Skip to main content

The Drag Paradox: Measurements of Flight Performance and Body Drag in Flying Birds

  • Conference paper
Avian Migration

Abstract

Central to understanding the achievements of migrating birds and the constraints within which they operate is the ability to estimate the flight performance that a migrant can maintain for sustained periods. To date, there have been relatively few direct measurements of avian flight energetics, and because of the complexity of the techniques involved, few of the available data have been subject to appropriate controls. Attention has therefore focussed on the use of analytical models based on aerodynamic theory to estimate measures of flight performance such as flight speed, power and range, and which can be used to predict flight behaviour under a range of circumstances. Application of such models has been very effective in developing an understanding of, for instance, the factors that determine the choice of flight speed, flight strategies in response to varying winds and/or topography and feeding strategies prior to or during extended migration (Alerstam and Lind-ström 1990; Berthold 2001; Alerstam 2002). The most common currencies used in formulating these questions are energy and time, both of which may have been the target of significant selective pressures on migrating birds. Accordingly, the most affective aerodynamic models are those that are able to make realistic predictions of flight speed and power in a range of different birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerstam T, Lindström A (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 331–351

    Chapter  Google Scholar 

  • Berger M (1985) Sauerstoffverbrauch von Kolibris (Colibri coruscans und C. thalassinus) beim Horizontalflug. In: Nachtigall W (ed) Biona report 3, Bird flight–Vogelflug. Gustav Fischer, Stuttgart, pp 307–314

    Google Scholar 

  • Bernstein MH (1976) Ventilation and respiratory evaporation in the flying crow, Corvus ossifragus Resp Physiol 26: 371–382

    Article  CAS  Google Scholar 

  • Bernstein MH, Thomas SP, Schmidt-Nielsen K (1973) Power input during flight in the fish crow, Corvus ossifragus. J Exp Biol 58: 401–410

    Google Scholar 

  • Berthold P (2001) Bird migration: a general survey. 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc R Soc Lond B 266: 2275–2281

    Article  CAS  Google Scholar 

  • Bishop CM, Butler PJ (1995) Physiological modeling of oxygen consumption in birds during flight. J Exp Biol 198: 2153–2163

    PubMed  Google Scholar 

  • Butler PJ, Woakes AJ (2001) Seasonal hypothermia in a large migrating bird: saving energy for fat deposition?) Exp Biol 204: 1361–1367

    CAS  Google Scholar 

  • Butler PJ, Woakes AJ, Bevan RM, Stephenson R (2000) Heart rate and rate of oxygen consumption during flight of the barnacle goose, Branta leucopsis. Comp Biochem Physiol A 126: 379–385

    Article  CAS  Google Scholar 

  • Carpenter RE (1985) Flight physiology of flying foxes, Pteropus poliocephalus. J Exp Biol 114: 619–647

    Google Scholar 

  • Carpenter RE (1986) Flight physiology of intermediate-sized fruit bats (Pteropodidae). J Exp Biol 120: 79–103

    Google Scholar 

  • Gesser R, Wedekind F, Kockler R, Nachtigall W (1998a) Aerodynamische Untersuchungen an naturnahen Starenmodellen: 1. Grundlegende Ergebnisse. In: Blickhan R, Wisser A, Nachtigall W (eds) Biona report. 13, Motion Systems. Gustav Fischer, Jena, pp 229–230

    Google Scholar 

  • Gesser R, Wedekind F, Kockler R, Nachtigall W (1998b) Aerodynamische Untersuchungen an naturnahen Starenmodellen: 2. FlĂ¼gel-Rumpf Interferenzen. In: Blickhan R, Wisser A, Nachtigall W (eds) Biona report 13, Motion Systems. Gustav Fischer, Jena, pp 257–258

    Google Scholar 

  • Hedenström A, Alerstam T (1995) Optimal flight speed of birds. Philos Trans R Soc Lond B 348: 471–487

    Article  Google Scholar 

  • Hedenström A, Liechti F (2001) Field estimates of body drag coefficient on the basis of dives in passerine birds. J Exp Biol 204: 1167–1175

    PubMed  Google Scholar 

  • Hertel H (1963) Struktur, Form, Bewegung. Krauskopf, Mainz. [Transl Structure, Form, Movement). Rheinhold, New York, 1966

    Google Scholar 

  • Hudson DM, Bernstein MH (1983) Gas exchange and energy cost of flight in the white-necked raven, Corvus cryptoleucos. J Exp Biol 103: 121–130

    PubMed  CAS  Google Scholar 

  • Kvist A, Lindström Ă‚, Green M, Piersma T, Visser GH (2001) Carrying large fuel loads during sustained bird flight is cheaper than expected. Nature 413: 730–732

    Article  PubMed  CAS  Google Scholar 

  • Maybury WJ (2001) The aerodynamics of bird bodies. PhD thesis, University of Bristol, Bristol

    Google Scholar 

  • Maybury WJ, Rayner JMV (2001) The avian tail reduces body parasite drag by controlling flow separation and vortex shedding. Proc R Soc Lond B 268: 1405–1410

    Article  CAS  Google Scholar 

  • Maybury WJ, Rayner JMV, Couldrick LB (2001) Lift generation by the avian tail. Proc R Soc Lond B 268: 1443–1448

    Article  CAS  Google Scholar 

  • Pennycuick CJ (1968) Power requirements for horizontal flight in the pigeon, Columba livia. J Exp Biol 49: 527–555

    Google Scholar 

  • Pennycuick CJ (1969) The mechanics of bird migration. Ibis 111: 525–556

    Article  Google Scholar 

  • Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol V. Academic Press, New York, pp 1–73

    Google Scholar 

  • Pennycuick CJ (1978) Fifteen testable predictions about bird fligt. Oikos 30: 165–176

    Article  Google Scholar 

  • Pennycuick CJ (1989) Bird flight performance: a practical calculation manual. Oxford University Press, Oxford

    Google Scholar 

  • Pennycuick CJ, Heine CE, Kirkpatrick SJ, Fuller MR (1992) The profile drag of a hawk’s wing, measured by wake sampling in a wind tunnel. J Exp Biol 165: 1–19

    Article  Google Scholar 

  • Pennycuick CJ, Klaassen M, Kvist A, I,indström A (1996) Wingbeat frequency and the body drag anomaly: wind-tunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca). J Exp Biol 199: 2757–2765

    PubMed  Google Scholar 

  • Pennycuick CJ, Obrecht HH, Fuller MR (1988) Empirical estimates of body drag in large waterfowl and raptors. J Exp Biol 135: 253–264

    Google Scholar 

  • Prior NC (1984) Flight energetics and migration performance in swans. PhD Thesis, University of Bristol, Bristol

    Google Scholar 

  • Rayner JMV (1979) A new approach to animal flight mechanics. J Exp Biol 80:17–54 Rayner JMV (1988) Form and function in avian flight. Curr Ornithol 5: 1–77

    Google Scholar 

  • Rayner JMV (1990) The mechanics of flight and bird migration performance. In: Gwinner E (ed) Bird migration. Springer, Berlin Heidelberg New York, pp 283–299

    Chapter  Google Scholar 

  • Rayner JMV (1993) On aerodynamics and the energetics of vertebrate flapping flight. In: Cheer AY, van Dam CP (eds) Fluid dynamics in biology. Contemporary mathematics 141. American Mathematical Society, Providence, pp 351–400

    Chapter  Google Scholar 

  • Rayner JMV (1994a) Avian flight energetics in relation to flight speed and body size: discrepancies between theory and measurement. J Ornithol 135: 302

    Article  Google Scholar 

  • Rayner JMV (1994b) Aerodynamic corrections for the flight of birds and bats in wind tunnels. J Zool 234: 537–563

    Article  Google Scholar 

  • Rayner JMV (1995) Flight mechanics and constraints on flight performance. Isr J Zool 41: 321–342

    Google Scholar 

  • Rayner JMV (1999) Estimating power curves for flying vertebrates. J Exp Biol 202:3449–3461 Rayner JMV (2001) Mathematical modelling of the avian power curve. Math Meths Appl Sci 24: 1485–1514

    Google Scholar 

  • Rayner JMV, Ward S (1999) On the power curves of flying birds. In: Adams NJ, Slotow RH (eds )

    Google Scholar 

  • Proc 22nd Int Ornithol Congr, Durban, BirdLife South Africa, Johannesburg, pp 1786–1809

    Google Scholar 

  • Rayner JMV, Viscardi PW, Ward S, Speakman JR (2001) Aerodynamics and energetics of intermittent flight in birds. Am Zool 41: 188–204

    Article  Google Scholar 

  • Rayner JMV, Maybury WJ, Couldrick LB (2002) Aerodynamic control by the avian tail. Am Zool (in press)

    Google Scholar 

  • Rothe H-J, Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel. II. Gas exchange and power requirements. J Comp Physiol B 157: 99–109

    Google Scholar 

  • Thomas SP (1975) Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii. J Exp Biol 63: 273–293

    PubMed  CAS  Google Scholar 

  • Torre-Bueno JR, Larochelle J (1978) The metabolic cost of flight in unrestrained birds. J Exp Biol 75: 223–229

    PubMed  CAS  Google Scholar 

  • Tucker VA (1968) Respiratory exchange and evaporative water loss in the flying budgerigar. J Exp Biol 48: 67–87

    Google Scholar 

  • Tucker VA (1972) Metabolism during flight in the laughing gull, Larus atricilla. Am J Physiol 222: 237–245

    PubMed  CAS  Google Scholar 

  • Tucker VA (1973) Bird metabolism during flight: evaluation of a theory. J Exp Biol 58: 689–709

    Google Scholar 

  • Tucker VA (1990) Body drag, feather drag and interference drag of the mounting strut in a peregrine falcon, Falco peregrinus. J Exp Biol 149: 449–468

    Google Scholar 

  • Tucker VA (2000) Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient. J Exp Biol 203: 3733–3744

    PubMed  CAS  Google Scholar 

  • Ward S, Möller U, Rayner JMV, Jackson DM, Nachtigall W, Speakman JR (1998) Power requirement for starling flight in a wind tunnel. Biol Consery Fauna 102: 335–339

    Google Scholar 

  • Ward S, Rayner JMV, Möller U, Jackson DM, Nachtigall W, Speakman JR (1999) Heat transfer from starlings, Sturnus vulgaris, during flight. J Exp Biol 202: 1589–1602

    PubMed  Google Scholar 

  • Ward S, Möller U, Rayner JMV, Jackson DM, Bilo D, Nachtigall W, Speakman JR (2001) Metabolic power, mechanical power and efficiency during wind tunnel flight by European starlings, Sturnus vulgaris. J Exp Biol 204: 3311–3322

    PubMed  CAS  Google Scholar 

  • Welham CVJ (1994) Flight speeds of migrating birds: a test of maximum range speed predictions from three aerodynamic equations. Behav Ecol 5: 1–8

    Article  Google Scholar 

  • Withers PC (1981) An aerodynamic analysis of bird wings as fixed aerofoils. J Exp Biol 90: 143–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rayner, J.M.V., Maybury, W.J. (2003). The Drag Paradox: Measurements of Flight Performance and Body Drag in Flying Birds. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds) Avian Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05957-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05957-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07780-7

  • Online ISBN: 978-3-662-05957-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics