Skip to main content

Optimizing Migration in a Reluctant and Inefficient Flier: The Eared Grebe

  • Conference paper
Avian Migration

Abstract

Over the past several decades optimality theory (Krebs and Davies 1978) has been endorsed by many biologists (but see Gould and Lewontin 1979 and Pierce and Ollason 1987). In a comprehensive review of optimal migration, Alerstam and Hedenström (1999) discussed theoretical aspects of flight and behavior (e.g., flight speed and power, fuel deposition rates, fuel loads, departure rules) that birds might adopt to maximize their individual fitness. They also acknowledged the need for critical studies based on the natural history of individual species to test theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerstam T, Hedenström A (1999) The development of bird migration theory. J Avian Biol 29: 343–369

    Article  Google Scholar 

  • Berger M, Hart JS, Roy OZ (1970) Respiration, oxygen consumption, and heart rate in some birds during rest and flight. Z Vergl Physiol 66: 201–214

    Article  Google Scholar 

  • Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel. J Comp Physiol B 157: 117–128

    Article  Google Scholar 

  • Brinton E, Townsend AW (1980) Euphausiids in the Gulf of California–the 1957 cruises. Calif Coop Ocean Fish Invest Rep 21: 211–236

    Google Scholar 

  • Butler PJ, Woakes AJ, Bishop CM (1999) Behaviour and physiology of Svalbard barnacle geese Branta leucopsis during their autumn migration. J Avian Biol 29: 536–554

    Article  Google Scholar 

  • Carpelan LH, Linsley RH (1961) The pile worm Neanthes succinea ( Frey and Leukart ). Calif Dept Fish Game Fish Bull 113: 63–76

    Google Scholar 

  • Croll D, Gaston AJ, Noble DG (1991) Adaptive loss of mass in thick-billed murres. Condor 93: 496–502

    Article  Google Scholar 

  • Cullen SA, Jehl JR Jr, Nuechterlein GL (1999) Eared grebe (Podiceps nigricollis). No. 443. In: Poole A, Gill F. (eds) The Birds of North America. Philadelphia, PA

    Google Scholar 

  • Ellis HI (1984) Energetics of free-ranging seabirds. In: Whittow GC, Rahn H (eds) Seabird Energetics. Plenum Press, New York, pp 203–234

    Chapter  Google Scholar 

  • Ellis HI, Gabrielsen GW (2001) Energetics of free-ranging seabirds. In: Burger J, Schreiber BA (eds) Biology of marine birds. CRC Press, Boca Raton FL, pp 357–405

    Google Scholar 

  • Farmer AH, Wiens JA (1999) Optimal migration schedules depend on the landscape and physical environment: a dynamic modeling view. J Avian Biol 29: 405–415

    Article  Google Scholar 

  • Fuller MR, Seegar WS, Schueck LA (1999) Routes and travel rates of migrating peregrine falcons, Falco peregrinus, and Swainson’s hawks, Buteo swainsoni, in the Western Hemisphere. J Avian Biol 29: 433–440

    Article  Google Scholar 

  • Gessaman J, Nagy K (1988) Transmitter loads affect the flight speed and metabolism of homing pigeons. Condor 90: 662–668

    Article  Google Scholar 

  • Goldstein D (1990) Energetics of activity and free living in birds. Stud Avian Biol 13: 423–426

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205: 551–598

    Article  Google Scholar 

  • Jehl JR Jr (1988) Biology of the eared grebe and Wilson’s phalarope in the nonbreeding season: study of adaptations to saline lakes. Stud Avian Biol 12, 74 p

    Google Scholar 

  • Jehl JR Jr (1993) Observations on the fall migration of eared grebes, based on evidence from a mass downing in Utah. Condor 95: 470–473

    Article  Google Scholar 

  • Jehl, JR Jr (1994a) Changes in saline and alkaline lake avifaunas in western North America in the past 150 years. Stud Avian Biol 15: 258–272

    Google Scholar 

  • Jehl JR Jr (1994b) Field estimates of energetics in migrating and downed black-necked grebes. J Avian Biol 25: 63–68

    Article  Google Scholar 

  • Jehl JR Jr (1996) Mass mortality events of eared grebes in North America. J Field Ornithol 67: 471–476

    Google Scholar 

  • Jehl JR Jr (1997) Cyclical changes in body composition in the annual cycle and migration of the eared grebe, Podiceps nigricollis. J Avian Biol 28: 132–142

    Article  Google Scholar 

  • Jehl JR Jr (1998) Conspecific collisions can precipitate mortality in migrating eared grebes. Wilson Bull 110: 409–411

    Google Scholar 

  • Jehl JR Jr (2001) The abundance of the eared (black-necked) grebe as a recent phenomenon. Waterbirds 24: 245–249

    Google Scholar 

  • Jehl JR Jr, Johansson C (2002) The autumnal migration of eared grebes through southwestern Wyoming: a key to assessing the size of the North American population. W N Am Nat 62: 335–340

    Google Scholar 

  • Jehl JR, McKernan R (2002) Biology and migration of eared grebes at the Salton Sea. Hydrobiologia 473: 245–253

    Article  Google Scholar 

  • Jehl JR Jr, Boyd WS, Paul DS, Anderson DW (2002) Massive collapse and rapid rebound: population dynamics of eared grebes (Podiceps nigricollis) during an ENSO event. Auk 119 (in press)

    Google Scholar 

  • Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29: 521–528

    Article  Google Scholar 

  • Jenni L, Jenni-Eiermann S (1999) Fat and protein utilisation during migratory flight. Proc Int Ornithol Congr 22: 1437–1449

    Google Scholar 

  • Klaassen M, Kvist A, Lindström A (2000) Flight costs and fuel consumption of a bird migrating in a wind tunnel. Condor 102: 444–451

    Google Scholar 

  • Krebs J, Davies NB (1978) Behavioural ecology, an evolutionary approach. Blackwell Oxford, UK

    Google Scholar 

  • LeFebvre EA (1964) The use of D2O18 for measuring energy in Columba livia at rest and in flight. Auk 81: 403–416

    Article  Google Scholar 

  • Massman D, Klaassen M (1987) Energy expenditure during free flight in trained and free-living Eurasian kestrels (Falco tinnunculus). Auk 104: 603–616

    Google Scholar 

  • Pennycuick CJ (1989) Bird flight performance: a practical calculation manual. Oxford Univ Press, Oxford, UK

    Google Scholar 

  • Pennycuick CJ, Klaassen M, Kvist, A, Lindstrom A (1996) Wingbeat frequency and the body drag anomaly: wind tunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca). J Exp Biol 199: 2757–2765

    PubMed  Google Scholar 

  • Pierce GJ, Ollason JG (1987) Eight reasons why optimality foraging is a complete waste of time. Oikos 49: 111–118

    Article  Google Scholar 

  • Piersma T, Jukema J (1990) Budgeting the flight of a long-distance migrant: changes in nutrient reserve levels of bar-tailed godwit at successive spring staging sites. Ardea 78: 315–337

    Google Scholar 

  • Rayner G (1985) Flight, speeds of. In: Campbell B, Lack E (eds). A dictionary of birds. Buteo Books, Vermilion, SD, pp 224–226

    Google Scholar 

  • RosĂ©n M, Hedenström A, Badami A, Spina F, Akesson S (1999) Hunting flight behaviour of the Eleonora’s falcon, Falco eleonorae. J Avian Biol 30: 342–350

    Article  Google Scholar 

  • Rothe H-J, Biesell W, Nachtigall W (1987) Pigeon flight in a wind tunnel. II. Gas exchange and power requirements. J Comp Physiol B 157: 99–109

    Google Scholar 

  • Storer RW (1960) Evolution in the diving birds. Proc XII Int Ornithol Congr, 1958, pp 694–707

    Google Scholar 

  • Tershey BR, Van Gelder RE, Breese D (1993) Relative abundance and seasonal distribution of seabirds in the Canal de Ballenas, Gulf of California. Condor 95: 458–464

    Google Scholar 

  • Tuck LM (1960) The murres. Queen’s Printer, Ottawa

    Google Scholar 

  • Tucker VA (1972) Metabolism during flight in the laughing gull, Larus atricilla. Am J Physiol 222: 237–245

    PubMed  CAS  Google Scholar 

  • Tuite CH (1984) Avian energetics: some pitfalls. Ibis 126: 250–252

    Article  Google Scholar 

  • Weber TP, Piersma T (1996) Basal metabolic rate and the mass of tissues differing in metabolic scope: migration-related covariation between individual knots, Calidris canutus. J Avian Biol 27: 215–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jehl, J.R., Henry, A.E., Ellis, H.I. (2003). Optimizing Migration in a Reluctant and Inefficient Flier: The Eared Grebe. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds) Avian Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05957-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05957-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07780-7

  • Online ISBN: 978-3-662-05957-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics