Skip to main content

Evaluation of Current Soil Bioremediation Technologies

  • Chapter
Applied Bioremediation and Phytoremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 1))

Abstract

Bioremediation competes with other methods as an approach to an environmental cleanup of contaminated soil. Physicochemical methods available for treatment of petroleum-contaminated soils are generally costly and capital/energy-intensive, and provide destructive or separation approaches, including thermal desorption, incineration, and solvent extraction. Destructive methods often emit large quantities of greenhouse gases. Separation methods are difficult to manage because of the variable nature of the contaminants and soils, and residuals may still require appropriate environmental disposal. Comparisons between methods indicate that biological, thermal and scrubbing methods may be used to remediate soil of contaminants such as petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAH) (except some high molecular weight PAHs), phenols, nitroaromatic and halogenated compounds. Thermal or scrubbing methods have generally been used to degrade polychlorinated biphenyls (PCB), polychlorinated dibenzodi-oxins (PCDD) and polychlorinated dibenzofurans (PCDF). Where bioremediation is effective it is typically the least expensive technology option. This chapter is divided into two main parts. The first section evaluates the component elements or factors which influence technology choice. The second section examines the major technology types and their applicability, supported by performance-based case study examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251

    Article  CAS  Google Scholar 

  • Aislabie J, McLeod M, Fraser R (1998) Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Biores Technol 79:273–276

    Article  CAS  Google Scholar 

  • AMOCO (1989) Operating plan for closure of the sludge pond pit and wastewater treatment lagoon as a single waste management unit. AMOCO Oil, Sugar Creek, MI. Submitted to the Missouri Department of Natural Resources and EPA Region VII, Chicago, IL

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants: diversity and environmental aspects of hydrocarbon biodegradation. BioScience 45:332–338

    Article  Google Scholar 

  • Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int 26:413–416

    Article  CAS  Google Scholar 

  • Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12: 155–172

    Article  CAS  Google Scholar 

  • Beath JM (2000) Consider phytoremediation for waste site cleanup. Chem Eng Prog 96: 61–69

    CAS  Google Scholar 

  • Bedard DL, May RJ (1996) Characterization of the polychlorinated biphenyls in the sediments of Woods Pond: evidence for microbial dechlorination of Aroclor 1260 in situ. Environ Sei Technol 30:237–245

    Article  CAS  Google Scholar 

  • Billingsley KA, Backus SM, Ward OP (1999) Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Appl Microbiol Biotechnol 52:255–260

    Article  CAS  Google Scholar 

  • Billingsley KA, Backus SM, Wilson S, Singh A, Ward OP (2002) Remediation of PCBs in soil by surfactant washing and biodegradation of the wash by Pseudomonas sp. Biotechnol Lett 24:1827–1832

    Article  CAS  Google Scholar 

  • Bosert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, p 435

    Google Scholar 

  • Bosert I, Kachel MW, Bartha R (1984) Fate of hydrocarbons during oily sludge disposal in soil. Appl Environ Microbiol 47:763–767

    Google Scholar 

  • Boufadel MC, Reeser P, Suidan BA, Wrenn J, Cheng XD, Venosa AD (1999) Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environ Technol 20:191–200

    Article  CAS  Google Scholar 

  • Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace. Nat Biotechnol 15:127–128

    Article  CAS  Google Scholar 

  • Briglia N, Middeldorp PJM, Salkinoja-Salonem MS (1994) Mineralization performance of Rhodococcus chlorophenolicus strain PCP-1 in contaminated soil. Soil Biol Biochem 26:377–385

    Article  CAS  Google Scholar 

  • Brown RA, Hicks RJ, Hicks PM (1994) Use of air sparging for in situ bioremediation. In: Hinchee RE (ed) Air sparging for site remediation, CRC Press, Boca Raton, pp 38–55

    Google Scholar 

  • Bruheim P, Eimhjellen K (1998) Chemically emulsified crude oil as substrate for bacterial oxidation: differences in species response. Can Microbiol 44:638–646

    Google Scholar 

  • Bruheim P, Bredholt H, Eimhjellen K (1997) Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43:17–22

    Article  CAS  Google Scholar 

  • Button DK, Robertson BR, Mcintosh D, Juttner F (1992) Interactions between marine bacteria and dissolved phase and beached hydrocarbons after Exxon Valdez oil spill. Appl Environ Microbiol 58:243–251

    CAS  Google Scholar 

  • Chaineau CH, Vidalie JF, Geneste P, Ducreux J, Ballerini D (2000) Bioremediation of a crude oil-polluted clay soil in a temperate zone. Proceedings SPE International Conference on “Health, safety, and the environment in oil and gas exploration and production”, June 26–28, Stavanger, Norway, pp 1–12

    Google Scholar 

  • Chhatre S, Purohit H, Shankar R, Khanna P (1996) Bacterial consortia for crude oil spill remediation. Water Sei Technol 34:187–193

    Article  CAS  Google Scholar 

  • Chiang CY, Salanitro JP, Chai EY, Colthart JD, Klein CL (1989) Aerobic biodegradation of benzene, toluene and xylene in a sandy aquifer: data analysis and computer modeling. Groundwater 27:823–834

    Article  CAS  Google Scholar 

  • Christodoulatos C, Koutsospyros A (1998) Bioslurry reactors. In: Lewandowski GA, DeFilippi LJ (eds) Biological treatment of hazardous waste,Wiley, New York, pp 69–101

    Google Scholar 

  • Cohen AM, Nugegoda D, Gagnon MM (2001) The effect of different oil spill remediation techniques on petroleum hydrocarbon elimination in Australian bass (Mac-quaria novemaculeata). Arch Environ Contam Toxicol 40:264–270

    Article  CAS  Google Scholar 

  • Cole GM (1994) Assessment and remediation of petroleum contaminated sites. CRC, Boca Raton

    Google Scholar 

  • Compeau GC, Mahaffey WD, Patras L (1991) Full-scale bioremediation of contaminated soil and water. Environ Sei Res 41:91–109

    CAS  Google Scholar 

  • Cookson JT (1995) Bioremediation engineering design and application. McGraw Hill, New York

    Google Scholar 

  • Coover MP, Kabrik RM, Stroo HF, Sherman DF (1993) In situ liquid/solids treatment of petroleum impoundment sludges: engineering aspects and field applications. In: Flathman PE, Jerger DE, Exner JH (eds) Bioremediation: field experience. Lewis, Boca Raton, pp 197–224

    Google Scholar 

  • Coppock RW, Monstrom MS (1995) Toxicology of oil-field pollutants in cattle: a review. Vet Hum Toxicol 37:569–576

    CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JWW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dave H, Ramakrishna C, Bhatt BD, Desai JD (1995) Biodegradation of slop oil from the petroleum industry and reclamation of slop oil contaminated soil. World J Microbiol Biotechnol 10:653–656

    Article  Google Scholar 

  • Dibble JT, Bartha R (1979) Rehabilitation of oil-inundated agricultural land: a case history. Soil Sei 128:56–60.

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Persp 109:163–168

    CAS  Google Scholar 

  • Dybas MJ, Tatara GM, Knoll WH, Mayotte TJ, Criddle CS (1995) Niche adjustment for bioaugment with Pseudomonas sp. strain KC. In: Hinchee RE, Frederickson J, Alleman BC (eds) Bioaugmentation for site remediation. Batelle Press, Columbus, OH, pp 77–84

    Google Scholar 

  • Dzantor EK, Chekol T, Vough LR (2000). Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sei Health Part A 35: 1645–1661

    Article  Google Scholar 

  • Edgehill RU (1995) Removal of pentachlorophenol from soil by Arthrobacter strain ATCC 33790. In: Hinchee RE, Frederickson J, Alleman BC (eds) Bioaugmentation for site remediation. Batelle Press, Columbus, OH, pp 85–90

    Google Scholar 

  • Efroymson A, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1444

    CAS  Google Scholar 

  • Ellis B (1994) Reclaiming contaminated land: in situ/ex situ bioremediation of creosote- and petroleum hydrocarbons-contaminated sites. In: Flathman PE, Jerger DE, Exner JH (eds) Bioremediation: field experience, Lewis, Boca Raton, pp 107–144

    Google Scholar 

  • ENSR (1998) Slurry phase bioremediation. Hydrocarb Process August, p 105

    Google Scholar 

  • EPA (1983) Methods for chemical analysis of water and wastes. USEPA, EP-600/4–79-020. Environmental Monitoring and Support Laboratory, Cincinnati, OH

    Google Scholar 

  • EPA (1984) Test methods for evaluating solid waste: physical/chemical methods, 2nd edn. USEPA, EPA-864. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Fayad NM, Overton RE (1995) A unique biodegradation pattern of the oil spilled during the 1991 Gulf War. Mar Pollut Bull 30:239–246

    Article  CAS  Google Scholar 

  • Fayad NM, Edora RL, El-Mubarak AH, Polankos AB (1992) Effectiveness of a bioremediation product in degrading the oil spilled in the 1991 Arabian gulf war. Bull Environ Contam Toxicol 49:787–796

    Article  CAS  Google Scholar 

  • Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Biotechnol 10:208–217

    Article  CAS  Google Scholar 

  • Field RA, Goldstone ME, Lester JN, Perry R (1992) The sources and behavior of tro-pospheric anthropogenic volatile hydrocarbons. Atmos Environ 26A:2983–2996

    CAS  Google Scholar 

  • Fingas M (1996) Oil spills and their cleanup. Chem Ind 24:1005–1008

    Google Scholar 

  • Fogel S (1994) Full-scale bioremediation of No. 6 fuel oil-contaminated soil: laboratory treatability study through site closure. In: Flathman PE, Jerger DE, Exner JH (eds) Bioremediation: field experience. Lewis, Boca Raton, pp 81–103

    Google Scholar 

  • Garrett RM, Pickering IJ, Haith CE, Prince RC (1998) Photooxidation of crude oils. Environ Sei Technol 32:3719–3723

    Article  CAS  Google Scholar 

  • Glaser JA (1993) Engineering approaches using bioremediation to treat crude oil-contaminated shoreline following the Exxon Valdez accident in Alasks. In: Flathman PE, Jerger DE, Exner JH (eds) Bioremediation: field experience. Lewis, Boca Raton, pp 81–103

    Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential availability of soil-sorbed naphthalene to two bacteria. Appl Environ Microbiol 58:1142–1152

    CAS  Google Scholar 

  • Harms H (1996) Bacterial growth on distant naphthalene diffusing through water, air and water-saturated and non-saturated porous media. Appl Environ Microbiol 62: 2286–2293

    CAS  Google Scholar 

  • Harris BC, Bonner JS, Autenrieth RL (1999) Nutrient dynamics in marsh sediments contaminated by an oil spill following a flood. Environ Technol 20:795–810

    Article  CAS  Google Scholar 

  • Held T, Dorr H (2000) In situ remediation. In: Rehm H-J, Reed G (eds) Biotechnology, vol lib, 2nd edn. Wiley-VCH Weinheim, pp 349–384

    Chapter  Google Scholar 

  • Hinchee RE, Olfenbuttel RF (1991) In situ bioreclamation: application and investigations for hydrocarbon contaminated site remediation. Butterworth-Heinmann, Boston

    Google Scholar 

  • Holroyd ML, Caunt P (1995) Large scale soil bioremediation using white-rot fungi. In: Hinchee RE, Frederickson J, Alleman BC (eds) Bioaugmentation for Site Remediation. Batelle Press, Columbus, OH, pp 181–187

    Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biodegradation 1:107–110

    Article  CAS  Google Scholar 

  • Hou FSL, Milke MW, Leung DWM, Macpherson DJ (2001) Variations in phytoremedi-ation performance with diesel-contaminated soil. Environ Technol 22:215–222

    Article  CAS  Google Scholar 

  • Huddieston GM, Gillespie WB, Rodgers JH (2000) Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent. Eco-toxicol Environ Safety 45:188–193

    Article  CAS  Google Scholar 

  • Huesemann MH (1995) Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ Sei Technol 29:7–18

    Article  CAS  Google Scholar 

  • Hughes JB, Nelson Neale C, Ward CH (2000) Bioremediation. In: Lederberg JF (ed) Encyclopedia of Microbiology, vol 1, 2nd edn., Academic Press, San Diego, pp 587–610

    Google Scholar 

  • Jasper DA (1994) Bioremediation of agricultural and forestry soils with symbiotic microorganisms. Aust J Soil Res 32:1301–1319

    Article  Google Scholar 

  • Jimenez IY, Bartha R (1996) Solvent augmented mineralization of pyrene by a Mycobacterium sp. Appl Environ Microbiol 62:2311–2316

    CAS  Google Scholar 

  • Juneson C, Singh A, Ward OP (2001) Biodegradation of bis(ethyl hexyl)phthalate in soil-slurry sequencing batch reactors. Process Biochem 37:305–313

    Article  CAS  Google Scholar 

  • Kanály RA, Bartha R (1999) Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon addition to soil. Environ Toxicol Chem 18:2186–2190

    Google Scholar 

  • Kanály RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[fl]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    Article  Google Scholar 

  • Keet BA (1995) In: Hinchee RE, Kittel JA, Reisinger HJ (eds) Applied Bioremediation of Hydrocarbons. Battelle Press, Columbus, OH, pp 53–59

    Google Scholar 

  • Keith LH (1988) Principles of Environmental Sampling. American Chemical Society, Washington, DC

    Google Scholar 

  • Kleijntjens RHJ, Luyben KChAM (1987) Bioreactors. In: Rehm H-J, Reed G (eds) Biotechnology, vol llb, 2nd edn. Wiley-VCH Weinheim, pp 329–347

    Google Scholar 

  • Klein J (2000) Possibilities, limits and future developments of soil bioremediation. In: Rehm H-J, Reed G (eds) Biotechnology, vol llb, 2nd edn. Wiley-VCH Weinheim, pp 465–507

    Chapter  Google Scholar 

  • Korda A, Sanatas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatment and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–686

    Article  CAS  Google Scholar 

  • Lamar RT, Davis MW, Dietrich DM, Glaser JA (1994) Treatment of a pentachlorophe-nol- and creosote-contaminated soil using the lignin-degrading fungus Phane-rochaete ordida: a field demonstration. Soil Biol Biochem 26:1603–1611

    Article  CAS  Google Scholar 

  • Lee K, DeMora S (1999) In situ bioremediation strategies for oiled shoreline environments. Environ Technol 20:783–794

    Article  CAS  Google Scholar 

  • Lee K, Tremblay GH, Levy EM (1993) Bioremediation: application of slow release fertilizers on low-energy shorelines. Proceedings, International Oil Spill Conference, American Petroleum Institute, Washington, DC, pp 449–454

    Google Scholar 

  • Lee K, Tremblay GH, Cobanli SE (1995) Bioremediation of oiled-beach sediments: assessment of inorganic and organic fertilizers. Proceedings, International Oil Spill Conference, American Petroleum Institute, Washington DC, pp 107–113

    Google Scholar 

  • Lenke H, Warrelmann J, Daun D, Walter U, Sieglen U, Knackmuss H-J (1997) Bioremediation of TNT-contaminated soil by an anaerobic/aerobic process. In: Alleman BC, Leeson A (eds) In situ and on-site bioremediation, vol 2. Battelle Press, Columbus, OH, pp 1–2

    Google Scholar 

  • Lin Q, Mendelssohn IA, Henry Jr CB, Roberts PO, Walsh MM, Overton EB, Portier RJ (1999) Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments. Environ Technol 20:825–837

    Article  CAS  Google Scholar 

  • Lovely DR (2000) Anaerobic benzene degradation. Bio degradation 11:107–116

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Mackova M, Macek T, Ocenaskova J, Burkhard J, Demnerova K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodet Biodeg 49: 317–325

    Article  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Anton van Leeuwen 77:103–116

    Article  CAS  Google Scholar 

  • Mahro B (2000) Bioavailability of contaminants. In: Rehm H-J, Reed G (eds) Biotechnology, vol 1 lb, 2nd edn. Wiley-VCH, Weinheim, pp 61–88

    Chapter  Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  CAS  Google Scholar 

  • McCarthy PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP (1998) Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sei Technol 32:88–100

    Article  Google Scholar 

  • McGrath SP, Sidoli CMD, Baker AJM, Reeves RD (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, pp 673–676

    Chapter  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Mejare M, Buelow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  • Mohandass C, David JJ, Nair S, Loka Bharathi PA, Chandramohan D (1997) Behaviour of marine oil-degrading bacterial populations in a continuous culture system. J Mar Biotechnol 5:168–171

    CAS  Google Scholar 

  • Moseley CL, Meyer MR (1992) Petroleum contamination of an elementary school: a case history involving air, soil-gas, and groundwater monitoring. Environ Sei Technol 26:185–192

    Article  CAS  Google Scholar 

  • Mueller DC, Bonner JS, McDonald SJ, Autenrieth RL (1999) Acute toxicity of estuarine wetland sediments contaminated by petroleum. Environ Technol 20:875–882

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability tests with model solids. Environ Sei Technol 32:71–74

    Article  CAS  Google Scholar 

  • Nelson CH, Hicks RJ, Andrew SD (1994) An integrated systems approach for in situ bioremediation of petroleum hydrocarbon-contaminated soil and groundwater. In: Flathman PE, Jerger DE, Exner JH (eds) Bioremediation: field experience. Lewis, Boca Raton, pp 429–456

    Google Scholar 

  • Nelson EC, Walter MV, Bossert ID, Martin DG (1996) Enhancing biodégradation of petroleum hydrocarbons with guanidium fatty acids. Environ Sei Technol 30:2406–2411

    Article  CAS  Google Scholar 

  • Nenduri KV, Govindraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    Article  Google Scholar 

  • Oolman T, Castaldi FJ, Behrens GP, Owen ML (1992) Biotreat oily refinery waste. Hydro-carb Proc August:67–69

    Google Scholar 

  • Pannu JK, Singh A, Ward OP (2003) Influence of peanut oil on microbial degradation of polycyclic aromatic hydrocarbons. Can J Microb 49:508–513

    Article  CAS  Google Scholar 

  • Pearce K, Snyman HG, Oellermann RA, Gerber A (1995) Bioremediation of petroleum-contaminated soil. In: Hinchee RE, Frederickson J, Alleman BC (eds) Bioaugmentation for site remediation. Batelle Press, Columbus, OH, pp 71–76

    Google Scholar 

  • Pletsch M, De Araujo BS, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    Article  CAS  Google Scholar 

  • Pradhan SP, Conrad JT, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480

    Article  CAS  Google Scholar 

  • Preslo LM (1998) Remedial technologies for leaking underground storage tanks. Electrical Power Research Institute. Lewis, Chelsea

    Google Scholar 

  • Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–242

    Article  CAS  Google Scholar 

  • Prince RC (1998) Bioremediation. In: Encyclopedia of chemical technology, supplement to 4th edn., Wiley, New York, pp 48–89

    Google Scholar 

  • Pritchard PH, Costa CF (1991) EPAs Alaska oil spill bioremediation project. Environ Sei Technol 25:372–379

    Article  CAS  Google Scholar 

  • Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Awandhi H, Sorkhoh NA, El-Nemr IM (1998) Rhizospheric hydrocarbon utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwaiti desert. Microbiol Res 153:247–251

    Article  CAS  Google Scholar 

  • Reddy KR, Kosgi S, Zhou J (1995) A review of in situ air sparging for the remediation of VOC-contaminated saturated soils and groundwater. Hazard Waste Hazard Mater 12:97–117

    Article  CAS  Google Scholar 

  • Rieger PG, Knackmuss HJ (1995). Basic knowledge and perspectives on biodégradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Bio degradation of nitroaromatic compounds. Plenum Press, New York, pp 1–18

    Google Scholar 

  • Riggle D (1995) Successful bioremediation with compost. Biocycle 36:57–59

    Google Scholar 

  • Ritt mann BE, Whiteman R (1994) Bio augmentation: a coming of age. Water Qual Int 1:12–16

    Google Scholar 

  • Ro RS, Preston KT, Seiden S, Bergs MA (1998) Remediation composting process principles: focus on soils contaminated with explosives compounds. Grit Rev Environ Sei Technol 28:253–283

    Article  CAS  Google Scholar 

  • Roemer M (2000) Sampling and investigation of soil matter. In: Rehm H-J, Reed G (eds) Biotechnology, vol 1 lb, 2nd edn. Wiley-VCH, Weinheim, pp 477–507

    Chapter  Google Scholar 

  • Rosenberg E (1992) The hydrocarbon-oxidizing bacteria, pp 446–459. In: Balows A, Triiper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Rouse JD, Sabatini DA, Suflita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Microbiol 24:325–370

    CAS  Google Scholar 

  • Salanitro JP (2001) Bioremediation of petroleum hydrocarbons in soil. Adv Agron 72: 53–105

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Schnoor JL (2000) Degradation by plants — phytoremediation of organics. In: Rehm H-J, Reed G (eds) Biotechnology, vol lib, 2nd edn. Wiley-VCH, Weinheim, pp 371–384

    Chapter  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sei Technol 29:318–323

    Google Scholar 

  • Schulz-Berendt V (2000) Bioremediation with heap techniques. In: Rehm H-J, Reed G (eds) Biotechnology, vol lib, 2nd edn.Wiley-VCH, Weinheim, pp 319–328

    Chapter  Google Scholar 

  • Selby DA (1991) A critical review of site assessment methodologies. In: Kostecki PT, Calabrese EJ (eds) Hydrocarbon Contaminated Soils and Groundwater, vol 1. Lewis, Boca Raton, p 149

    Google Scholar 

  • Sewell GW, DeFlaun MF, Baek NH, Kutz E, Weesner B, Mahaffey B (1998) Performance evaluation of an in situ anaerobic biotreatment system for chlorinated solvents. In: Wickramanayak GB, Hinchee RE (eds) Designing and applying treatment technologies for remediation of chlorinated and recalcitrant compounds. Batelle, Columbus, OH, pp 15–20

    Google Scholar 

  • Shin CY, Crawford DL (1995) Biodegradation of trinitrotoluene (TNT) by a strain of Clostridium bifermentans. In: Hinchee RE, Frederickson J, Alleman BC (eds) Bioaugmentation for site remediation, Batelle Press, Columbus, OH, pp 57–69

    Google Scholar 

  • Shin WS, Pardue JH, Jackson WA (2000) Oxygen demand and sulfate reduction in petroleum hydrocarbon contaminated salt marsh soils. Water Res 34:1345–1353

    Article  CAS  Google Scholar 

  • Singh A, Mullin B, Ward OP (2001) Reactor-based process for the biological treatment of petroleum wastes. In: Proceedings Middle East Petrotech 2001 Conference, Bahrain, PN # 200, pp 1–13

    Google Scholar 

  • Stroo HF (1989) Biological treatment of petroleum sludges in liquid/solids reactors. Environ Waste Manage World 3:9–12

    Google Scholar 

  • Suominenen L, Jussila MM, Maekelaeinen K, Romantschuk M, Lindstroem K (2000) Evaluation of the Galega-Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ Pollut 107:239–244

    Article  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill biore-mediation. Microbiol Rev 60:342–365

    CAS  Google Scholar 

  • Untermann R, DeFlaun MF, Steffan RJ (2000) Advanced in situ bioremediation — a hierarchy of technology choices. In: Rehm H-J, Reed G (eds) Biotechnology, vol 1 lb, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Valo R, Salkinoja-Saltonen M (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25:68–75

    Article  CAS  Google Scholar 

  • Vandepitte V, Quataert P, DeRore H, Verstraete W (1995) Evaluation of the Gompertz function to model survival of bacteria introduced into soils. Soil Biol Biochem 27: 365–372

    Article  CAS  Google Scholar 

  • Van Hamme J, Ward OP (1999) Influence of chemical surfactants on the biodégradation of crude oil by a mixed bacterial culture. Can J Microbiol 45:130–137

    Article  Google Scholar 

  • Van Hamme JD, Ward OP (2001) Physical and metabolic interactions oí Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl Environ Microbiol 67:4874–4879

    Article  Google Scholar 

  • Venkateswaran K, Harayama S (1995) Sequential enrichment of microbial populations exhibiting enhanced biodégradation of crude oil. Can J Microbiol 41:767–775

    Article  CAS  Google Scholar 

  • Venkateswaran K, Hoaki T, Kato M, Maruyama T (1995) Microbial degradation of resins fractionated from Arabian light crude oil. Can J Microbiol 41:418–424

    Article  CAS  Google Scholar 

  • Venosa AD, Haines JR, Nisamaneepong W, Govind R, Pradhan S, Siddique B (1992) Efficacy of commercial products in enhancing oil biodégradation in closed laboratory reactors. J Ind Microbiol 10:13–23

    Article  CAS  Google Scholar 

  • Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, Holder EL (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sei Technol 30:1764–1775

    Article  CAS  Google Scholar 

  • Vogel T (1996) Bioaugmentation as a soil bioremediation approach. Cur r Opin Biotechnol 7:311–316

    Article  CAS  Google Scholar 

  • Walton BT, Anderson TA (1992) Plant-microbe treatment systems for toxic waste. Curr Opin Biotechnol 3:267–270

    Article  CAS  Google Scholar 

  • Ward OP (1991) Bioprocessing. Open University Press, Milton Keynes, 160 pp

    Book  Google Scholar 

  • Ward OP (1993) On site remediation of toxic chemicals. In: Servizi M (ed) Agricultural and environmental biotechnology, Tipografía, Turin, pp 141–145

    Google Scholar 

  • Ward OP, Singh A (2000) Biodegradation of oil sludge. Canadian Patent #2,229,761

    Google Scholar 

  • Ward OP, Singh A, Van Hamme J (2003) Accelerated biodégradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270

    Article  CAS  Google Scholar 

  • Williams RT, Ziegenfuss PS, Mohrman, GB, Sisk WE (1989) Composting of explosives and propellant contaminated sediments. Hazardous and Industrial Wastes. Proceedings of the 21st Mid-Atlantic Industrial Waste Conference, Technomic, Lancaster, pp 599–611

    Google Scholar 

  • Witt ME, Dybas MJ, Heine RL, Nair S, Criddle CS, Wiggert DC (1995) Bioaugmentation and transformation of carbon tetrachloride in a model aquifer. In: Hinchee RE, Frederickson J, Alleman BC (eds) Bioaugmentation for Site Remediation. Batelle Press, Columbus, OH, pp 221–227

    Google Scholar 

  • Yateem A, Balba MT, Nawawy AS, Al-Awandhi N (2000) Plants-associated remediation of oil-contaminated soil. Int J Phytorem 2:183–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ward, O.P., Singh, A. (2004). Evaluation of Current Soil Bioremediation Technologies. In: Singh, A., Ward, O.P. (eds) Applied Bioremediation and Phytoremediation. Soil Biology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05794-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05794-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05908-7

  • Online ISBN: 978-3-662-05794-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics