Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 36))

Abstract

According to the generally accepted model, a chemical reaction takes place when reactants with excess energies pass over an activated state and change into products, shown by the dotted line in Fig. 4.1. This type of reaction is here called a classical reaction. A chemical reaction is an exchange of atoms or molecules. Since hydrogen is the lightest atom, the wave property of hydrogen plays an important role in a hydrogen-atom (molecule) exchange reaction. A new type of chemical reaction takes place by passing through the potential energy barrier for the reaction by a quantum-mechanical tunneling effect due to the wave character of the hydrogen atom or molecule, as shown by the dashed line in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aratono, Y., Matsumoto, T., Takayanagi, T., Kumada, T., Komaguchi, K., Miyazaki, Y. (1998): J. Phys. Chem. 102, 1501

    Article  Google Scholar 

  • Bell, R.P. (1980): The Tunnel Effect in Chemistry, Chapman and Hall, London

    Google Scholar 

  • Brooks, R.L., Bose, S.K., Hunt, J.L., MacDonald, J.R., Poll, J.D. (1985): Phys. Rev. B 32, 2478

    Article  ADS  Google Scholar 

  • Doba, T., Ingold, K.U., Siebrand, W., Wildman, T.A. (1984): Faraday Discuss. Chem. Soc. 78, 175

    Google Scholar 

  • Ebner, C., Sung, C.C. (1972): Phys. Rev. A 5, 2625

    Article  ADS  Google Scholar 

  • Fujitani, Y., Miyazaki, T., Fueki, K., Masaki, N.M., Aratono, Y., Saeki, M., Tachikawa, E. (1991): J. Phys. Chem. 95, 1651

    Article  Google Scholar 

  • Gains, J.R., Fedders, P.A., Collins, G.W., Sater, J.D., Souer, P.C. (1995): Phys. Rev. B 52, 7243

    Article  ADS  Google Scholar 

  • Glasstone, S., Laidler, K.J., Eyring, H. (1941): The Theory of Rate Processes, McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  • Goldanskii, V.L., Benderskii, V.A., Trakhtenberg, L.I. (1989): Advances in Chem. Phys. 75, 349

    Google Scholar 

  • Goncharov, A.F., Hemley, R.J., Mao, H., Shu, J. (1998): Phys. Rev. Lett. 80, 101

    Article  ADS  Google Scholar 

  • Hakuta, K., Suzuki, M., Katsuragawa, M., Li, J.Z. (1997): Phys. Rev. Lett. 79, 209

    Article  ADS  Google Scholar 

  • Hancock, G.C., Mead, C.A., Truhlar, D.G., Varandas, A.J.C. (1989): J. Chem. Phys. 91, 3492

    Article  ADS  Google Scholar 

  • Hudson, R.L., Shiotani, M., Williams, F. (1977): Chem. Phys. Lett. 48, 193

    Article  ADS  Google Scholar 

  • Ichikawa, T., Tachikawa, H., Kumagai, J., Kumada, T., Miyazaki, T. (1997): J. Phys. Chem. A 101, 7315

    Article  Google Scholar 

  • Ichikawa, T., Tachikawa, H., Kumada, T., Kumagai, J., Miyazaki, T. (1999): Chem. Phys. Lett. 307, 283

    Article  ADS  Google Scholar 

  • Ivanov, G.K., Kozhushner, M.A., Trakhtenberg, L.I. (2000): Chem. Phys. Lett. 322, 78

    Article  ADS  Google Scholar 

  • Ivliev, A.V., Katunin, A.Ya., Lukashevich, I.I., Sklyarevskii, V.V., Suraev, V.V., Filippov, V.V., Filippov, N.L, Shevtsov, V.A. (1982): JETP Lett. 36, 472

    ADS  Google Scholar 

  • Kadono, R. (1997): Appl. Magn. Reson. 13, 37

    Article  Google Scholar 

  • Kagan, Yu. (2002): private discussion in Moscow

    Google Scholar 

  • Kagan, Yu., Prokofev, N.V. (1992): Quantum Tunneling Diffusion in Solid. In: Kagan Yu., Leggett A. J. (eds) Quantum Tunneling in Condensed Media. North-Holland, Amsterdam, p. 37

    Google Scholar 

  • Komaguchi, K., Kumada, T., Aratono, Y., Miyazaki, T. (1997): Chem. Phys. Lett. 268, 493

    Article  ADS  Google Scholar 

  • Komaguchi, K., Kumada, T., Takayanagi, T., Aratono, Y., Shiotani, M., Miyazaki, T. (1999): Chem. Phys. Lett. 300, 257

    Article  ADS  Google Scholar 

  • Kumada, T., Inagaki, H., Nagasawa, T., Aratono, Y., Miyazaki, T. (1996a): Chem. Phys. Lett. 251, 219

    Article  ADS  Google Scholar 

  • Kumada, T., Komaguchi, K., Aratono, Y., Miyazaki, T. (1996b): Chem. Phys. Lett. 261, 463

    Article  ADS  Google Scholar 

  • Kumada, T., Kitagawa, N., Noda, T., Kumagai, J., Aratono, Y., Miyazaki, T. (1998): Chem. Phys. Lett. 288, 755

    Article  ADS  Google Scholar 

  • Kumada, T., Kitagawa, N., Mori, S., Kumagai, J., Aratono, Y., Miyazaki, T. (1999a): J. Low Temp. Phys. 114, 413

    Article  ADS  Google Scholar 

  • Kumada, T., Mori, S., Kumagai, J., Aratono, Y., Miyazaki, T. (1999b): J. Phys. Chem. A 103, 8966

    Article  Google Scholar 

  • Kumada, T., Kumagai, J., Miyazaki, T. (2001a): J. Chem. Phys. 114, 10024

    Article  ADS  Google Scholar 

  • Kumada, T., Mori, S., Nagasaka, T., Kumagai, J., Miyazaki, T. (2001b): J. Low Temp. Phys. 122, 265

    Article  ADS  Google Scholar 

  • Kumada, T., Sakakibara, M., Nagasaka, T., Fukuta, H., Kumagai, J., Miyazaki, T. (2002): J. Chem. Phys. 116, 1109

    Article  ADS  Google Scholar 

  • Kumagai, J., Noda, T., Miyazaki, T. (2000): Chem. Phys. Lett. 321, 8

    Article  ADS  Google Scholar 

  • Kurosaki, Y., Takayanagi, T. (1999): J. Chem. Phys. 110, 10830

    Article  ADS  Google Scholar 

  • Lee, K., Miyazaki, T., Fueki, K., Gotoh, K. (1987): J. Phys. Chem. 91, 180

    Article  Google Scholar 

  • Le Roy, D.J., Ridley, B.A., Quickert, K.A. (1967): Discuss. Faraday Soc. 44, 92

    Article  Google Scholar 

  • Li, D., Voth, A. (1994): J. Chem. Phys. 100, 1785

    Article  ADS  Google Scholar 

  • Meyer, H. (1998): Low Temp. Phys. 24, 381

    Article  ADS  Google Scholar 

  • Mezhov-Deglin, L.P., Levchenko, A.A., Trusov, A.B. (1998): J. Low Temp. Phys. 111, 545

    Article  ADS  Google Scholar 

  • Miyazaki, T. (1991): Radiat. Phys. Chem. 37, 635

    Google Scholar 

  • Miyazaki, T. (2002): J. Nucl. Sci. Technol. 39, 339

    Article  MathSciNet  Google Scholar 

  • Miyazaki, T. (2003): Adv. Quantum Chem. in press

    Google Scholar 

  • Miyazaki, T., Lee, K., Fueki, K., Takeuchi, A. (1984): J. Phys. Chem. 88, 4959

    Article  Google Scholar 

  • Miyazaki, T., Iwata, N., Fueki, K., Hase, H. (1990): J. Phys. Chem. 94, 1702

    Article  Google Scholar 

  • Miyazaki, T., Kitamura, S., Morikita, H., Fueki, K. (1992): J. Phys. Chem. 96, 10331

    Article  Google Scholar 

  • Miyazaki, T., Kitamura, S., Kozono, Y., Matsunaga, H. (1994a): J. Phys. Chem. 98, 10767

    Article  Google Scholar 

  • Miyazaki, T., Yamamoto, K., Arai, J. (1994b): Chem. Phys. Lett. 219, 405

    Article  ADS  Google Scholar 

  • Miyazaki, T., Kumada, T., Komaguchi, K., Aratono, Y. (1997): Radiat. Phys. Chem. 50, 523

    Article  ADS  Google Scholar 

  • Miyazaki, T., Kumada, T., Kitagawa, N., Komaguchi, K., Aratono, Y. (1998): J. Low Temp. Phys. 111, 453

    Article  ADS  Google Scholar 

  • Miyazaki, T., Mori, S., Nagasaka, T., Kumagai, J., Aratono, Y., Kumada, T. (2000): J. Phys. Chem. A 104, 9403

    Article  Google Scholar 

  • Miyazaki, T., Kumagai, J., Kumada, T. (2001): Radiat. Phys. Chem. 60, 381

    Article  ADS  Google Scholar 

  • Miyazaki, T., Fukuta, H., Hanabusa, M., Kumada, T., Kumagai, J. (2002): Chem. Phys. Lett. 360, 8

    Article  ADS  Google Scholar 

  • Momose, T., Shida, T. (1998): Bull. Chem. Soc. Jpn. 71, 1

    Article  Google Scholar 

  • Momose, T., Hoshina, H., Sogoshi, N., Katsuki, H., Wakabayashi, T., Shida, T. (1998): J. Chem. Phys. 108, 7334

    Article  ADS  Google Scholar 

  • Momose, T., Lindsay, C.M., Zhang, Yu., Oka, T. (2001): Phys. Rev. Lett. 86, 4795

    Article  ADS  Google Scholar 

  • Moore, W.J. (1972): Physical Chemistry, Prentice-Hall, Inc., New Jersey

    Google Scholar 

  • Motizuki, K., Nagamiya, T. (1959): J. Phys. Soc. Jpn. 14, 1639

    Article  ADS  Google Scholar 

  • Oka, T. (1993): Annu. Rev. Phys. Chem. 44, 299 90 T. Miyazaki

    Google Scholar 

  • Rall, M., Zhou, D., Kisvarsanyi, E.G., Sullivan, N.S. (1992): Phys. Rev. B 45, 2800

    Article  ADS  Google Scholar 

  • Shevtsov, V., Frolov, A., Lukashevich, I., Ylinen, E., Malmi, P., Punkkinen, M. (1994): J. Low Temp. Phys. 95, 815

    Article  ADS  Google Scholar 

  • Shevtsov, V., Kumada, T., Aratono, Y., Miyazaki, T. (2000): Chem. Phys. Lett. 319, 535

    Article  ADS  Google Scholar 

  • Shinsaka, K., Hatano, Y. (1993): Nucl. Instr. Methods A 327, 7

    Article  ADS  Google Scholar 

  • Silvera, I.F. (1980): Rev. Modern Phys. 52, 393

    Article  ADS  Google Scholar 

  • Souers, P.C. (1986): Hydrogen Properties for Fusion Energy, University of California Press, Berkeley, CA.

    Google Scholar 

  • Storchak, V.G., Brewer, J.H., Morris, G.D. (1994): Hyperfine Interact. 85, 31 Suter, H.U., Engels, B., Lunell, S. (2001): Adv. Quantum Chem. 40, 133

    ADS  Google Scholar 

  • Symons, M.C.R., Woolley, R.G. (2000): Phys. Chem. Chem. Phys. 2, 217

    Article  Google Scholar 

  • Takayanagi, T., Sato, S. (1990): J. Chem. Phys. 92, 2862

    Article  ADS  Google Scholar 

  • Takayanagi, T., Masaki, N., Nakamura, K., Okamoto, M., Sato, S., Schatz, G.C. (1987): J. Chem. Phys. 86, 6133

    Article  ADS  Google Scholar 

  • Takayanagi, T., Nakamura, K., Sato, S. (1989): J. Chem. Phys. 90, 1641

    Article  ADS  Google Scholar 

  • Tachiya, M. (1986): J. Chem. Phys. 84, 6178

    Article  ADS  Google Scholar 

  • Toriyama, K., Nunome, K., Iwasaki, M. (1977): J. Am. Chem. Soc. 99, 5823

    Article  Google Scholar 

  • Trainor, D.W., Ham, D.O., Kaufman, F. (1973): J. Chem. Phys. 58, 4599

    Article  ADS  Google Scholar 

  • Tsuruta, H., Miyazaki, T., Fueki, K., Azuma, N. (1983): J. Phys. Chem. 87, 5422

    Article  Google Scholar 

  • Vigliotti, F., Cavina, A., Bressler, Ch., Lang, B., Chergui, M. (2002): J. Chem. Phys. 116, 4542

    Article  ADS  Google Scholar 

  • Zhou, D., Edwards, C.M., Sullivan, N.S. (1989): Phys. Rev. Lett. 62, 1528

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyazaki, T. (2004). Atom Tunneling Reactions in Quantum Solid Hydrogen. In: Miyazaki, T. (eds) Atom Tunneling Phenomena in Physics, Chemistry and Biology. Springer Series on Atomic, Optical, and Plasma Physics, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05900-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05900-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05684-0

  • Online ISBN: 978-3-662-05900-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics