Superantigenic Toxins

  • B. Fleischer
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 145)

Summary

“Superantigens” is the designation for a heterogeneous group of proteins that use a common, extremely efficient mechanism of T-lymphocyte stimulation. They bind to major histocompatibility complex (MHC) class-II molecules on antigen-presenting cells (APCs) and to various parts of the T cell receptor (TCR) on CD4+ and CD8+ T cells, thus mimicking the recognition of specific antigens. The prototype superantigen is staphylococcal enterotoxin (SE) B, member of a family of genetically related pyrogenic exotoxins (PET) produced by Staphylococcus aureus and Streptococcus pyogenes. This principle of T-lymphocyte stimulation has evolved independently because of infectious pathogens.

Investigations by a number of laboratories have elucidated the unusual mechanism of T-lymphocyte stimulation and have shown that the pathogenic effects of these molecules are due to their ability to stimulate a large fraction of T cells. Consequences of confronting the body with superantigenic toxins are shock (mediated by a massive liberation of cytokines from cells of the immune system) and immunosuppression, probably caused by an uncoordinated activation of the immune system and a massive deletion of T cells.

Keywords

Arthritis Manifold Tuberculosis Histamine Disulfide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe J, Forrester J, Nakahara T, Lafferty JA, Kotzin BL, Leung DY (1991) Selective stimulation of human T cells with streptococcal erythrogenic toxins A and B. J Immunol 146: 3747–3750PubMedGoogle Scholar
  2. Abe J, Kotzin BL, Jujo K, Melish ME, Glode MP, Kohsaka T, Leung DY (1992) Selective expansion of T cells expressing T-cell receptor variable regions Vß2 and Vß8 in Kawasaki disease. Proc Natl Acad Sci USA 89: 4066–4070PubMedCrossRefGoogle Scholar
  3. Abe J, Onimaru M, Matsumoto S, Noma S, Baba K, Ito Y, Kohsaka T,Takeda T (1997) Clinical role for a superantigen in Yersinia pseudotuberculosis infection. J Clin Invest 99: 1823–1830CrossRefGoogle Scholar
  4. Abrahmsen L, Dohlsten M, Segren S, Bjork P, Jonsson E, Kalland T (1995) Characterization of two distinct MHC class-II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J 14: 2978–2986PubMedGoogle Scholar
  5. Acharya KR, Passalacqua EF, Jones EY, Harlos K, Stuart DI, Brehm RD, Tranter HS (1994) Structural basis of superantigen action inferred from crystal structure of toxic-shock-syndrome toxin 1. Nature 367: 94–7PubMedCrossRefGoogle Scholar
  6. Al-Daccak R, Mehindate K, Damdoumi F, Etongue-Mayer P, Nilsson H, Antonsson P, Sundstrom M, Dohlsten M, Sekaly RP, Mourad W (1998) Staphylococcal enterotoxin D is a promiscuous superantigen offering multiple modes of interactions with the MHC class-II receptors. J Immunol 160: 225–232PubMedGoogle Scholar
  7. Alber G, Scheuber PH, Reck B, Sailer-Kramer B, Hartman A, Hammer DK (1989) Role of substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in unsensitized monkeys. J Allergy Clin Immunol 84: 880–885PubMedCrossRefGoogle Scholar
  8. Alber G, Hammer DK, Fleischer B (1990) Relationship between enterotoxic and T lymphocyte stimulating activity of staphylococcal enterotoxin B. J Immunol 144: 4501–4506PubMedGoogle Scholar
  9. Alouf JE, Knöll H, Köhler W (1991) The family of mitogenic, shock-inducing and superantigenic toxins from staphylococci and streptococci. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic Press, London, pp 147–186Google Scholar
  10. Bailey CJ, Redpath MB (1992) The esterolytic activity of epidermolytic toxins. Biochem J 284: 177–180PubMedGoogle Scholar
  11. Bette M, Schäfer MK, Van Rooijen N, Weihe E, Fleischer B (1993) Distribution and kinetics of superantigen-induced cytokine gene expression in mouse spleen. J Exp Med 178: 1531–1539PubMedCrossRefGoogle Scholar
  12. Bohach G (1997) Staphylococcal enterotoxins B and C. In: DM Leung, B Huber, P Schlievert (eds) Superantigens. Marcel Dekker, New York, pp 167–198Google Scholar
  13. Boitel B, Ermontal M, Panina Bordignon P, Mariuzza RA, Lanzavecchia A, Acuto O (1992) Preferential Vß-gene usage and lack of junctional sequence conservation among human T cell receptors specific for a tetanus toxin-derived peptide: evidence for a dominant role of a germline-encoded V region in antigen/MHC recognition. J Exp Med 175: 765–778PubMedCrossRefGoogle Scholar
  14. Bowness P, Moss PA, Tranter H, Bell JI, McMichael AJ (1992) Clostridium pertringens enterotoxin is a superantigen reactive with human T cell receptors V/36.9 and Vß22. J Exp Med 176: 893–896PubMedCrossRefGoogle Scholar
  15. Braun, MA, Gerlach, D, Hartwig, U, Ozegowski, JH, Romagné, F, Carrel, S, Köhler, W, Fleischer, B 1993. Stimulation of human T cells by streptococcal “superantigens” erythrogenic toxins (scarlet fever toxins). J Immunol 150: 2457–2467PubMedGoogle Scholar
  16. Choi YW, Lafferty JA, Clements JR, Todd JK, Gelfand EW, Kappler J, Marrack P, Kotzin BL (1990a) Selective expansion of T cells expressing Vß2 in toxic shock syndrome. J Exp Med 172: 981–984PubMedCrossRefGoogle Scholar
  17. Choi YW, Herman A, DiGiusto D, Wade T, Marrack P, Kappler J (1990b) Residues of the variable region of the T-cell-receptor ß-chain that interact with S. aurcus toxin superantigens. Nature 346: 471–473PubMedCrossRefGoogle Scholar
  18. Cole BC, Atkin CL (1991) The Mycoplasma arthritidis T cell mitogen MAM: a model superantigen. Immunol Today 12: 271–276PubMedCrossRefGoogle Scholar
  19. Cole BC, Griffiths MM (1993) Triggering and exacerbation of autoimmune arthritis by the Mycoplasma arthritidis superantigen MAM. Arthritis Rheum. 36: 994–1002PubMedCrossRefGoogle Scholar
  20. Cole BC, Wells DJ (1990) Immunosuppressive properties of the Mycoplasma arthritidis T-cell mitogen in vivo: inhibition of proliferative responses to ‘I’-cell mitogens. Infect Immun 58: 228–236PubMedGoogle Scholar
  21. Cole BC, Kartchner DR, Wells DJ (1990) Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis (MAM). VIII. Selective activation of T cells expressing distinct Vß T cell receptors from various strains of mice by the “superantigen” MAM. J Immunol 144: 425–431Google Scholar
  22. Cole BC, Knudtson KL, Oliphant A, Sawitzke Al), Pole A, Manohar M, Benson LS, Ahmed E. Atkin CL (1996) The sequence of the Mycoplasma arthritidis superantigen, MAM: identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. J Exp Med 183: 1105–1110PubMedCrossRefGoogle Scholar
  23. Degnan B, Taylor J, Hawkes C, O’Shea U, Smith J, Robinson JH, Kehoe MA, Boylston A, Goodacre JA (1997) Streptococcus pyogenes type-5 M protein is an antigen, not a superantigen, for human T cells. Hum Immunol 53: 206–215Google Scholar
  24. Denkers EY, Caspar P, Sher A (1994) Toxoplasma gondii possesses a superantigen activity that selectively expands murine T cell receptor Vß5-bearing CD8+ lymphocytes. J Exp Med 180: 985–994PubMedCrossRefGoogle Scholar
  25. Deresiewicz RL, Woo J, Chan M, Finberg RW, Kasper DL (1994) Mutations affecting the activity of toxic shock syndrome toxin-1. Biochemistry 33: 12844–12851PubMedCrossRefGoogle Scholar
  26. Dohlsten M, Hedlund G, Segren S, Lando PA, Herrmann T, Kelly AP, Kalland T (1991 a) Human MHC class II-colon carcinoma cells present staphylococcal superantigens to cytotoxic T lymphocytes: evidence for a novel enterotoxin receptor. Eur J Immunol 121: 131–135Google Scholar
  27. Dohlsten M, Hedlund G, Akerblom E, Lando PA, Kalland T (1991b) Monoclonalantibody-targeted superantigens: a different class of anti-tumor agents. Proc Natl Acad Sci USA 88: 9287–9291PubMedCrossRefGoogle Scholar
  28. Esaki Y, Fukui Y, Sudo T, Yamamoto K, Inamitsu T, Nishimura RD, Hirokawa K, Kimura A, Sasazuki R (1994) Role of human major histocompatibility complex DQ molecules in superantigenicity of streptococcus-derived protein. Infect Immun 62: 1228–1235PubMedGoogle Scholar
  29. Fagin U, Grötzinger J, Fleischer B, Gerlach D, Wollmer A, Kirchner H, Rink L (1998) The superantigen SPEA forms covalently linked homodimers. SubmittedGoogle Scholar
  30. Fields BA, Malchiodi EL, Li H, Ysern X, Stauffacher CV, Schlievert PM, Karjalainen K, Mariuzza RA (1996) Crystal structure of a T-cell receptor ß-chain complexed with a superantigen. Nature 384: 188–192PubMedCrossRefGoogle Scholar
  31. Fischer H, Dohlsten M, Lindvall M, Sjögren O, Carlsson R (1989) Binding of staphy- lococcal enterotoxin A to HLA-DR on B cell lines. J Immunol 142: 3151–3157PubMedGoogle Scholar
  32. Fleischer B, Bailey CJ (1991) Recombinant epidermolytic (exfoliative) toxin a of Staphylococcus aureus is not a superantigen. Med Microbiol Immunol 180: 273–278CrossRefGoogle Scholar
  33. Fleischer B, Hartwig U (1992) T-lymphocyte stimulation by microbial superantigens. Chem Immunol 55: 36–64PubMedCrossRefGoogle Scholar
  34. Fleischer B, Mittrücker HW (1991) Evidence for T cell receptor-HLA class-II molecule interaction in the response to superantigenic bacterial toxins. Eur J Immunol 21: 1331–1333PubMedCrossRefGoogle Scholar
  35. Fleischer B, Schrezenmeier H (1988) T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for MHC class-II molecules on accessory or target cells. J Exp Med 167: 1697–1708Google Scholar
  36. Fleischer B, Schrezenmeier H, Conradt P (1989) T cell stimulation by staphylococcal enterotoxins. Role of class II molecules and T cell surface structures. Cell Immunol 119: 92–101Google Scholar
  37. Fleischer B, Gerardy-Schahn R, Metzroth B, Carrel S, Gerlach D, Köhler W (1991) A conserved mechanism of T cell stimulation by microbial toxins. Evidence for different affinities of T cell receptor-toxin interaction. J Immunol 146: 11–17Google Scholar
  38. Fleischer, B., Schmidt, K.H., Gerlach, D., Köhler, W (1992) Separation of T cell stimulating activity from streptococcal M protein. Infect Immun 60: 1767–1770PubMedGoogle Scholar
  39. Fleischer B, Gerlach D, Fuhrmann A, Schmidt KH (1995) Superantigens and pseudosuperantigens of Gram-positive cocci. Med Microbiol Immunol 184: 1–8PubMedCrossRefGoogle Scholar
  40. Fleischer B, Necker A, Leget C, Malissen B, Romagné F (1996) Reactivity of mouse T cell hybridomas expressing human Vß gene segments with staphylococcal and streptococcal superantigens. Infect Immun 64: 987–994PubMedGoogle Scholar
  41. Fraser JD (1989) High affinity binding of staphylococcal enterotoxins A and B to HLADR. Nature 339: 221–223PubMedCrossRefGoogle Scholar
  42. Fraser JD, Urban RG, Strominger JL, Robinson H (1992) Zinc regulates the function of two superantigens. Proc Natl Acad Sci USA 89: 5507–5511PubMedCrossRefGoogle Scholar
  43. Fuleihan R, Mourad W, Geha RS, Chatila T (1991) Engagement of MHC class-II molecules by the staphylococcal exotoxin TSST-1 delivers a progression signal to mitogen activated B cells. J Immunol 146: 1661–1666PubMedGoogle Scholar
  44. Galelli A, Truffa Bachi P (1993) Unica dioica agglutinin. A superantigenic lectin from stinging-nettle rhizome. J Immunol 151: 1821–1831Google Scholar
  45. Gerlach D, Reichardt W, Fleischer B, Schmidt K-H (1994) Separation of mitogenic and pyrogenic activities from so-called erythrogenic toxin type B (streptococcal proteinase). Zbl Bakteriol 280: 507–514CrossRefGoogle Scholar
  46. Gerlach D, Wagner M, Fleischer B, Vettermann S, Reichardt W (1999) Biochemical purification and characterization of a basic superantigen of Streptococcus pyogenes. SubmittedGoogle Scholar
  47. Goshorn SC, Schlievert PM (1989) Bacteriophage association of streptococcal pyrogenic exotoxin type C. J Bacteriol 171: 3068–3073PubMedGoogle Scholar
  48. Harris TO, Grossman D, Kappler JW, Marrack P, Rich RR, Betley MJ (1993) Lack of complete correlation between emetic and T-cell-stimulatory activities of staphylococcal enterotoxins. Infect Immun 61: 3175–3183PubMedGoogle Scholar
  49. Held W, Acha-Orbea H, MacDonald HR, Waanders GA (1994) Superantigens and retroviral infection: insights from mouse mammary tumor virus. Immunol Today 15: 184–190PubMedCrossRefGoogle Scholar
  50. Herrmann T, Acolla RS, MacDonald HR (1989) Different staphylococcal enterotoxins bind preferentially to distinct MHC class-II isotypes. Eur J Immunol 19: 2171–2174PubMedCrossRefGoogle Scholar
  51. Herrmann T, Romero P, Sartoris S, Paiola F, Accolla RS, Maryanski JL, MacDonald HR (1991) Staphylococcal enterotoxin-dependent lysis of MHC-class-II-negative target cells by cytolytic T lymphocytes. J Immunol 146: 2504–2512PubMedGoogle Scholar
  52. Herz U, Bunikowski R, Renz H (1998) Role of T cells in atopic dermatitis. New aspects on the dynamics of cytokine production and the contribution of bacterial super-antigens. Int Arch Allergy Immunol 115: 179–190Google Scholar
  53. Ho G, Campbell WH, Bergdoll MS, Carlson E (1989) Production of a toxic shock syndrome toxin variant by Staphylococcus aureus strains associated with sheep, goats. and cows. J Clin Microbiol 27: 1946–1948PubMedGoogle Scholar
  54. Hudson KR, Tiedemann RE, Urban RG, Lowe SC, Strominger JL, Fraser JD (1995) Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class 11. J Exp Med 182: 711–720PubMedCrossRefGoogle Scholar
  55. Hufnagle WO,Tremaine MT, Betley MJ (1991) The carboxyl-terminal region of staphylococcal enterotoxin type A is required for a fully active molecule. Infect Immun 59: 2126–2134Google Scholar
  56. landolo JJ, Chapes SK (1997) The exfoliative toxins of Staphylococcus aureus. In: DM Leung, B Huber, P Schlievert (eds) Superantigens. Marcel Dekker, New York, pp 231–255Google Scholar
  57. Ito Y, Abe J, Yoshino K, Takeda T, Kohsaka (1995) Sequence analysis of the gene for a novel superantigen produced by Yersinia pseudotuberculosis and expression of the recombinant protein. J Immunol 154: 5896–5906Google Scholar
  58. Iwasaki M, Igarashi H, Hinuma Y, Yutsudo T (1993) Cloning, characterization and over-expression of a Streptococcus pyogenes gene encoding a new type of mitogenic factor. FEBS Lett 331: 187–192PubMedCrossRefGoogle Scholar
  59. Iwasaki M, Igarashi H, Yutsudo T (1997) Mitogenic factor secreted by Streptococcus pyogenes is a heat-stable nuclease requiring His122 for activity. Microbiology 143: 2449–2455PubMedCrossRefGoogle Scholar
  60. Janeway CA, Yagi J, Conrad PJ, Katz ME, Jones B, Vroegop S, Buxser S (1989) T cell responses to Mk and to bacterial proteins that mimick its behaviour. Immunol Rev 107: 61–68PubMedCrossRefGoogle Scholar
  61. Jardetzky TS, Brown JH, Gorga JC, Stern 1..1, Urban RG. Chi YI, Stauffacher C, Strominger JL, Wiley DC (1994)’phree-dimensional structure of a human class-]l histocompatibility molecule complexed with superantigen. Nature 368: 711–718Google Scholar
  62. Johnson LP, Schlievert PM (1984) Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol Gen Genet 194: 52–56PubMedCrossRefGoogle Scholar
  63. Kamezawa Y, Nakahara T, Nakano S, Abe Y, Nozaki-Renard J, Isono T (1997) Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect Immun 65: 3828–3833PubMedGoogle Scholar
  64. Kappler J, Kotzin B, Herron L, Gelfand E, Bigler RD, Boylston A, Carrel S, Posneit CD, Choi Y, Marrack P (1989) Vß-specific stimulation of human T cells by staphylococcal toxins. Science 244: 811–814PubMedCrossRefGoogle Scholar
  65. Kim J, Urban RG, Strominger JL, Wiley DC (1994) Toxic shock syndrome toxin-1 cornplexed with a class-II major histocompatibility molecule HLA-DR1. Science 266: 1870–1874PubMedCrossRefGoogle Scholar
  66. Knudtson KL, Sawitzke AD, Cole BC (1997) The superantigen Mycoplasma arthritidis mitogen (MAM): physical properties and immunobiology. In: DM Leung, B Huber, P Schlievert (eds) Superantigens. Marcel Dekker, New York, pp 339–367Google Scholar
  67. Kotzin BL, Leung DY, Kappler J, Marrack P (1993) Superantigens and their potential role in human disease. Adv Immunol 54: 99–166PubMedCrossRefGoogle Scholar
  68. Krakauer T, Fleischer B, Stevens,DL, McClane BA, Stiles BA (1997) Clostridium perfringens enterotoxin lacks superantigenic activity but induces an IL-6 response from human peripheral blood mononuclear cells. Infect Immun 65: 3485–3488Google Scholar
  69. Lee PK, Kreiswirth BN, Deringer JR, Projan SJ, Eisner W, Smith BL, Carlson E, Novick RP, Schlievert PM (1992) Nucleotide sequences and biologic properties of toxic shock syndrome toxin 1 from ovine-and bovine-associated Staphylococcus aureus. J Infect Dis 165: 1056–1063PubMedCrossRefGoogle Scholar
  70. Legaard PK, LeGrand RD, Misfeldt ML (1991) The superantigen Pseudomonas exotoxin A requires additional functions from accessory cells for T lymphocyte proliferation. Cell Immunol 135: 372–382PubMedCrossRefGoogle Scholar
  71. Lehn N, Schaller E, Wagner H, Kronke M (1995) Frequency of toxic-shock-syndrometoxin-and enterotoxin-producing clinical isolates of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 14: 43–46PubMedCrossRefGoogle Scholar
  72. Li PL, Tiedemann RE, Moffat SL, Fraser JD (1997) The superantigen streptococcal pyrogenic exotoxin C ( SPE-C) exhibits a novel mode of action. J Exp Med 186: 375–383Google Scholar
  73. Li H, Llera A, Mariuzza RA (1998) Structure-function studies of T cell receptorsuperantigen interactions. Immunol Rev 163: 177–186PubMedCrossRefGoogle Scholar
  74. Marr JC, Lyon JD, Roberson JR, Lupher M, Davis WC, Bohach GA (1993) Characterization of novel type C staphylococcal enterotoxins: biological and evolutionary implications. Infect Immun 61: 4254–4262PubMedGoogle Scholar
  75. Marrack P, Kappler JW (1990) The staphylococcal enterotoxins and their relatives. Science 248: 705–711PubMedCrossRefGoogle Scholar
  76. Matthes M, Schrezenmeier H, Homfeld J, Fleischer S, Malissen B, Kirchner H, Fleischer B (1988) Clonal analysis of human T cell activation by the mycoplasma arthritidis mitogen. Eur J Immunol 18: 1733–1737PubMedCrossRefGoogle Scholar
  77. McClane BA (1994) Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology 87:43–67Google Scholar
  78. Mitchell DT, Schlievert PM, Ohlendorf DH, Kim J, Wiley DC, Urban RG, Strominger JL (1997) Comparison of structures of toxic-shock-syndrome-toxin-1 unbound and bound to a class-Il MHC molecule. In: DM Leung, B Huber, P Schlievert (eds) Superantigens. Marcel Dekker, New York, pp 167–198Google Scholar
  79. Miyoshi-Akiyama T, Abe A, Kato H, Kawahara K, Narimatsu H, Uchiyama T(1995) DNA sequencing of the gene encoding a bacterial superantigen, Yersinia pseudotuberculosis-derived mitogen (YPM), and characterization of the gene product, cloned YPM. J Immunol 154: 5228–5234Google Scholar
  80. Monday SR, Vath GM, Ferens WA, Deobald C, Rago JV, Gahr PJ, Monie DD, Iandolo JJ, Chapes SK, Davis WC, Ohlendorf DH, Schlievert PM, Bohach GA (1999) Unique superantigen activity of staphylococcal exfoliative toxins. J Immunol 162: 4550–4559PubMedGoogle Scholar
  81. Mourad W, Geha RS, Chatila T (1990) Engagement of major histocompatibility complex class-II molecules induces sustained, LFA-1 dependent cell adhesion. J Exp Med 172: 1513–1516PubMedCrossRefGoogle Scholar
  82. Munson SH, Tremaine MT, Betley MJ, Welch RA (1998) Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun 66: 3337–3348PubMedGoogle Scholar
  83. Murray DL, Prasad GS, Earhart CA, Leonard BA, Kreiswirth BN, Novick RE Ohlendorf DH, Schlievert PM (1994) Immunobiologic and biochemical properties of mutants of toxic shock syndrome toxin-1. J Immunol 152: 87–95PubMedGoogle Scholar
  84. Nelson K, Schlievert PM, Selander RK, Musser JM (1991) Characterization and clonal distribution of four alleles of the speA gene encoding pyrogenic exotoxin A (scarlet-fever toxin) in Streptococcus pyogenes. J Exp Med 174: 1271–1274PubMedCrossRefGoogle Scholar
  85. Norrby-Teglund A, Newton D, Kolb M, Holm SE, Norgren M (1994) Superantigenic properties of the group A streptococcal exotoxin SpeF ( MF ). Infect Immun 62: 5227–5233Google Scholar
  86. Ohmen JD, Barnes PF, Grisso CL, Bloom BR, Modlin RL (1994) Evidence for a super-antigen in human tuberculosis. Immunity 1: 35–43PubMedCrossRefGoogle Scholar
  87. Ortonne JP (1996) Aetiology and pathogenesis of psoriasis. Br J Dermatol 135: 1–5PubMedCrossRefGoogle Scholar
  88. Papageorgiou AC, Acharya KR, Shapiro R, Passalacqua EF, Brehm RD, Tranter HS (1995) Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure 3: 769–779PubMedCrossRefGoogle Scholar
  89. Prasad GS, Earhart CA, Murray DL, Novick RP, Schlievert PM, Ohlendorf DH (1993) Structure of toxic-shock syndrome toxin 1. Biochemistry 32: 13761–13766PubMedCrossRefGoogle Scholar
  90. Proft T, Moffatt SL, Berkhan CJ, Fraser JD (1999) Identification and characterization of novel superantigens from Streptococcus pyogenes. J Exp Med 189: 89–102PubMedCrossRefGoogle Scholar
  91. Ramamurthy T, Yoshino K, Abe J, Ikeda N, Takeda T (1997) Purification, characterization and cloning of a novel variant of the superantigen Yersinia pseudotuberculosis-derived mitogen. FEBS Lett 413: 174–176PubMedCrossRefGoogle Scholar
  92. Reda KB, Kapur V, Mollick JA, Lamphear JG, Musser JM, Rich RR (1994) Molecular characterization and phylogenetic distribution of the streptococcal superantigen gene (ssa) from Streptococcus pyogenes. Infect Immun 62: 1867–1874PubMedGoogle Scholar
  93. Reiser RE Robbins RN, Khoe GP, Bergdoll MS (1983) Purification and some physicochemical properties of toxic-shock toxin. Biochemistry 22: 3907–3912CrossRefGoogle Scholar
  94. Ren K, Bannan JD, Pancholi V, Cheung AL, Robbins JC, Fischetti VA, Zabriskie.1B (1994) Characterization and biological properties of a new staphylococcal exotoxin. J Exp Med 180: 1675–1683Google Scholar
  95. Robinson JH, Atherton MC, Goodacre JA, Pinkney M, Weightman I-1, Kehoe MA (1991) Mapping T-cell epitopes in group-A streptococcal type-5 M protein. Infect Immun 59: 4324–4331PubMedGoogle Scholar
  96. Rott O. Fleischer B (1994) A superantigen as a virulence factor in an acute bacterial infection. J Infect Dis 169: 1142–1146PubMedCrossRefGoogle Scholar
  97. Rott O, Mignon-Godefroy K, Fleischer B, Charreire J, Cash E (1995) Superantigens induce primary T cell responses to soluble autoantigens by a non-Vß-specific mechanism of bystander activation. Cell Immunol 161: 158–165PubMedCrossRefGoogle Scholar
  98. Roussel A, Anderson BF, Baker HM, Fraser JD, Baker EN (1997) Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nat Struct Biol 4: 635–643PubMedCrossRefGoogle Scholar
  99. Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M. Kalland T, Schlievert PM, Ohlendorf DH, Svensson LA (1995) Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J 14: 3292–3301Google Scholar
  100. Schiffenbauer J, Soos J, Johnson H (1998) The possible role of bacterial superantigens in the pathogenesis of autoimmune disorders. Immunol Today 19: 1 17–120CrossRefGoogle Scholar
  101. Schmidt K-H, Gerlach D, Wollweber L, Reichhardt W, Mann K, Fleischer B 1995. Mitogenicity of M5-protein extracted from streptococcal cells is due to streptococcal pyrogenic exotoxin C and the mitogenic factor ME Infect Immun 63: 4569–4575Google Scholar
  102. Scholl P, Diez A, Mourad W, Parsonnet J, Geha RS, Chatila T (1989) Toxic-shock syndrome toxin 1 binds to class-II major histocompatibility molecules. Proc Natl Acad Sci USA 86: 4210–4214PubMedCrossRefGoogle Scholar
  103. Sekaly RP, Croteau G, Bowman M, Scholl P, Burakoff S, Geha RS (1991) The CD4 molecule is not always required for the T cell response to bacterial enterotoxins. J Exp Med 173: 367–371PubMedCrossRefGoogle Scholar
  104. Seth A, Stern LJ, Ottenhoff TH, Engel I, Owen MJ, Lamb JR, Klausner RD, Wiley DC (1994) Binary and ternary complexes between T-cell receptor, class-II MHC and superantigen in vitro. Nature 369: 324–327PubMedCrossRefGoogle Scholar
  105. Stuart PM, Woodward JG (1992) Yersinia enterocolitica produces superantigenic activity. J Immunol 148: 225–233Google Scholar
  106. Svensson LA, Schad EM, Sundström M, Antonsson P, Kalland T, Dohlsten M (1997) Staphylococcal enterotoxins A, D, and E. Structure and function, including mechanism of T cell superantigenicity. In: DM Leung, B Huber, P Schlievert (eds) Superantigens. Marcel Dekker, New York, pp 199–229Google Scholar
  107. Swaminathan S, Furey W, Pletcher J, Sax M (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359: 801–806PubMedCrossRefGoogle Scholar
  108. Tomai MA, Aelion JA, Dockter ME, Majumdar G, Spinella DG, Kotb M (1991) T cell receptor V gene usage by human T cell stimulated with the superantigen streptococcal M protein. J Exp Med 174: 285–288PubMedCrossRefGoogle Scholar
  109. Tomai MA, Schlievert PM, Kotb M (1992) Distinct T cell receptor Vß gene usage by human T lymphocytes stimulated with the streptococcal pyrogenic exotoxins and pepM5 protein. Infect Immun 60: 701–705PubMedGoogle Scholar
  110. Von Bonin A, Ehrlich S, Malcherek G, Fleischer B (1995) Major-histocompatibilitycomplex-II-associated peptides determine the binding of the superantigen toxic-shock syndrome toxin-1. Eur J Immunol 25: 2894–2898CrossRefGoogle Scholar
  111. Watanabe-Ohnishi R, Aelion J, LeGros L, Tomai MA, Sokurenko EV, Newton D, Takahara J, Inno S, Rashed S, Kotb M (1994) Characterization of unique human TCR Vß specificities for a family of streptococcal Superantigens represented by rheumatogenic serotypes of M protein. J Immunol 152: 2066–2073PubMedGoogle Scholar
  112. Weeks CR, Ferretti JJ (1984) The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 46: 531–536PubMedGoogle Scholar
  113. Wen R, Surman S, Blackman MA, Woodland DL (1997) The conventional CD4+ T cell response to staphylococcal enterotoxin B is modified by its superantigenic activity. Cell Immunol 176: 166–172PubMedCrossRefGoogle Scholar
  114. White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P (1989) The Vß-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56: 27–35PubMedCrossRefGoogle Scholar
  115. Yoshino K, Ramamurthy T, Nair GB, Fukushima H, Ohtomo Y, Takeda N, Kaneko S, Takeda T (1995) Geographical heterogeneity between Far East and Europe in prevalence of ypni gene encoding the novel superantigen among Yersinia pseudo-tuberculosis strains. J Clin Microbiol 33: 3356–3358PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • B. Fleischer

There are no affiliations available

Personalised recommendations