Agent Based Power System Visualization

  • Carsten Leder
Part of the Power Systems book series (POWSYS)


Many of the above described multi-agent solutions directly or indirectly support the control center staff within the difficult task of power system operation. Whereas intelligent agents solve subtasks autonomously, the supervision of the system state as a whole is still a human task. Therefore the user interface for energy management systems must be closely adapted to the human decision process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mahadev PM, Christie RD (1993) Envisioning power system data: concepts and a prototype system state representation. IEEE Trans. Power Systems, vol 8, pp 1084–1090CrossRefGoogle Scholar
  2. [2]
    Hauser AJ, Verstege JF (1999) Seeing global power system states with compact visualisation techniques. In: Proc. of IEEE Power Tech ‘99, Budapest, Hungary, BPT 99–271–23Google Scholar
  3. [3]
    Sprenger W, Stelzner P, Schellstede G, Schäfer KF, Verstege J (1996) Compact and Operation Oriented Visualization of Complex System States. In: Proc. of OGRE Session, Paris, France, pp 39–107Google Scholar
  4. [4]
    Overbye TJ, Weber RD (2001) Visualizing the Electric Grid. IEEE Spectrum , vol 38, pp 52–58CrossRefGoogle Scholar
  5. [5]
    Bacher R (1995) Graphical Interaction and Visualization for the Analysis and Interpretation of Contingency Analysis Results. In: Proc. of 19<sup>th</sup> Power Industry Computer Application Conference (PICA), Salt Lake City, USA, pp 128–134CrossRefGoogle Scholar
  6. [6]
    Avouris NM (2001) Abstractions for Operator Support in Energy Management Systems. Int. Journal of Electrical Power Energy Systems, vol 23, pp 333–341CrossRefGoogle Scholar
  7. [7]
    Rasmussen J (1986) Information Processing and Human-Machine Interaction — An Approach to Cognitive Engineering. North-Holland, Elsevier Science Publishing, New YorkGoogle Scholar
  8. [8]
    Handschin E, Leder C (2001) Innovative Visualization of the Power System State for a Predictive Process Control. Electrical Engineering, vol 83, no 5/6, pp 297–301CrossRefGoogle Scholar
  9. [9]
    Lind M (1991) Representations and Abstractions for Interface Design Using Multilevel Flow Modelling. In: Human-Computer Interaction and Complex Systems, Academic Press, LondonGoogle Scholar
  10. [10]
    Brosda J, Handschin E, Leder C (2002) Hierarchical Visualization of Network Congestions. In: Proc. of 14<sup>th</sup> Power Systems Computation Conference (PSCC), Sevilla, SpainGoogle Scholar
  11. [11]
    Lemaître C, Paul JP, Tesseron JM, Harmand Y, Zhao YS (1990) An Indicator of the Risk of Voltage Instability for Real-Time Control Applications. IEEE Trans. Power Systems, vol 5, pp 154–161CrossRefGoogle Scholar
  12. [12]
    Handschm E, Leder C (2001) Automatic Decision Support with a new Visualization Concept for Power Systems. In: Proc. of IEEE Power Tech ‘01, Porto, PortugalGoogle Scholar
  13. [13]
    Kundur P. (1994) Power System Stabilitby and Control. McGraw-Hill, New YorkGoogle Scholar
  14. [14]
    IEC 60073 (2002) Basic and safety principles for man-machine interface, marking and identification — Coding principles for indication devices and actuators.Google Scholar
  15. [15]
    Nielsen J (1994) Usability Engineering. Morgan Kaufmann Publishers, San FranciscoGoogle Scholar
  16. [16]
    Leder C. (2002) Visualisierungskonzepte für die Prozesslenkung elektrischer Energieübertragungssysteme. Dissertation University of Dortmund, Scholar
  17. [17]
    Leder C, Rehtanz C (2000) Stability Assessment of Electric Power Systems using Growing Neural Gas and self-organizing maps. In: Proc. of 8<sup>th</sup> European Symposium on Artificial Neural Networks, ESANN 2000, Bruges, BelgiumGoogle Scholar
  18. [18]
    Kohonen T (1997) Self-organizing Maps. Springer-Verlag, Berlin, GermanyCrossRefGoogle Scholar
  19. [19]
    Rehtanz C (2002) Intelligente System in der elektrischen Energieversorgung. VDI Verlag, DüsseldorfGoogle Scholar
  20. [20]
    Wehenkel LA (1998) Automatic Learning Techniques in Power Systems. Kluwer Academic Publishers, DordrechtzbMATHCrossRefGoogle Scholar
  21. [21]
    Amin M (2001) Toward Self-Healing Energy Infrastructure Systems. IEEE Computer Applications in Power, vol 14, no 1, pp. 20–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carsten Leder
    • 1
  1. 1.Institute of Electric Power SystemsUniversity of DortmundGermany

Personalised recommendations