Phytoremediation of Metals and Inorganic Pollutants

  • Tomas Macek
  • Daniela Pavlikova
  • Martina Mackova
Part of the Soil Biology book series (SOILBIOL, volume 1)


Within the last two centuries of industrial production, the mining industry and different urban activities caused environmental contamination on a large scale. Agricultural practices, especially those of the twentieth century, are also responsible for the widespread contamination of soil, sediments and water, not to mention wars and different conflicts responsible for production, use and storage of explosives and chemical warfare agents (Macek et al. 1998; French et al. 1999). Considering the rapidly growing world population and the detrimental impact of agricultural systems on the environment (Zechendorf 1999), the cleaning of large contaminated sites is important for ensuring sustainable development, because it might reduce pressure to expand into the wilderness, rainforests and marginal lands, thus supporting biodiversity and preservation of vital ecosystems. Air contamination by volatile toxic compounds is also an important problem.


Heavy Metal Transgenic Plant Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Hairy Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulating plants. Resourc Conserv Recycl 11:41–49CrossRefGoogle Scholar
  2. Batkhuugyin E, Rydlova J, Vosatka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl Soil Ecol 427:1–11Google Scholar
  3. Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sei 21:567–572CrossRefGoogle Scholar
  4. Bizily S, Rugh C, Meagher R (2000) Phyto detoxification of hazardous organomercuri-als by genetically engineered plants. Nat Biotechnol 18:213–217CrossRefGoogle Scholar
  5. Bock C, Kolb M, Bokern M, Harms H, Mackova M, Chroma L, Macek T, Hughes J, Just C Schnoor JL (2002) Advances in phytoremediation: phytotransformation. In: Reible D, Demnerova K (eds) Innovative approaches to the on-site assessment and remediation of contaminated soils. Kluwer, Dordrecht, pp 115–140CrossRefGoogle Scholar
  6. Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127–128CrossRefGoogle Scholar
  7. Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546CrossRefGoogle Scholar
  8. Brooks RR, Chambers MF, Nicks L, Robinson BH (1998) Phytomining. Trends Plant Sei 7:359–362CrossRefGoogle Scholar
  9. Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyper-accumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sei Technol 29:1581–1585CrossRefGoogle Scholar
  10. Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668Google Scholar
  11. Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefGoogle Scholar
  12. Chasaigne H, Vacchina V, Kutchan T, Zenk MH (2001) Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymati-cally in vitro. Phytochemistry 56:657–668CrossRefGoogle Scholar
  13. Chroma L, Moeder M, Kucerova P, Macek T, Mackova M (2003) Plant enzymes in metabolism of polychlorinated biphenyls. Fresenius Environ Bull 12:291–295Google Scholar
  14. Clemens S, Palmgren M, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation, Trends Plant Sei 7:309–315CrossRefGoogle Scholar
  15. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397CrossRefGoogle Scholar
  16. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719Google Scholar
  17. Donnelly PK, Fletcher JS (1994) Potential use of mycorrhizal fungi as bioremediation agents. ACS Symp Ser 563:93–99CrossRefGoogle Scholar
  18. Donnelly PK, Hedge RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:984–988CrossRefGoogle Scholar
  19. Doran PM (1997) Hairy roots: culture and applications. Harwood, LondonGoogle Scholar
  20. Dorlhac de Borne FD, Elmayan T, de Roton Ch, de Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90CrossRefGoogle Scholar
  21. Fletcher JS, Donnelly PK, Hedge RS (1995) Biostimulation of PCB-degrading bacteria by compounds released from plant roots. In: Hinchee RE, Anderson DB, Hoeppel RE (eds) Bioremediation of recalcitrant organics, Battelle Press, Columbus, OH, pp 131–136Google Scholar
  22. Francová K, Macek T, Demnerova K, Mackova M (2001) Transgenic plants — potential tool for the decontamination of the environment, Chem Listy 95:630–637Google Scholar
  23. Francová K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K, Sylvestre M, Mackova M (2003) Preparation of plants containing bacterial enzyme for degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313Google Scholar
  24. French CE, Rosser S J, Davies G J, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494CrossRefGoogle Scholar
  25. Gerth A (2000) Phytoremediation of soil and sludge with special examination of heavy metal contamination. In: Wise DL (ed) Bioremediation of contaminated soils. Marcel Dekker, New York, pp 787–809Google Scholar
  26. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sei USA 96:5973–5977CrossRefGoogle Scholar
  27. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–54CrossRefGoogle Scholar
  28. Griga M, Bjelkova M, Tejklova E (2003) Phytoextraction of heavy metals by fibre crops: Linum usitatissimum L. case study. In: Kalogerakis N, Psillakis E (eds) Proceedings 2nd Eur Bioremediation Conference, Chania, Crete, pp 353–356Google Scholar
  29. Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesised from glutathione by a specific λ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sei USA 84:6838–6846CrossRefGoogle Scholar
  30. Hammer DA (1989) Constructed wetlands for wastewater treatment: Municipal, industrial and agricultural. Lewis, Chelsea, MIGoogle Scholar
  31. Harms H, Kottutz E (1990) In: Nijkamp HJJ, van der Pias LHW, van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 650–655CrossRefGoogle Scholar
  32. Heaton ACP, Rugh CL, Wang N-J, Meagher RB (1998) Phytoremediation of Hg-polluted soils by genetically engineered plants. J Soil Contam 7:497–509CrossRefGoogle Scholar
  33. Jolicoeur M, Bouchard-Marchand E, Becard G, Perrier M (2002) Regulation of mycor-rhizal symbiosis: development of a structured nutritional dual model. Ecol Model 158:121–142CrossRefGoogle Scholar
  34. Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231CrossRefGoogle Scholar
  35. Kayser A, Felix HR (1998) Five years of phytoremediation in the field. In: Timmis KN (ed) Workshop — innovative potential of advanced biological systems for remediationGoogle Scholar
  36. Korda A, Sanatas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatment and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–686 1998, pp 81–86CrossRefGoogle Scholar
  37. Kos B, Lestan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sei Technol 37:624–629CrossRefGoogle Scholar
  38. Kotrba P, Macek T and Ruml T (1999) Heavy-metal binding peptides and proteins in plants — a review. Coll Czech Chem Commun 64:1057–1086CrossRefGoogle Scholar
  39. Krämer U, Chardonay A (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672CrossRefGoogle Scholar
  40. Krijger GC, Harms AV, Leen R, Verburg TG, Wolterbeek B (1999) Chemical forms of technetium in tomato plants; TcO4 -, Tc-cysteine, Tc-glutathione and Tc-proteins. Environ Exp Bot 42:69–81CrossRefGoogle Scholar
  41. Lasat MM (2000) Phyto extraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–125CrossRefGoogle Scholar
  42. Liu JR, Suh MC, Choi D (2000) Phytoremediation of cadmium contamination: Over-expression of metallothionein in transgenic tobacco plants. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 2:126–130CrossRefGoogle Scholar
  43. Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954CrossRefGoogle Scholar
  44. Macek T (1989) Poroporo, Solanum aviculares S. laciniatum: In vitro culture and the production of solasodine. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 7. Springer, Berlin Heidelberg New York, pp 443–467Google Scholar
  45. Macek T, Kotrba P, Suchová M, Skácel F, Demnerová K, Ruml T (1994) Accumulation of cadmium by hairy root cultures. Biotechnol Lett 16:621–624CrossRefGoogle Scholar
  46. Macek T, Macková M, Truksa M, Singh-Cundy A, Kotrba P, Yancey N, Scouten WH (1996) Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem Listy 90:690Google Scholar
  47. Macek T, Kotrba P, Ruml T, Skácel F, Macková M (1997a) Accumulation of cadmium by hairy root cultures. In: Doran PM (ed) Hairy roots: culture and application. Harwood, London, pp 133–138Google Scholar
  48. Macek T, Mackova M, Kotrba P, Truksa M, Singh-Cundy A, Scouten WH, Yancey N (1997b) Attempts to prepare transgenic tobacco with higher capacity to accumulate heavy metals containing yeast metallothionein combined with a polyhistidine. In: Verachtert H, Verstraete W (eds) Environmental biotechnology. Technological Institute, Gent, pp 263–266Google Scholar
  49. Macek T, Macková M, Burkhard J, Demnerová K (1998) Introduction of green plants for the control of metals and organics in remediation. In: Holm FW (ed) Effluents from alternative demilitarization technologies. NATO PS Ser 1, vol 12. Kluwer, Dordrecht, pp 71–85CrossRefGoogle Scholar
  50. Macek T, Macková M, Kucerová P, Burkhard J, Kotrba P, Demnerová K (1999) Phytoremediation — its possible application in chemical weapons demilitarisation. In: Chillcott I (ed) Proc International Congress on Chemical Weapons Demilitarisation, Vienna, July 1999, DERA UK, pp 865–912Google Scholar
  51. Macek T, Macková M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–35CrossRefGoogle Scholar
  52. Macek T, Mackova M, Kucerova P, Chroma L, Burkhard J, Demnerova K (2002a) Phy- toremediation. In: Hofman M, Anne J (eds)., Focus on biotechnology, vol 3, Kluwer, Dordrecht, pp 115–137Google Scholar
  53. Macek T, Macková M, Pavlíková D, Száková J, Truksa M, Cundy AS, Kotrba P, Yancey N, Scouten WH (2002b) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106CrossRefGoogle Scholar
  54. Macková M, Macek T, Burkhard J, Ocenasková J, Demnerova K, Pazlarová J (1997a) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodeter Biodegrad 39:317–325CrossRefGoogle Scholar
  55. Macková M, Macek T, Kucerová P, Burkhard J, Pazlarová J, Demnerova K (1997b) Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum. Biotechnol Lett 19:787–790CrossRefGoogle Scholar
  56. Maliga P (1990) Transformation of N. tabacum by Agrobacterium and particle gun. Molecular and developmental biology of plants. Cold Spring HarborGoogle Scholar
  57. McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhi- zospheres. Plant Physiol Plant Mol Biol 50:695–718CrossRefGoogle Scholar
  58. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants, Curr Opin Plant Biol 3:153–162CrossRefGoogle Scholar
  59. Mejare M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67]–73CrossRefGoogle Scholar
  60. Montes-Bayon M, LeDuc DL, Terry N, Caruso JA (2002) Selenium speciation in wild- type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J Anal Atom Spectrom 17:872–879CrossRefGoogle Scholar
  61. Morel JL, Chaineau CH, Schiavon M, Lichtfouse E (1999) The role of plants in the remediation of contaminated soils. In: Baveye P (ed) Bioavailability of organic xenobi- otics in the environment. Kluwer, Dordrecht, pp 429–449CrossRefGoogle Scholar
  62. Nedelkoska TV, Doran PM (2002) Hyperaccumulation of nickel by hairy root of Alyssum species: comparison with whole regenerated plants. Biotechnol Prog 17: 752–759CrossRefGoogle Scholar
  63. O’Sullivan AD, McCabe OM, Murray DA, Otte ML (1999) Wetlands for rehabilitation of metal mine wastes. Biol Environ 99B: 11–17Google Scholar
  64. Old RW, Primrose SB (1994) Gene transfer to plants: principles of gene manipulation. Blackwell, Oxford Olson PE, Fletcher JS (2000) Ecological recovery of vegetation at a former industrial sludge basin and its implications to phytoremediation. Environ Sei Pollut Res 7: 195–204Google Scholar
  65. Oven M, Raith K, Neubert RHH, Kutchan TM, Zenk MH (2001) Homo-phytochelatins are synthesized in response to cadmium in Azuki beans. Plant Physiol 126:1275 – 1280CrossRefGoogle Scholar
  66. Pilon-Smith E, Pilon M (2002) Phytoremediation of metals using transgenic plants, Crit Rev Plant Sei 21:439–456CrossRefGoogle Scholar
  67. Pletsch M, Santos de Araujo B, Charlwood BV (1999) Novel biotechnological ap proaches in environmental remediation research. Biotechnol Adv 17:679–687CrossRefGoogle Scholar
  68. Plewa MJ, Wagner ED (1992) Metabolic activation of promutagens into mutagenic com pounds by plants. Annu Rev Genet 27:93–102CrossRefGoogle Scholar
  69. Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sei USA 93:3164–3166CrossRefGoogle Scholar
  70. Rout GR, Samantaray S, Das P (1999) In vitro selection and biochemical characterisation of zinc and manganese adapted callus lines in Brassica spp. Plant Sei 137:89–100CrossRefGoogle Scholar
  71. Rudolph A, Becker R, Scholz G, Procházka Z, Toman J, Macek T and Herout V (1985) The occurrence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochem Physiol Pflanzen 180:557–563Google Scholar
  72. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene. Proc Natl Acad Sei USA 93:3182–3187CrossRefGoogle Scholar
  73. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928CrossRefGoogle Scholar
  74. Ryslava E, Krejcik Z, Macek T, Novakova H, Demnerova K, Mackova M (2003) Study of PCB degradation in real contaminated soil. Fresenius Environ Bull 12:296–301Google Scholar
  75. Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705Google Scholar
  76. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology 13:468–474CrossRefGoogle Scholar
  77. Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  78. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic contaminants. Environ Sei Technol 29:318–323Google Scholar
  79. Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10:151–155CrossRefGoogle Scholar
  80. Singer A, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130CrossRefGoogle Scholar
  81. Soudek P, Podlipná R, Vanek T (1998) Phytoremediation of heavy metals by hairy root culture of Armoracia rusticana. Int J Biodeter Biodegrad 42:235–236Google Scholar
  82. Soudek P, Tykva R, Kalisova I, Vanek T (2003) Phytoremediation of heavy metals by sunflower and corn plants. In: Kalogerakis N, Psillakis E (eds) Proceedings, 2nd European Bioremediation Conference, Chania, Crete, pp 353–356Google Scholar
  83. Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293CrossRefGoogle Scholar
  84. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432CrossRefGoogle Scholar
  85. Tlustos P, Balík J, Pavlíková D, Száková J (1997) The uptake of cadmium, zinc, arsenic and lead by chosen crops. Rostl Vyr 43:487–494Google Scholar
  86. Tlustos P, Goessler W, Száková J, Balík J (2002) Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Appl Organomet Chem 16:216–220CrossRefGoogle Scholar
  87. US EPA (1998) A citizens guide to phytoremediation. EPA Technology Fact Sheet, US EPA 542-F-98–011, Technology Innovation Office, US Environmental Protection AgencyGoogle Scholar
  88. van der Lelie D, Schwitzguebel J-P, Glass DJ, Vangronsveld J, Baker A (2001) Assessing phytoremediation’s progress in the US and Europe. Environ Sei Technol 12:446A-452ACrossRefGoogle Scholar
  89. Vosatka M (2001) A future role for the use of arbuscular mycorrhizal fungi in soil remediation: a chance for small-medium enterprises? Minerva Biotechnol 13:69–72Google Scholar
  90. Vymazal J, Brix H, Cooper PF, Haberl R, Perfler R, Laber J (1998) Removal mechanisms and types of constructed wetlands. In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) Constructed wetlands for wastewater treatment in Europe. Backhuys, Leiden, pp 17–23Google Scholar
  91. Wimmer Z, Macek T, Vanek T, Streinz L, Romaòuk M (1987) Biotransformation of 2- (4-methoxybenzyl)-l-cyclohexanone by cell cultures of Solanum avicular e. Biol Plant 29:88–93CrossRefGoogle Scholar
  92. Wollgiehn R, Neumann D (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteins. J Plant Physiol 154:547–553CrossRefGoogle Scholar
  93. Wright DJ, Otte ML (1999) Wetland plants effects on the biogeochemistry of metals beyond the rhizosphere. Biol Environ 99B:3–10Google Scholar
  94. Zakharova EA, Kosterin PV, Brudnik VV, Sherbakov AA, Ponomarjov AS, Ignatov VV (2000) In: Hofman M (ed) Proceedings, 9th European Congress of Biotechnology ECB9, CD-ROM, Branche Belge de la Société de Chemie Industrielle, BrusselsGoogle Scholar
  95. Zechendorf B (1999) Sustainable development: how can biotechnology contribute? Trends Biotechnol 17:219–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tomas Macek
    • 1
  • Daniela Pavlikova
    • 2
  • Martina Mackova
    • 3
  1. 1.Department of Natural Products, Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Department of Agrochemistry and Soil Science, Faculty of AgronomyCzech Technical UniversityPrague 6Czech Republic
  3. 3.Department of Biochemistry and Microbiology, Faculty of Food and Biochemical TechnologyInstitute of Chemical Technology, PraguePrague 6Czech Republic

Personalised recommendations