Skip to main content

Agent Based Power System Visualization

  • Chapter

Part of the book series: Power Systems ((POWSYS))

Abstract

Many of the above described multi-agent solutions directly or indirectly support the control center staff within the difficult task of power system operation. Whereas intelligent agents solve subtasks autonomously, the supervision of the system state as a whole is still a human task. Therefore the user interface for energy management systems must be closely adapted to the human decision process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahadev PM, Christie RD (1993) Envisioning power system data: concepts and a prototype system state representation. IEEE Trans. Power Systems, vol 8, pp 1084–1090

    Article  Google Scholar 

  2. Hauser AJ, Verstege JF (1999) Seeing global power system states with compact visualisation techniques. In: Proc. of IEEE Power Tech ‘99, Budapest, Hungary, BPT 99–271–23

    Google Scholar 

  3. Sprenger W, Stelzner P, Schellstede G, Schäfer KF, Verstege J (1996) Compact and Operation Oriented Visualization of Complex System States. In: Proc. of OGRE Session, Paris, France, pp 39–107

    Google Scholar 

  4. Overbye TJ, Weber RD (2001) Visualizing the Electric Grid. IEEE Spectrum , vol 38, pp 52–58

    Article  Google Scholar 

  5. Bacher R (1995) Graphical Interaction and Visualization for the Analysis and Interpretation of Contingency Analysis Results. In: Proc. of 19<sup>th</sup> Power Industry Computer Application Conference (PICA), Salt Lake City, USA, pp 128–134

    Chapter  Google Scholar 

  6. Avouris NM (2001) Abstractions for Operator Support in Energy Management Systems. Int. Journal of Electrical Power Energy Systems, vol 23, pp 333–341

    Article  Google Scholar 

  7. Rasmussen J (1986) Information Processing and Human-Machine Interaction — An Approach to Cognitive Engineering. North-Holland, Elsevier Science Publishing, New York

    Google Scholar 

  8. Handschin E, Leder C (2001) Innovative Visualization of the Power System State for a Predictive Process Control. Electrical Engineering, vol 83, no 5/6, pp 297–301

    Article  Google Scholar 

  9. Lind M (1991) Representations and Abstractions for Interface Design Using Multilevel Flow Modelling. In: Human-Computer Interaction and Complex Systems, Academic Press, London

    Google Scholar 

  10. Brosda J, Handschin E, Leder C (2002) Hierarchical Visualization of Network Congestions. In: Proc. of 14<sup>th</sup> Power Systems Computation Conference (PSCC), Sevilla, Spain

    Google Scholar 

  11. Lemaître C, Paul JP, Tesseron JM, Harmand Y, Zhao YS (1990) An Indicator of the Risk of Voltage Instability for Real-Time Control Applications. IEEE Trans. Power Systems, vol 5, pp 154–161

    Article  Google Scholar 

  12. Handschm E, Leder C (2001) Automatic Decision Support with a new Visualization Concept for Power Systems. In: Proc. of IEEE Power Tech ‘01, Porto, Portugal

    Google Scholar 

  13. Kundur P. (1994) Power System Stabilitby and Control. McGraw-Hill, New York

    Google Scholar 

  14. IEC 60073 (2002) Basic and safety principles for man-machine interface, marking and identification — Coding principles for indication devices and actuators.

    Google Scholar 

  15. Nielsen J (1994) Usability Engineering. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  16. Leder C. (2002) Visualisierungskonzepte für die Prozesslenkung elektrischer Energieübertragungssysteme. Dissertation University of Dortmund, http://eldorado.uni-dortmund.de:8080/FB8/ls4/forschung/2002/Leder

    Google Scholar 

  17. Leder C, Rehtanz C (2000) Stability Assessment of Electric Power Systems using Growing Neural Gas and self-organizing maps. In: Proc. of 8<sup>th</sup> European Symposium on Artificial Neural Networks, ESANN 2000, Bruges, Belgium

    Google Scholar 

  18. Kohonen T (1997) Self-organizing Maps. Springer-Verlag, Berlin, Germany

    Book  Google Scholar 

  19. Rehtanz C (2002) Intelligente System in der elektrischen Energieversorgung. VDI Verlag, Düsseldorf

    Google Scholar 

  20. Wehenkel LA (1998) Automatic Learning Techniques in Power Systems. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  21. Amin M (2001) Toward Self-Healing Energy Infrastructure Systems. IEEE Computer Applications in Power, vol 14, no 1, pp. 20–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leder, C. (2003). Agent Based Power System Visualization. In: Autonomous Systems and Intelligent Agents in Power System Control and Operation. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05955-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05955-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07290-1

  • Online ISBN: 978-3-662-05955-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics