Advertisement

Molecular Mechanisms of Action of the Large Clostridial Cytotoxins

  • I. Just
  • F. Hofmann
  • K. Aktories
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 145)

Abstract

The family of large clostridial cytotoxins consists of toxin A and toxin B from Clostridium difficile, the lethal toxin and the haemorrhagic toxin from C. sordellii, and the α toxin from C. novyi (Table 1). The comparable cytotoxic activities and the similar structures of the toxin molecules have led researchers to group them as one family (Bette et al. 1991). This former phenomenological classification has turned out to be correct because of their almost identical enzymatic ability to modify comparable target proteins. The in vivo effects of the toxins, however, differ from each other; they are major pathogenic factors that cause different diseases and clinical outcomes. Clinically most important is C. difficile,which co-produces toxins A and B, both causally involved in antibiotic-associated diarrhoea and the severe form, pseudomembranous colitis (Bartlett 1994; Kelly et al. 1994; Kelly and Lamont 1998). Lethal toxin from C. sordellii is involved in diarrhoea and enterotoxaemia in domestic animals and in gas gangrene in man (Hatheway 1990). C. novyi a toxin has been identified as causative agent for gas-gangrene infections in man and animals (Harlieway 1990). The divergence between comparable cytotoxic features of the cytotoxin family and differences in clinical features may be due to the presence of additional pathogenic factors and the targeting of different organs by the toxin-producing bacteria. Here we will focus on the cytotoxic (i.e. in vitro) effects of the toxins.

Keywords

Clostridium Difficile Lethal Toxin ToxinA Alpha Guanosine Diphosphate Glucosyltransferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aktories K, Koch G (1997) Clostridium botulinum ADP—ribosyltransferase C3. In: Aktories K (ed) Bacterial toxins: tools in cell biology and pharmacology. Chapman and Hall, Weinheim, pp 61–69Google Scholar
  2. Amano M, Fukata Y, Kaibuchi K (1998) Regulation of cytoskeleton and cell adhesions by the small GTPase Rho and its targets. TCM 8: 162–168PubMedGoogle Scholar
  3. Barroso LA, Moncrief JS, Lyerly DM, Wilkins TD (1994) Mutagenesis of the Clostridium difficile toxin B gene and effect on cytotoxic activity. Microb Pathog 16: 297–303PubMedCrossRefGoogle Scholar
  4. Bartlett JG (1994) Clostridrium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 18:265–272CrossRefGoogle Scholar
  5. Bette P, Oksche A, Mauler F, Von Eichel-Streiber C, Popoff MR, Habermann E (1991) A comparative biochemical, pharmacological and immunological study of Clostridium novyi A toxin, C. difficile toxin B and C. sordellii lethal toxin. Toxicon 29: 877–887PubMedCrossRefGoogle Scholar
  6. Busch C, Hofmann F, Selzer J, Munro J, Jeckel D, Aktories K (1998) A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 273: 19566–19572PubMedCrossRefGoogle Scholar
  7. Calderón GM, Torres-López J, Lin T-J, Chavez B, Hernandez M, Munoz O, Befus AD, Enciso JA (1998) Effects of toxin A from Clostridium difficile on mast cell activation and survival. Infect Immun 66: 2755–2761PubMedGoogle Scholar
  8. Chaves-Olarte E, Florin I, Boquet P, Popoff M, Von Eichel-Streiber C, Thelestam M (1996) UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. J Biol Chem 271: 6925–6932PubMedCrossRefGoogle Scholar
  9. Chaves-Olarte E, Weidmann M, Von Eichel-Streiber C, Thelestam M (1997) Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. J Clin Invest 100: 1734–1741PubMedCrossRefGoogle Scholar
  10. Ciesielski-Treska J, Ulrich G, Rihn B, Aunis D (1989) Mechanism of action of Clostridium difficile toxin B: role of external medium and cytoskeletal organization in intoxicated cells. Eur J Cell Biol 48: 191–202PubMedGoogle Scholar
  11. Ciesielski-Treska J, Ulrich G, Baldacini O, Monteil H, Aunis D (1991) Phosphorylation of cellular proteins in response to treatment with Clostridium difficile toxin B and Clostridium sordellii toxin L. Eur J Cell Biol 56: 68–78PubMedGoogle Scholar
  12. Ciesla WP Jr, Bobak DA (1998) Clostridium difficile toxins A and 13 are cation-dependent UDP—glucose hydrolases with differing catalytic activities. J Biol Chem 273: 16021–16026Google Scholar
  13. Fiorentini C, Thelestam M (1991) Clostridium difficile toxin A and its effects on cells. Toxicon 29: 543–567Google Scholar
  14. Fiorentini C, Arancia G, Paradisi S, Donelli G, Giuliano M, Piemonto F, Mastrantonio P (1989) Effects of Clostridium difficile toxins A and B on cytoskeleton organization in HEp-2 cells: a comparative morphological study. Toxicon 27: 1209–1218PubMedCrossRefGoogle Scholar
  15. Fiorentini C, Malorni W, Paradisi S, Giuliano M, Mastrantonio P. Donelli G (1990) Interaction of Clostridium difficile toxin A with cultured cells: cytoskeletal changes and nuclear polarization. Infect Immun 58: 2329–2336Google Scholar
  16. Fiorentini C, Donelli G, Nicotera P, Thelestam M (1993) Clostridium difficile toxin A elicits Ca’-’-independent cytotoxic effects in cultured normal rat intestinal crypt cells. Infect Immun 61: 3988–3993Google Scholar
  17. Fiorentini C, Fabbri A, Falzano L, Fattorossi A, Matarrese P, Rivabene R. Donelli G (1998) Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 66: 2660–2665Google Scholar
  18. Florin I, Thelestam M (1983) Internalization of Clostridium difficile cytotoxin into cultured human lung fibroblasts. Biochim Biophys Acta 763: 383–392PubMedCrossRefGoogle Scholar
  19. Frey SM, Wilkins TD (1992) Localization of two epitopes recognized by monoclonal antibody PCG-4 on Clostridium difficile toxin A. Infect Immun 60: 2488–2492PubMedGoogle Scholar
  20. Genth H, Hofmann F, Selzer J, Rex G, Aktories K, Just I (1996) Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii. Biochem Biophys Res Commun 229: 370–374PubMedCrossRefGoogle Scholar
  21. Gomez J, Martinez C, Gonzalez A, Rebollo A (1998) Dual role of Ras and Rho pro-teins — at the cutting edge of life and death. Immunol Cell Biol 76: 125–134PubMedCrossRefGoogle Scholar
  22. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514PubMedCrossRefGoogle Scholar
  23. Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3: 66–98PubMedGoogle Scholar
  24. Hecht G, Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82: 1516–1524Google Scholar
  25. Hecht G, Koutsouris A, Pothoulakis C, LaMont JT, Madara JL (1992) Clostridium difficile toxin B disrupts the barrier function of Ts, monolayers. Gastroenterology 102: 416–423Google Scholar
  26. Henriques B, Florin I, Thelestam M (1987) Cellular internalisation of Clostridium difficile toxin A. Microb Pathogen 2: 455–463CrossRefGoogle Scholar
  27. Herrmann C, Ahmadian MR, Hofmann F, Just I (1998) Functional consequences of monoglucosylation of H-Ras at effector domain amino acid threonine-35. J Biol Chem 273: 16134–16139PubMedCrossRefGoogle Scholar
  28. Hofmann F, Rex G, Aktories K, Just I (1996) The Ras-related protein RaI is monoglucosylated by Clostridium sordellii lethal toxin. Biochem Biophys Res Commun 227: 77–81PubMedCrossRefGoogle Scholar
  29. Hofmann F, Busch C, Prepens 11, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272: 11074–11078PubMedCrossRefGoogle Scholar
  30. Hofmann F, Busch C, Aktories K (1998) Chimeric clostridia) cytotoxins: identification of the N-terminal region involved in protein substrate recognition. Infect Immun 66: 1076–1081PubMedGoogle Scholar
  31. Jou T-S, Schneeberger EE, Nelson WJ (1998) Structural and functional regulation of tight junctions by RhoA and Racl small GTPases. J Cell Biol 142: 101–115PubMedCrossRefGoogle Scholar
  32. Just I, Richter H-P, Prepens U, Von Eichel-Streiber C, Aktories K (1994) Probing the action of Clostridium difficile toxin B in Xenopus laevis oocytes..1 Cell Science 107: 1653–1659Google Scholar
  33. Just I, Selzer J, Von Eichel-Streiber C, Aktories K (1995a) The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J Clin Invest 95: 1026–1031PubMedCrossRefGoogle Scholar
  34. Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995b) Gluco- sylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500–503PubMedCrossRefGoogle Scholar
  35. Just I, Wilm M, Selzer J, Rex G, Von Eichel-Streiber C, Mann M, Aktories K (1995c) The enterotoxin from Clostridium difficile ( ToxA) monoglucosylates the Rho proteins. J Biol Chem 270: 13932–13936Google Scholar
  36. Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271: 10149–10153PubMedCrossRefGoogle Scholar
  37. Karlsson KA (1995) Microbial recognition of target-cell glycoconjugates. Curr Opin Struct Biol 5: 622–635PubMedCrossRefGoogle Scholar
  38. Kaul P, Silverman J, Shen WH, Blanke SR, Huynh PD, Finkelstein A, Collier RJ (1996) Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci 5: 687–692PubMedCrossRefGoogle Scholar
  39. Kelly CP, LaMont JT (1998) Clostridium difficile infection. Annu Rev Med 49: 375–390Google Scholar
  40. Kelly CP, Pothoulakis C, LaMont JT (1994) Clostridium difficile colitis. New England J Med 330,No. 4: 257–262Google Scholar
  41. Krivan HC, Clark GF, Smith DF, Wilkins TD (1986) Cell-surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gala1–3Galb1–4GIcNAc. Infect Immun 53: 573–581PubMedGoogle Scholar
  42. Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB (1990) Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:b-p-Gal(1,4)-p-GIcNAc a(1,3)-galaetosyltransferase cDNA. J Biol Chem 265: 7055–7061PubMedGoogle Scholar
  43. Laughlin MR, Petit WA, Dizon JM, Shulman RG, Barrett EJ (1988) NMR measure- ments of in vivo myocardial glycogen metabolism. J Biol Chem 263: 2285–2291PubMedGoogle Scholar
  44. Lyerly DM, Wilkins TD (1995) Clostridium difficile. In: Blaser MJ, Smith PD, Ravdin JI, et al. (eds) Infections of the gastrointestinal tract. Raven, New York, pp 867–891Google Scholar
  45. Lyerly DM, Lockwood DE, Richardson SH, Wilkins TD (1982) Biological activities of toxins A and B of Clostridium difficile. Infect Immun 35: 1147–1150PubMedGoogle Scholar
  46. Lyerly DM, Saum KE, MacDonald DK, Wilkins TD (1985) Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47: 349–352PubMedGoogle Scholar
  47. Lyerly DM, Phelps CJ, Toth J, Wilkins TD (1986a) Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect Immun 54: 70–76PubMedGoogle Scholar
  48. Lyerly DM, Roberts MD, Phelps CJ, Wilkins TD (1986b) Purification and properties of toxins A and B of Clostridium difficile. FEMS Microbiol Lett 33: 31–35CrossRefGoogle Scholar
  49. Machesky LM, Hall A (1996) Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol 6: 304–310PubMedCrossRefGoogle Scholar
  50. Mackay DJG, Hall A (1998) Rho GTPases. J Biol Chem 273: 20685–20688CrossRefGoogle Scholar
  51. Mahida YR, Makh S, Hyde S, Gray T, Borriello SP (1996) Effect of Clostridium diffi-cile toxin A on human intestinal epithelial cells: induction of interleukin 8 pro-duction and apoptosis after cell detachment. Gut 38: 337–347PubMedCrossRefGoogle Scholar
  52. Malorni W, Paradisi S, Dupuis ML, Fiorentini C, Ramoni C (1991) Enhancement of cell-mediated cytotoxicity by Clostridium difficile toxin A: an in vitro study. Toxicon 29: 417–428PubMedCrossRefGoogle Scholar
  53. McEuen AR (1992) Manganese metalloproteins and manganese-activated enzymes. Inorg Biochem 3: 314–343CrossRefGoogle Scholar
  54. Moore R, Pothoulakis C, LaMont JT, Carlson S, Madara JL (1990) C. difficile toxin A increases intestinal permeability and induces Cl-. Am J Physiol 259: G165 - G172Google Scholar
  55. Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem (Tokyo) 120: 215–228CrossRefGoogle Scholar
  56. Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL (1995) Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA 92: 10629–10633PubMedCrossRefGoogle Scholar
  57. Oksche A, Nakov R, Habermann E (1992) Morphological and biochemical study of cytoskeletal changes in cultured cells after extracellular application of Clostridium novyi a toxin. Infect Immun 60: 3002–3006PubMedGoogle Scholar
  58. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341: 209–214PubMedCrossRefGoogle Scholar
  59. Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W. Wittinghofer A (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9: 2351–2359Google Scholar
  60. Popoff MR (1987) Purification and characterization of Clostridium sordellii lethal toxin and cross-reactivity with Clostridium diflìcile cytotoxin. Infect Immun 55: 3543Google Scholar
  61. Popoff MR, Chaves OE, Lemichez E, Von Eichel-Streiber C, Thelestam M, Chardin P. Cussac D, Chavrier P, Flatau G, Giry M, Gunzburg J, Boquet P (1996) Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J Biol Chem 271: 10217–10224PubMedCrossRefGoogle Scholar
  62. Pothoulakis C, Gilbert RJ, Cladaras C, Castagliuolo I, Semenza (i, Hitti Y, Montcrief JS, Linevsky J, Kelly CP, Nikulasson S, Desai HP, Wilkins TD, LaMont JT (1996) Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J Clin Invest 98: 641–649PubMedCrossRefGoogle Scholar
  63. Prepens U, Just I, Von Eichel-Streiber C, Aktories K (1996) Inhibition of Fe c-RImediated activation of rat basophilic leukemia cells by Clostridium difficile toxin B (monoglucosyltransferase). J Biol Chem 271: 7324–7329PubMedCrossRefGoogle Scholar
  64. Price LS, Norman JC, Ridley AJ, Koffer A (1995) The small GTPases Rae and Rho as regulators of secretion in mast cells. Curr Biol 5: 68–73PubMedCrossRefGoogle Scholar
  65. Ridley AJ (1996) Rho: theme and variations. Curr Biol 6: 1256–1264PubMedCrossRefGoogle Scholar
  66. Riegler M, Sedivy R, Pothoulakis C, Hamilton G, Zacheri J, Bischof G, Cosentini li Feil W, Schiessel R, LaMont JT, Wenzl E (1995) Clostridium difficile toxin 13 is more potent than toxin A in damaging human colonic epithelium in vitro. J Clin Invest 95: 2004–2011Google Scholar
  67. Ruoslahti E (1997) Stretching is good for a cell. Science 276: 1345–1346PubMedCrossRefGoogle Scholar
  68. Sasaki T, Takai Y (1998) The Rho small G protein family Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245: 641–645PubMedCrossRefGoogle Scholar
  69. Schmalzing G, Richter HP, Hansen A, Schwarz W, Just I, Aktories K (1995) Involvement of the GTP binding protein Rho in constitutive endocytosis in Xeuopus laevis oocytes. J Cell Biol 130: 1319–1332PubMedCrossRefGoogle Scholar
  70. Schmidt M, Vo M, Thiel M, Bauer B, Grannass A, Tapp E, Cool RH, De Gunzburg J. Von Eichel-Streiber C, Jakobs KH (1998) Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. J Biol Chem 273: 7413–7422PubMedCrossRefGoogle Scholar
  71. Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP—rihosylation of Rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 37: 5296–5304Google Scholar
  72. Selzer J, Hofmann F, Rex G, Wilm M, Mann M, Just 1, Aktories K (1996) Clostridium novyi A toxin-catalyzed incorporation of GIcNAc into Rho subfamily proteins. J Biol Chem 271: 25173–25177Google Scholar
  73. Shibata Y, Nakamura H, Kato S, Tomoike H (1996) Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells..1 Immunol 156: 772–777Google Scholar
  74. Shoshan MC, Bergman T, Thelestam M, Florin I (1993) Dithiothreitol generates an activated 250,000-mot.-wt. form of Clostridium difficile toxin B. Toxicon 31,No. 7: 845–852PubMedCrossRefGoogle Scholar
  75. Siffert J-C, Baldacini O. Kuhry J-G, Wachsmann D, Benabdelmoumene S, Faradji A, Monteil H, Poindron P (1993) Effects of Clostridium difficile toxin B on human monocytes and macrophages: possible relationship with cytoskeletal rearrangement. Infect Immun 61. 1082–1090PubMedGoogle Scholar
  76. Tapon N, Hall A (1997) Rho, Rac and CDC42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9: 86–92PubMedCrossRefGoogle Scholar
  77. Thompson JD, Higgins DG, Gibson TJ, Clustal W (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680PubMedCrossRefGoogle Scholar
  78. Triadafilopoulos G, Pothoulakis C, O’Brien MJ, LaMont JT (1987) Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology 93,No. 2: 273–279PubMedGoogle Scholar
  79. Tucker KD, Wilkins TD (1991) Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 59: 73–78PubMedGoogle Scholar
  80. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11: 2295–2322PubMedCrossRefGoogle Scholar
  81. Von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerborn M (1992a) Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233: 260–268CrossRefGoogle Scholar
  82. Von Eichel-Streiber C, Sauerborn M, Kuramitsu HK (1992b) Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptcoccus mutans glucosyltransferases. J Bacteriol 174: 6707–6710Google Scholar
  83. Von Eichel-Streiber C (1993) Molecular biology of the Clostridium difficile toxins. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, Berlin Heidelberg New York, pp 264–289CrossRefGoogle Scholar
  84. Wiggins CAR, Munro S (1998) Activity of the yeast MNNI a-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci U S A 95: 7945–7950PubMedCrossRefGoogle Scholar
  85. Wittinghofer A, Pai EF, Goody RS (1993) Structural and mechanistic aspects of the GTPase reaction of H-ras p21. In: Dickey F, Birnbaumer L (eds) GTPases in biology I. Springer, Berlin Heidelberg New York, pp 195–211CrossRefGoogle Scholar
  86. Wren BW (1991) A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5: 797–803PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • I. Just
  • F. Hofmann
  • K. Aktories

There are no affiliations available

Personalised recommendations