Skip to main content

Nutritional Strategies in Migratory Birds

  • Conference paper
Book cover Avian Migration

Abstract

Migration is a period of exceptionally high energy demands. To meet these demands during flight, energy is stored in the bird’s body. As fat is the prime fuel for migrating flights (Biebach 1996) many migratory birds therefore accumulate large amount of lipids in adipose tissue prior to and during migration at stopover. In small passerines, typically 73–82% of body mass gain is due to fat (Lindström and Piersma 1993) with maximum levels obtained by species crossing inhospitable areas such as sea and deserts with no feeding opportunities. The garden warbler, Sylvia borin, for example, a long-distance European migratory songbird wintering in tropical Africa, weighs about 16–18 g during the breeding and wintering seasons, but increases its body mass to up to 37 g just before leaving to cross the Sahara, in both autumn and spring (Bairlein 1991a), thus doubling fat-free body mass. Maximum fat deposition rates were found in small passerines with up to 10–15% change of lean body mass per day (Lindström 1991, this Vol.). Several migrant species also undergo protein accumulation prior to migration (Lindström and Piersma 1993; Klaassen and Biebach 1994), and protein is used during migration (Battley et al. 2000; Bauchinger and Biebach 2001). However, protein may not be used for energy purpose (Biebach 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29: 343–369

    Article  Google Scholar 

  • Alerstam T, Lindström A (1990) Optimal bird migration: The relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin Heidelberg New York, pp 331–351

    Chapter  Google Scholar 

  • Ashwell CM, Czerwinski SM, Brocht DM, McMurtry JP (1999) Hormonal regulation of leptin expression in broiler chickens. Am J Physiol 276: R226 - R232

    PubMed  CAS  Google Scholar 

  • Auwerx J (1999) PPARy, the ultimate thrifty gene. Diabetologia 42: 1033–1049

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F (1983) Seasonal variations of serum glucose levels in a migratory songbird, Sylvia borin. Comp Biochem Physiol 76 A: 397–399

    Google Scholar 

  • Bairlein F (1985) Efficiency of food utilization during fat deposition in the long-distance migratory garden warbler, Sylvia borin. Oecologia 68: 118–125

    Article  Google Scholar 

  • Bairlein F (1987) Nutritional requirements for maintenance of body weight and fat deposition in the long-distance migratory garden warbler, Sylvia borin (Boddaert). Comp Biochem Physiol 86A: 337–347

    Article  CAS  Google Scholar 

  • Bairlein F (1990a) Nutrition and food selection in migratory birds. In: Gwinner E (ed) Bird mi- gration: physiology and ecophysiology. Springer, Berlin Heidelberg New York, pp 198–213

    Google Scholar 

  • Bairlein F (1990b) Zur Nahrungswahl der Gartengrasmücke, Sylvia borin: Ein Beitrag zur Bedeutung der Frugivorie bei omnivoren Singvögeln. Curr Top Avian Biol, Proc 100 DOG Meeting, Bonn, pp 103–110

    Google Scholar 

  • Bairlein F (1991a) Body mass of garden warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36: 48–61

    Google Scholar 

  • Bairlein F (1991b) Nutritional adaptations in the long-distance migratory garden warbler, Sylvia borin. Acta XX Congr Int Ornithol, pp 2149–2158

    Google Scholar 

  • Bairlein F (1993) Ecophysiological problems of arctic migrants in the hot tropics. Proc VIII Pan-Afr Ornithol Congr, pp 571–578

    Google Scholar 

  • Bairlein F (1996) Fruit-eating in birds and its nutritional consequences. Comp Biochem Physiol 113A: 215–224

    Article  Google Scholar 

  • Bairlein F (1997) Food choice in birds and insect chemical defenses. Entomol Gen 21: 205–216

    Google Scholar 

  • Bairlein F (1998) The effect of diet composition on migratory fuelling in garden warblers, Sylvia borin. J Avian Biol 29: 546–551

    Article  Google Scholar 

  • Bairlein F (1999) Energy and nutrient utilisation efficiencies in birds: a review. In: Adams NJ, Slotow RH (eds) Proc 22 Int Ornithol Congr Durban. BirdLife South Africa, Johannesburg, pp 2221–2246

    Google Scholar 

  • Bairlein F, Gwinner E (1994) Nutritional mechanisms and temporal control of migratory energy accumulation in birds. Annu Rev Nutr 14: 187–215

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F, Simons D (1995) Nutritional adaptations in migrating birds. Isr J Zool 41: 357–367

    Google Scholar 

  • Bairlein F, Totzke U (1992) New aspects on migratory physiology of trans-Saharan passerine migrants. Ornis Scand 23: 244–250

    Article  Google Scholar 

  • Battley PF, Piersma T, Dietz MW, Tang S, Dekonga A, Hulsman K (2000) Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc R Soc Lond B 267: 191–195

    Article  CAS  Google Scholar 

  • Bauchinger U, Biebach H (2001) Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration. J Comp Physiol B 171: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Bernays EA (1981) Plant tannins and insect herbivores: an appraisal. Ecol Entomol 6: 353–360

    Article  Google Scholar 

  • Berthold P (1976) Animalische and vegetabilische Ernährung omnivorer Singvogelarten: Nah-rungsbevorzugung, Jahresperiodik der Nahrungswahl, physiologische and ökologische Be-deutung. J Ornithol 117: 145–209

    Article  Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman & Hall, London

    Google Scholar 

  • Bhatt D, Chandola A (1985) Circannual rhythms of food intake in spotted munia and its phase relationship with fattening and reproductive cycles. J Comp Physiol A 156: 429–432

    Article  Google Scholar 

  • Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Ornis Scand 12: 1–12

    Article  Google Scholar 

  • Biebach H (1996) Energetics of winter and migratory fattening. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman & Hall, New York, pp 280–323

    Chapter  Google Scholar 

  • Biebach H (1998) Phenotypic organ flexibility in garden warblers, Sylvia borin, during long-distance migration. J Avian Biol 29: 529–535

    Article  Google Scholar 

  • Blem CR (1976) Patterns of lipid storage and utilization in birds. Am Zool 16: 671–684

    CAS  Google Scholar 

  • Blem CR (1990) Avian energy storage. In: Johnston R. F. (ed) Current Ornithology, vol 7. Plenum Press, New York, pp 59–113

    Google Scholar 

  • Brensing D (1977) Nahrungsökologische Untersuchungen an Zugvögeln in einem südwestdeutschen Durchzugsgebiet während des Wegzuges. Vogelwarte 29: 44–56

    Google Scholar 

  • Carpenter FI., Hixon MA (1988) A new function for torpor: fat conservation in a wild migrant hummingbird. Condor 90: 373–378

    Article  Google Scholar 

  • Denbow DM (1985) Food intake control in birds. Neurosci Biobehav Rev 9: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Denbow DM, Meade S, Robertson A, McMurtry JP, Richards M, Ashwell C (2000) Leptininduced decrease in food intake in chickens. Physiol Behav 69: 359–362

    Article  PubMed  CAS  Google Scholar 

  • Egeler O, Williams TD (2000) Seasonal, age, and sex-related variation in fatty-acid composition of depot fat in relation to migration in western sandpipers. Auk 117: 110–119

    Article  Google Scholar 

  • Egeler O, Williams TD, Guglielmo CG (2000) Modulation of lipogenic enzymes, fatty acid synthase and A9-desaturase, in relation to migration in the Western sandpipers (Calidris mauri). J Comp Physiol B 170: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Ettinger AO, King JR (1981) Consumption of green wheat enhances photostimulated ovarian growth in white-crowned sparrows. Auk 98: 832–833

    Google Scholar 

  • Friedman JM (2000) Obesity in the new millennium. Nature 404: 632–634

    PubMed  CAS  Google Scholar 

  • Geiser F (1990) Influence of polyunsaturated and saturated dietary lipids on adipose tissue, brain and mitochondrial membrane fatty acid composition of a mammalian hibernator. Biochem Biophys Acta 1046: 159–166

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Kenagy GJ (1987) Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am J Physiol 252: R897 - R901

    PubMed  CAS  Google Scholar 

  • Glutz von Blotzheim U (1986) Gelegenheitsbeobachtungen an Grasmücken der Gattung Sylvia (Ayes). Ann Naturhist Mus Wien 88/89 B: 15–23

    Google Scholar 

  • Hazelwood RL (2000) Pancreas. In: Whittow (ed) Sturkie’s avian physiology. Academic Press, San Diego, pp 539–555

    Google Scholar 

  • Herrera CM (1984) A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol Monogr 54: 1–23

    Article  Google Scholar 

  • Hiebert SM (1993) Seasonal changes in body mass and the use of torpor in migratory hummingbird. Auk 110: 787–797

    Article  Google Scholar 

  • Hintz JV (2000) The hormonal regulation of premigratory fat deposition and winter fattening in red-winged blackbirds. Comp Biochem Physiol A 125: 239–249

    Article  CAS  Google Scholar 

  • Hume ID, Biebach H (1996) Digestive tract function in the long-distance migratory garden warbler, Sylvia borin. J Comp Physiol B 166: 388–395

    Article  Google Scholar 

  • Izhaki I, Safriel UN (1985) Why do fleshy-fruit plants of the mediterranean scrub intercept fall-but not spring-passage of seed-dispersing migratory birds? Oecologia 67: 40–43

    Article  Google Scholar 

  • Izhaki I, Safriel UN (1989) Why are there so few exclusively frugivorous birds? Experiments on fruit digestibility. Oikos 54: 23–32

    Article  Google Scholar 

  • Jehl JR Jr (1997) Cyclical changes in body composition in the annual cycle and migration of the eared grebe, Podiceps nigricollis. J Avian Biol 28: 132–142

    Article  Google Scholar 

  • Karasov WH, Levey DJ (1990) Digestive system trade-offs and adaptations of frugivorous passerine birds. Physiol Zool 63: 1248–1270

    Google Scholar 

  • Karasov WH, Pinshow B (1998) Changes in lean mass and in organs of nutrient assimilation in a long-distance passerine migrant at a springtime stopover site. Physiol Zool 71: 435–448

    Article  PubMed  CAS  Google Scholar 

  • Kersten M, Piersma T (1987) High levels of energy expenditure in shorebirds; metabolic adaptations to an energetically expensive way of life. Ardea 75: 175–187

    Google Scholar 

  • Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migra-tory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164: 362–371

    Article  Google Scholar 

  • Klaassen M, Kersten M, Ens BJ (1990) Energetic requirements for maintenance and premigra-tory body mass gain of waders wintering in Africa. Ardea 78: 209–220

    Google Scholar 

  • Klingenspor M, Niggemann H, Heldmaier G (2000) Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J Comp Physiol B 170: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Lepczyk CA, Murray KG, Winnett-Murray K, Bartell P, Geyer E, Work T (2000) Seasonal fruit preferences for lipids and sugars by American robins. Auk 117: 709–717

    Google Scholar 

  • Levey DJ, Cipollini ML (1999) Effects of plant secondary metabolites on diet choice and digestion. In: Adams NJ, Slotow RH (eds) Proceed 22nd Int Ornithol Congr Durban. BirdLife South Africa, Johannesburg, pp 2208–2220

    Google Scholar 

  • Lindström A (1991) Maximum fat deposition rates in migrating birds. Ornis Scand 22:12–19 Lindström A, Piersma T (1993) Mass changes in migrating birds: the evidence for fat and protein storage re-examined. Ibis 135: 70–78

    Article  Google Scholar 

  • Lundgren BO, Kiesling K-H (1985) Seasonal variation in catabolic enzyme activities in breast muscle of some migratory birds. Oecologia 66: 468–471

    Article  Google Scholar 

  • Mole S, Watermann PG (1985) Stimulatory effects of tannins and cholic acid on tryptic hydrolysis of proteins: ecological implications. J Chem Ecol 11: 1323–1332

    Article  CAS  Google Scholar 

  • Piersma T (1998) Phenotypic flexibility during migration: optimization of organ size contingent on the risk and rewards of fueling and flight. J Avian Biol 29: 511–520

    Article  Google Scholar 

  • Piersma T, Gill RE (1998) Guts don’t fly: small digestive organs in obese bar-tailed godwits. Auk 115: 196–203

    Article  Google Scholar 

  • Piersma T, Drent R, Wiersma P (1991) Temperate versus tropical wintering in the world’s northernmost breeder, the knot: metabolic scope and resource levels restrict subspecific options. Acta XX Congr Int Ornithol, pp 761–772

    Google Scholar 

  • Ramenofsky M (1990) Fat storage and fat metabolism in relation to migration. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin Heidelberg New York, pp 214–231

    Chapter  Google Scholar 

  • Ramenofsky M, Savard R, Greenwood MRC (1999) Seasonal and diel transitions in physiology and behavior in the migratory dark-eyed junco. Comp Biochem Physiol A 112: 385–397

    Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789

    Google Scholar 

  • Reidy SP, Weber J (2000) Leptin: an essential regulator of lipid metabolism. Comp Biochem Physiol A 125: 285–298

    Google Scholar 

  • Richardson R, Boswell T, Raffety BD, Seeley RJ, Wingfield JC, Woods SC (1995) NPY increases food intake in white-crowned sparrows: effect of short and long photoperiods. Am J Physiol 268: R1418 - R1422

    PubMed  CAS  Google Scholar 

  • Ricklefs RE (1974) Energetics of reproduction in birds. In: Paynter RA Jr (ed) Avian energetics. Nuttall Ornithol Club 15: 152–297

    Google Scholar 

  • Robbins CT (1992) Wildlife feeding and nutrition. Academic Press, New York

    Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404: 661–671

    PubMed  CAS  Google Scholar 

  • Simons D, Bairlein F (1990) Neue Aspekte zur zugzeitlichen Frugivorie der Gartengrasmücke, Sylvia borin. J Ornithol 131: 381–401

    Article  Google Scholar 

  • Singh VB, Lal P, Thapliyal JP (1993) Role of thyroid on photoperiodically induced lipid metabolism of the migratory red-headed bunting, Emberiza bruniceps ( Brandt ). Ind J Exp Biol 31: 422–425

    Google Scholar 

  • Stevens L (1996) Avian biochemistry and molecular biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Totzke U, Bairlein F (1998) The body mass cycle of the migratory garden warbler (Sylvia borin) is associated with changes of basal plasma metabolite levels. Comp Biochem Physiol Al21: 127–133

    Google Scholar 

  • Totzke U, Hübinger A, Bairlein F (1997) A role of pancreatic hormones in the regulation of autumnal fat deposition of the garden warbler (Sylvia borin)? Gen Comp Endocrinol 107: 166–171

    PubMed  CAS  Google Scholar 

  • Totzke U, Hübinger A, Bairlein F (1998) Glucose utilization rate and pancreatic hormone response to oral glucose loads are influenced by the migratory condition and fasting in the garden warbler (Sylvia borin). J Endocrinol 158: 191–196

    Article  PubMed  CAS  Google Scholar 

  • Totzke U, Hübinger A, Korthaus G, Bairlein F (1999) Fasting increases the plasma glucagon re- sponse in the migratory garden warbler (Sylvia borin). Gen Comp Endocrinol 115: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Totzke U, Hübinger A, Dittami J, Bairlein F (2000) The autumnal fattening of the long-distance migratory garden warbler (Sylvia borin) is stimulated by intermittent fasting. J Comp Physiol B 170: 627–631

    Article  PubMed  CAS  Google Scholar 

  • Williams TD, Guglielmo CG, Egeler O, Martyniuk CJ (1999) Plasma lipid metabolites provide information on mass change over several days in captive Western sandpipers. Auk 116: 994–1000

    Article  Google Scholar 

  • Zwarts L (1990) Increased prey availability drives premigration hyperphagia in whimbrels and allows them to leave the Banc d’Arguin, Mauritania, in time. Ardea 78: 279–300

    Google Scholar 

  • Zwarts L, Blomert AM, Hupkes R (1990) Increase of feeding time in waders preparing for spring migration from the Banc d’Arguin, Mauritania. Ardea 78: 237–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bairlein, F. (2003). Nutritional Strategies in Migratory Birds. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds) Avian Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05957-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05957-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07780-7

  • Online ISBN: 978-3-662-05957-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics