56 of Escherichia coli heatlabile enterotoxin point to a prominent role of this loop for cytotoxicity. Mol Microbiol 20: 823–832

    Article  PubMed  CAS  Google Scholar 

  • Feil IK, Platas AA, Van den Akker F, Reddy R, Merritt EA, Storm DR, HoI WGJ (1998) Stepwise transplantation of an active site loop between heat-labile enterotoxins LT-II and LT-I and characterization of the obtained hybrid toxins. Protein Eng 11: 1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA, LoSpalluto JJ (1969) Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J Exp Med 130: 185–202

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA, Boesman-Finkelstein M, Holt P (1983) Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc Natl Acad Sci USA 80: 1092–1095

    Article  PubMed  CAS  Google Scholar 

  • Fraser ME, Chernaia MM, Kozlov YV, James MNG (1994) Crystal structure of the holotoxin from Shigella dysenteriae at 2.5-A resolution. Nat Struct Biel 1: 59–64

    Article  CAS  Google Scholar 

  • Fukuta S, Magnani JL,Twiddy EM, Holmes RK. Ginsburg V (1988) Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia celi heat-labile enterotoxins LTh-1, LT-IIa, and LT-IIb. Infect Immun 56: 1748–1753

    PubMed  CAS  Google Scholar 

  • Galloway TS, Van Heyningen S (1987) Binding of NAD+ by cholera toxin. Biochem J 244: 225–230

    PubMed  CAS  Google Scholar 

  • Goins B, Freire E (1988) Thermal stability of intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside GM1. Biochemistry 27: 2046–2052

    Article  PubMed  CAS  Google Scholar 

  • Green BA, Neill RJ, Ruyechan WT, Holmes RK (1983) Evidence that a new enterotoxin of Escherichia coli which activates adenylate cyclase in eukaryotic target cells is not plasmid mediated. Infect Immun 41: 383–390

    PubMed  CAS  Google Scholar 

  • Guth BEC, Pickett CL, Twiddy EM, Holmes RK, Gomes TAT, Lima AAM, Guerrant RL, Franco B DGM, Trabulsi LR (1986a) Production of type-II heat-labile enterotoxin by Escherichia coli isolated from food and human feces. Infect Immun 59: 587–589

    Google Scholar 

  • Guth BEC, Twiddy EM, Trabulsi LR, Holmes RK (1986b) Variation in chemical properties and antigenic determinants among type-II heat-labile enterotoxins of Escherichia coli. Infect Immun 54: 529–536

    PubMed  CAS  Google Scholar 

  • Hardy SJS, Holmgren J, Johansson S, Sanchez J, Hirst TR (1988) Coordinated assembly of multisubunit proteins: oligomerization of bacterial enterotoxins in vivo and in vitro. Proc Natl Acad Sci USA 85: 7109–7113

    Article  PubMed  CAS  Google Scholar 

  • Hirst TR, Holmgren J (1987) Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci USA 84: 7418–7422

    Article  PubMed  CAS  Google Scholar 

  • Hirst TR, Sanchez J, Kaper JB, Hardy SJS, Holmgren J (1984) Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc Natl Acad Sci USA 81: 7752–7756

    Article  PubMed  CAS  Google Scholar 

  • Hofstra H, Witholt B (1984). Kinetics of synthesis, processing, and membrane transport of heat-labile enterotoxin, a periplasmic protein in Escherichia coli. J Biol Chem 259: 15182–15187

    PubMed  CAS  Google Scholar 

  • Hol WGJ (1986) Protein crystallography and computer graphics toward rational drug design. Angewandte Chemie (Int Ed) 25: 767–778

    Article  Google Scholar 

  • Hol WGJ, Sixma TK, Merritt EA (1995) Structure and function of E. coli heat-labile enterotoxin and cholera toxin B pentamer. In Bacterial toxins and virulence factors in disease. Handbook of natural toxins, Vol 8. ( Moss J, Iglewski B, Vaughan M, Tu AT, eds), pp 185–223, Marcel Dekker, Inc., New York, USA

    Google Scholar 

  • Holmes RK, Twiddy EM, Pickett CL (1986) Purification and characterization of type-II heat-labile enterotoxin of Escherichia coli. Infect Immun 53: 464–473

    PubMed  CAS  Google Scholar 

  • Holmgren J (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature 292: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Holmgren J (1994). Receptors for cholera toxin and Escherichia coli heat-labile enterotoxin revisited. Prog in Brain Res 101: 163–177

    Article  CAS  Google Scholar 

  • Holmgren J, Svennerholm A,-M (1992) Bacterial enteric infections and vaccine development. Gastroenterol. Clin North Am 21: 283–302

    CAS  Google Scholar 

  • Hovey B, Verlinde CLMJ, Merritt EA, Hol WGJ (1999) Structure-based discovery of a pore-binding ligand: towards assembly inhibitors for cholera and related AB, toxins. J Mol Biol 285: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Jobling MG, Holmes RK (1991) Analysis of structure and function of the B subunit of cholera toxin by the use of site-directed mutagenesis. Mol Microbiol 5: 1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Kaslow HR, Platter B, Takada T, Moss J, Mar VL, Burnette WN (1992) Effects of site-directed mutagenesis on cholera toxin Al subunit ADP—ribosyltransferase activity. In Bacterial protein toxins. Zbl. Bakt. Suppl. 23. (Witholt et al., eds), pp 197–198, Gustav Fisher, Stuttgart, Jena, New York

    Google Scholar 

  • Kharadia SV, Graves DJ (1987) Relationship of phosphorylation and ADP—ribosyla-tion using a synthetic peptide as a model substrate. J Biol Chem 262: 17379–17383

    PubMed  CAS  Google Scholar 

  • Koch R (1884) An address on cholera and its bacillus. Br Med J 2: 403–407

    Article  PubMed  CAS  Google Scholar 

  • Lai C-Y, Cancedda F, Duffy LK (1981) ADP—ribosyltransferase activity of cholera toxin polypeptide Al and the effect of limited trypsinolysis. Biochem. Biophys Res Commun 102: 1021–1027

    Google Scholar 

  • Lai C-Y, Xia Q-C, Salotra PT (1983) Location and amino acid sequence around the ADP—ribosylation site in cholera toxin active subunit AI. Biochem. Biophys Res Commun 116: 341–348

    Google Scholar 

  • Larew JS-A, Peterson JE, Graves DJ (1991). Determination of the kinetic mechanism of arginine-specific ADP—ribosyltransferases using a high performance liquid chromatographic assay. J Biol Chem 266: 52–57

    PubMed  CAS  Google Scholar 

  • Lee C-M, Chang PP, Tsai S-C, Adamik R, Price SR, Kunz BC, Moss J, Twiddy EM, Holmes RK (1991) Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-k D guanine nucleotide-binding proteins. J Clin Invest 87: 1780–1786

    Article  PubMed  CAS  Google Scholar 

  • Lencer WI, Constable C, Moe S, Jobling MG, Webb HM, Ruston S, Madara JL, Hirst TR, Holmes RK (1995b) Targeting of cholera toxin and Escherichia coli heat-labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol 131: 951–962

    Article  PubMed  CAS  Google Scholar 

  • Li M, Dyda F, Benhar I, Pastan I, Davies DR (1995) The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin. Proc Natl Acad Sci USA 92: 9308–9312

    Article  PubMed  CAS  Google Scholar 

  • Li M, Dyda F, Benhar I, Pastan I, Davies DR (1996) Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADPribosylation. Proc Natl Acad Sci USA 93: 6902–6906

    Article  PubMed  CAS  Google Scholar 

  • Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL, Read R.I (1998) Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochem 37: 1777–1788

    Article  CAS  Google Scholar 

  • Locht C, Antoine R (1995) A proposed mechanism of ADP—ribosylation catalyzed by the pertussis toxin S1 subunit. Biochimie 77: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Loesberg C, Van Rooij H, Smets LA (1990). Meta-iodohenzylguanidine ( MIBG), a novel high-affinity substrate for cholera toxin that interferes with cellular mono(ADP—ribosylation ). Biochim Biophys Acta 1037: 92–99

    Google Scholar 

  • Majoul IV, Bastiaens PIH, Söling H-D (1996) Transport of an external Lys-Asp-GluLeu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: Studies with cholera toxin in Vero cells. J Cell Biol 133: 777–789

    Google Scholar 

  • McCann JA, Mertz JA, Czworkowski J, Picking WD (1998) Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. Biochemistry 36: 9169–9178

    Article  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1979a) Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP—ribosyl transfer. J Biol Chem 254:5849–58. 54

    Google Scholar 

  • Merritt EA, Sixma TK, Kalk KH, Van Zanten BAM, HoI WGJ (1994a) Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin ( CT ). Mol Microbiol 13: 745–753

    Google Scholar 

  • Merritt EA, Pronk SE, Sixma TK, Kalk KH, Van Zanten BAM, HoI WGJ (1994b) Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6-A resolution. FEBS Lett 337: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Sarfaty S, Van den Akker F, L’Hoir C, Martial JA, Hol WGJ (1994e) Crystal structure of cholera toxin B-pentamer bound to receptor GM pentasaccharide. Protein Sci 3: 166–175

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Sarfaty S, Chang T-T, Palmer LM, Jobling MG, Holmes RK, HoI WGJ (1995a) Surprising leads for a cholera toxin receptor-binding antagonist: crystallographic studies of CTB mutants. Structure 3: 561–570

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Sarfaty S, Pizza M, Domenighini M, Rappuoli R, Hol WGJ (1995b) Mutation of a buried residue causes loss of activity but no conformational change in the heat-labile enterotoxin of Escherichia coli. Nat Struct Biol 2: 269–272

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Sarfaty S, Jobling MG, Chang T, Holmes RK, Hirst l’R. Hol WGJ (1997a) Structural studies of receptor binding by cholera toxin mutants. Protein Sci 6: 1516–1528

    CAS  Google Scholar 

  • Merritt EA, Sarfaty S, Feil IK, Hol WGJ (1997b) Structural foundation for the design of receptor antagonists targeting E. coli heat-labile enterotoxin. Structure 5: 1485–1499

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Kuhn P, Sarfaty S, Erbe J.L., Holmes, R.K., Hol, W.G.J (1998) 1.25-A-resolution refinement of the cholera-toxin B pentamer: evidence of peptide backbone strain at the receptor-binding site. J Mol Biol 282: 1043–1059

    Google Scholar 

  • Minke WE, Roach C, Hol WGJ, Verlinde CLMJ (1999) Structure-based exploration of the ganglioside GM1 binding sites of E. coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry 38: 5684–5692

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Manganiello VC, Vaughan M (1976) Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase. Proc Natl Acad Sci USA 73: 4424–4427

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Garrison S, Oppenheimer NJ, Richardson SH (1979) NAD-dependent ADP—ribosylation of arginine and proteins by Escherichia coli heat-labile enterotoxin. J Biol Chem 254: 6270–6272

    PubMed  CAS  Google Scholar 

  • Murzin AG (1993) OB (oligonucleotide/oligosaccharide binding)-fold: common struc-tural and functional solution for non-homologous sequences. EMBO J 12: 861–867

    PubMed  CAS  Google Scholar 

  • Narayanan J, Hartman PA, Graves DJ (1989). Assay of heat-labile enterotoxins by their ADP—ribosyltransferase activities. J Clinic Microbiol 27: 2414–2419

    CAS  Google Scholar 

  • Okamoto K, Okamoto K, Miyama A, Tsuji T, Honda T, Miwatani T (1988) Effect of substitution of glycine for arginine at position 146 of the Al subunit on biological activity of Escherichia coli heat-labile enterotoxin. J Bacteriol 170: 2208–2211

    PubMed  CAS  Google Scholar 

  • Okamoto K,Takatori R, Okamoto K (1995). Effect of substitution for arginine residues near position 146 of the A subunit of Escherichia coli heat-labile enterotoxin on the holotoxin assembly. Microbiol Immunol 39 193–200

    Google Scholar 

  • Oppenheimer NJ (1978) Structural determination and stereospecificity of the choleragen-catalyzed reaction of NAD+ with guanidines. J Biol Chem 253: 4907–4910

    PubMed  CAS  Google Scholar 

  • Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141.905–915

    Google Scholar 

  • Osborne JC, Jr Stanley SJ, Moss J (1985). Kinetic mechanism of two NAD—arginine ADP—ribosyltransferases: the soluble, salt-stimulated transferase from Turkey erythrocytes and choleragen, a toxin from Vibio cholerae. Biochemistry 24: 5235–5240

    Article  PubMed  CAS  Google Scholar 

  • Overbye LJ, Sandkvist M, Bagdasarian M (1993) Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 132: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127: 1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Pickett CL, Twiddy EM, Belisle BW, Holmes RK (1986) Cloning of genes that encode a new heat-labile enterotoxin of Escherichia coli. J Bacteriol 165: 348–352

    PubMed  CAS  Google Scholar 

  • Pickett CL, Weinstein DL, Holmes RK (1987) Genetics of type-IIa heat-labile enterotoxin of Escherichia coli: operon fusions, nucleotide sequence, and hybridization studies. J Bacteriol 169: 5180–5187

    PubMed  CAS  Google Scholar 

  • Pickett CL, Twiddy EM, Coker C, Holmes RK (1989) Cloning, nucleotide sequence, and hybridization studies of the type-IIb heat-labile enterotoxin gene of Escherichia coli. J Bacteriol 171: 4945–4952

    PubMed  CAS  Google Scholar 

  • Rabbani GH (1996) Mechanism and treatment of diarrhoea due to Vibrio cholerae and Escherichia coli: roles of drugs and prostaglandins. Dan Med Bull 43: 173–185

    PubMed  CAS  Google Scholar 

  • Sandkvist M, Bagdasarian M (1993) Suppresion of temperature-sensitive assembly mutants of heat-labile enterotoxin B subunits. Mol Microbiol 10: 635–645

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Van Deurs B (1996) Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev 76: 949–966

    PubMed  CAS  Google Scholar 

  • Saukkonen K, Burnette WN, Mar VL, Masure HR,Tuomanen EI (1992) Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci USA 89: 118–122

    Article  PubMed  CAS  Google Scholar 

  • Seriwatana J, Echeverria P, Taylor DN, Rasrinaul L, Brown JE, Peiris,ISM, Clayton CL (1988) Type-II heat-labile enterotoxin-producing Escherichia coli isolated from animals and humans. Infect Immun 56: 1158–1161

    PubMed  CAS  Google Scholar 

  • Sixma TK (1992) General introduction. In The three-dimensional structure of Escherichia coli heat-labile enterotoxin. pp 7–39, Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, Wartna ES, Van Zanten BAM, Witholt B, Hol WGJ (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371–377

    Article  PubMed  CAS  Google Scholar 

  • Sixma TK, Aguirre A, Terwisscha Van Scheltinga AC, Wartna ES, Kalk KH, Hol WGJ (1992a) Heat-labile enterotoxin crystal forms with variable A/B5 orientation. FEBS Lett 305: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Sixma TK, Pronk SE, Kalk KU, Van Zanten BAM, Berghuis AM, Hol WGJ (1992h) Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 355: 561–564

    Article  PubMed  CAS  Google Scholar 

  • Sixma TK, Kalk KH, Van Zanten BAM, Dauter Z, Kingma J, Witholt H, Hol WGJ (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230: 890–918

    Article  PubMed  CAS  Google Scholar 

  • Slama JT, Simmons AM (1989). Inhibition of NAD glycohydrolase and ADP—rihosyl transferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide. Biochemistry 28: 7688–7694

    Article  PubMed  CAS  Google Scholar 

  • Smith HW, Halls S (1967) Studies on Escherichia coli enterotoxin. J Pathol Bacteriol 93: 531–543

    Article  PubMed  CAS  Google Scholar 

  • Sofer A, Futerman AH (1995) Cationic amphiphilic drugs inhibit the internalization of cholera toxin to the golgi apparatus and the subsequent elevation of cyclic AMP. J Biol Chem 270: 12117–12122

    Article  PubMed  CAS  Google Scholar 

  • Spangler BD (1992). Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56: 622–647

    PubMed  CAS  Google Scholar 

  • Stein PE, Boodhoo, A, Tyrrell GJ, Brunton JL, Read RJ (1992) Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 355: 748–750

    Article  PubMed  CAS  Google Scholar 

  • Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ (1994) The crystal structure of pertussis toxin. Structure 2: 45–57

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Sandkvist M, Sixma TK, Bagdasarian M, Hol WG. Hirst TR (1992) Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc Natl Acad Sci USA 89:12140–12144

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Furey W, Pletcher J, Sax M (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359: 801–806

    Article  PubMed  CAS  Google Scholar 

  • Tran D, Carpentier J-L, Sawano F, Gordon P, Orci L (1987) Ligand internalized through coated or non-coated invaginations follow a common intracellular pathway. Proc Natl Acad Sci USA 84: 7957–7961

    Article  PubMed  CAS  Google Scholar 

  • Van den Akker F, Merritt EA, Pizza M, Domenighini M, Rappuoli R, Hol WGJ (1995) The Arg7Lys mutant of heat-labile enterotoxin exhibits great flexibility of active site loop 47–56 of the A subunit. Biochem 34: 10996–11004

    Article  Google Scholar 

  • Van den Akker F, Steensma E, Hol WGJ (1996a) Tumor marker disaccharide D-Galß1,3-Ga1NAc complexed to heat-labile enterotoxin from Escherichia coli. Protein Sci 5: 1184–1188

    Article  PubMed  Google Scholar 

  • van den Akker F, Sarfaty S, Twiddy EM, Connell TD, Holmes RK, Hol WGJ (1996b) Crystal structure of a new heat-labile enterotoxin, LE-I1h. Structure 4: 665–678

    Article  PubMed  CAS  Google Scholar 

  • Van den Akker F, Feil IK, Roach C, Platas AA, Merritt EA, Hol WGJ (1997) Crystal structure of a heat-labile enterotoxin from Escherichia coli with increased thermostability introduced by an engineered disulfide bond in the A subunit. Protein Sci 6: 2644–2649

    Article  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1914

    Article  PubMed  CAS  Google Scholar 

  • Williamson RA, Martorell G, Carr MD, Murphy G, Docherty AJP, Freedman RB, Feeney J (1994) Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 33: 11745–11759

    Article  PubMed  CAS  Google Scholar 

  • Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK, Lencer WI (1998) Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 141: 917–927

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Barbanyon-Finck V, Barbieri JT (1994) Role of histidine 35 of the S1 subunit of pertussis toxin in the ADP—ribosylation of transducin. J Biol Chem 269: 9993–9999

    PubMed  CAS  Google Scholar 

  • Zhang R-G, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995b) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251: 563–573

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Akker, F., Merritt, E., Hol, W.G.J. (2000). Structure and Function of Cholera Toxin and Related Enterotoxins. In: Aktories, K., Just, I. (eds) Bacterial Protein Toxins. Handbook of Experimental Pharmacology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05971-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05971-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08540-6

  • Online ISBN: 978-3-662-05971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics