Skip to main content

Bacillus anthracis Cell Envelope Components

  • Chapter
Anthrax

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 271))

Abstract

Bacillus anthracis is a Gram-positive bacterium harboring a complex parietal architecture. The cytoplasmic membrane is surrounded by a thick peptidoglycan of the A1γ type. Only one associated polymer, a polysaccharide composed of galactose, N-acetylglucosamine, and N-acetylmannosamine, is covalently linked to the peptidoglycan. Outside the cell wall is an S-layer. Two proteins can each compose the S-layer. They are noncovalently anchored to the cell wall polysaccharide by their SLH N-terminal domain. The poly-γ-d-glutamate capsule, which covers the S-layer, has an antiphagocytic role and its synthesis is dependent on environmental factors mimicking the mammalian host, such as bicarbonate and a temperature of 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ascoli A (1911) Die Präzipitindiagnose bei Milzbrand. Zentralbl Bakt Paras Infekt Krank I orig 58: 63–69

    Google Scholar 

  • Ashiuchi M, Soda K, Misono H (1999) A poly-y-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-y-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 263: 6–12

    Article  PubMed  CAS  Google Scholar 

  • Atrih A, Zollner P,Allmaier G, Williamson MP, Foster SJ (1998) Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J Bacteriol 180: 4603–4612

    PubMed  CAS  Google Scholar 

  • Avakyan AA, Katz LN, Levina KN, Pavlova IB (1965) Structure and composition of the Bacillus anthracis capsule. J Bacteriol 90: 1082–1095

    PubMed  CAS  Google Scholar 

  • Bail O (1915) Veränderung der Bakterien in Tierkörper. Ueber die Korrelation zwischen Kapselbildung Sporenbildung und Infektiosität des Milzbrandbazillus. Zentralbl Bakt Paras Infekt Krank I orig 75: 159–173

    Google Scholar 

  • Beveridge TJ, Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55: 684–705

    PubMed  CAS  Google Scholar 

  • Bishop DG, Rutberg L, Samuelson B (1967) The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem 2: 448–453

    Article  PubMed  CAS  Google Scholar 

  • Brückner V, Kovacs J (1953) Structure of poly-d-glutamic acid isolated from capsulated strains of Bacillus anthracis. Nature 172: 508

    Article  PubMed  Google Scholar 

  • Burger M (1950) Anthrax polysaccharides. In: Thomas CC (ed) Bacterial Polysaccharides Springfield, USA, pp 121–134

    Google Scholar 

  • Chauvaux S, Matuschek M, Beguin P (1999) Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes. J Bacteriol 181: 2455–2458

    PubMed  CAS  Google Scholar 

  • Cromartie WJ, Bloom WL, Watson DW (1946a) Studies on infection with Bacillus anthracis. I. A histopathological study of skin lesions produced by Bacillus anthracis in susceptible and resistant animal species. J Infect Dis 80: 1–13

    Article  Google Scholar 

  • Cromartie WJ, Watson DW, Bloom WL, Heckly RJ (1946b) Studies on infection with Bacillus anthracis. II. The immunological and tissue damaging properties of extracts prepared from lesions of Bacillus anthracis infection. J Infect Dis 80: 14–27

    Article  Google Scholar 

  • De Mendoza D, Farias R (1988) Effects of fatty acid supplementation on membrane fluidity in microorganisms. In: Aloia RC, Curtain CC, Gordon LM (eds) Physiological Regulation of Membrane Fluidity. Alan R. Liss, Inc. New York, Vol 3, pp 119–149

    Google Scholar 

  • De Mendoza D, Grau R, Cronan Jr. JE (1993) Biosynthesis and function of membrane lipids. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology Washington, DC, pp 411–421

    Google Scholar 

  • Doyle RJ, Koch AL (1987) The functions of autolysins in the growth and division of Bacillus subtilis. Crit Rev Microbiol 15: 169–222

    Article  PubMed  CAS  Google Scholar 

  • Eastin JD, Thorne CB (1963) Carbon dioxide fixation in Bacillus anthracis. J Bacteriol 85: 410–417

    PubMed  CAS  Google Scholar 

  • Ekwunife FS, Singh J, Taylor KG, Doyle RJ (1991) Isolation and purification of cell wall polysaccharide of Bacillus anthracis (A Sterne). FEMS Microbiol Lett 82:257– 262

    Google Scholar 

  • Ellwood DC, Tempest DW (1972) Effects of environment on bacterial wall content and composition. Adv Microbiol Physiol 7: 83–117

    Article  CAS  Google Scholar 

  • Etienne-Toumelin I, Sirard J-C, Duflot E, Mock M, Fouet A (1995) Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177: 614–620

    PubMed  CAS  Google Scholar 

  • Ezzell Jr. JW, Abshire TG (1988) Immunological analysis of cell-associated antigens of Bacillus anthracis. Infect Immun 56: 349–356

    PubMed  CAS  Google Scholar 

  • Ezzell Jr. JW, Abshire TG, Little SF, Lidgarding BC, Brown C (1990) Identification of Bacillus anthracis by using monoclonal antibody to cell wall galactoseN-acetylglucosamine polysaccharide. J Clin Microbiol 28: 223–231

    PubMed  Google Scholar 

  • Ezzell JW, Abshire TG (1996) Encapsulation of Bacillus anthracis spores and spore identification. In: Turnbull, PCB (ed), Proceedings of the International Workshop on Anthrax. Salisbury Medical Bulletin, Special Supplement n° 87, p. 42

    Google Scholar 

  • Fox A, Black GE, Fox K, Rostovtseva S (1993) Determination of carbohydrate profiles of Bacillus anthracis and Bacillus cereus including identification of O-methyl methylpentoses by using gas chromatography-mass spectrometry. J Clin Microbiol 31: 887–894

    PubMed  CAS  Google Scholar 

  • Gardner JM, Troy FA (1979) Chemistry and biosynthesis of the poly (g-d-glutamyl) capsule in Bacillus licheniformis. Activation, racemization, and polymerization of glutamic acid by a membranous polyglutamyl synthetase complex. J Biol Chem 254: 6262–6269

    Google Scholar 

  • Gerhardt P (1967) Cytology of Bacillus anthracis. Fed Proc 26: 1504–1517

    PubMed  CAS  Google Scholar 

  • Ghuysen J-M (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32: 425–464

    PubMed  CAS  Google Scholar 

  • Goodman JW, Nitecki DE (1967) Studies on the relation of a prior immune response to immunogenicity. Immunology 13: 577–583

    PubMed  CAS  Google Scholar 

  • Graham LL, Beveridge TJ (1994) Structural differentiation of the Bacillus subtilis 168 cell wall. J Bacteriol 176: 1413–1421

    PubMed  CAS  Google Scholar 

  • Green BD, Battisti L, Koehler TM, Thorne CB, Iv ins BE (1985) Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 49: 291–297

    PubMed  CAS  Google Scholar 

  • Guffanti AA, Clejan S, Falk LH, Hicks DB, Krulwich TA (1987) Isolation and characterization of uncoupler resistant mutants of Bacillus subtilis. J Bacteriol 169: 4479–4485

    PubMed  Google Scholar 

  • Haldenwang WG (1995) The sigma factors of Bacillus subtilis. Microbiol Rev 59: 1–30

    PubMed  CAS  Google Scholar 

  • Hanby WE, Rydon HN (1946) The capsular susbtance of Bacillus anthracis. Biochem J 40: 297–309

    CAS  Google Scholar 

  • Hancock IC (1983) Activation and inactivation of secondary wall polymers in Bacillus subtilis W23. Arch Microbiol 134: 222–226

    Article  PubMed  CAS  Google Scholar 

  • Hancock IC (1997) Bacterial cell surface carbohydrates: structure and assembly. Biochem Soc Trans 25: 183–187

    PubMed  CAS  Google Scholar 

  • Holt SC, Leadbetter ER (1969) Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol Rev 33: 346–378

    PubMed  CAS  Google Scholar 

  • Huang X, Helmann JD (1998) Identification of target promoters for the Bacillus subtilis sX factor using a consensus-directed search. J Mol Biol 279: 165–173

    Article  PubMed  CAS  Google Scholar 

  • Ivánovics G, Brückner V (1937a) Notiz zu unserer Mitteilung: chemische und immunologische Studien über den Mechanismus der Milzbrandinfektion und Immunität. Zeitschr Immunitätsf 91: 175–176

    Google Scholar 

  • Ivánovics G, Brückner V (1937b) Chemische und immunologische Studien über den Mechanismus der Milzbrandinfektion und Immunität. Zeitschr Immunitätsf 90: 304–318

    Google Scholar 

  • Iwasaki H, Shimada A, Yokoyama K, Ito E (1989) Structure and glycosylation of lipoteichoic acids in Bacillus strains. J Bacteriol 171: 424–429

    PubMed  CAS  Google Scholar 

  • Jolliffe LK, Doyle RJ, Streips UN (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753–763

    Article  PubMed  CAS  Google Scholar 

  • Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55: 288–302

    PubMed  CAS  Google Scholar 

  • Kawata T, Takeoka A, Takumi K, Masuda K (1984) Demonstration and preliminary characterization of a regular array in the cell wall of Clostridium difficile. FEMS Microbiol Lett 24: 323–328

    Article  CAS  Google Scholar 

  • Koch AL, Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of gram-positive rods. J Theor Biol 117: 137–157

    Article  PubMed  CAS  Google Scholar 

  • König H, Niemetz R (1997) Polyglutamate surface polypeptides in Bacteria and Archae. FEMS Microbiol Rev 20: 36–39

    Google Scholar 

  • Kotiranta A, Haapasalo M, Kari K, Kerosuo E, Olsen I, Sorsa T, Meurman JH, Lounatmaa K (1998) Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infect Immun 66: 4895–4902

    PubMed  CAS  Google Scholar 

  • Kramar E (1922) Untersuchungen über die chemische Beschaffenheit der Kapsel- substanz einiger Kapselbakterien. Centralbl f Bakt I Abt Originale 87: 401–406

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borris R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 237–238

    Article  Google Scholar 

  • Kuroda A, Asami Y, Sekiguchi J (1993) Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol 175: 6260–6268

    PubMed  CAS  Google Scholar 

  • Lawrence D, Heitefuss S, Seifert HS (1991) Differentiation of Bacillus anthracis from Bacillus cereus by gas chromatographic whole-cell fatty acid analysis. J Clin Microbiol 29: 1508–1512

    PubMed  CAS  Google Scholar 

  • Lemaire M, Ohayon H, Gounon P, Fujino T, Béguin P (1995) OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 177: 2451–2459

    PubMed  CAS  Google Scholar 

  • Lennarz WJ (1970) Bacterial lipids. In: Wakil JJ (ed) Lipid Metabolism. Academic Press, Inc. New York

    Google Scholar 

  • Leonard CG, Housewright RD (1963) Polyglutamic acid synthesis by cell-free extracts of Bacillus licheniformis. Biochim Biophys Acta 73: 530–532

    Article  PubMed  CAS  Google Scholar 

  • Lindeque PM, Turnbull PC (1994) Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J Vet Res 61: 71–83

    Google Scholar 

  • Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W (1994) Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol 176: 1224–1233

    PubMed  CAS  Google Scholar 

  • Makino SI, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 171: 722–730

    PubMed  CAS  Google Scholar 

  • Maurer PH (1965) Antigenicity of polypeptides (poly alpha amino acids). XIII. Immunological studies with synthetic polymers containing only d-or d-and l-aamino acids. J Exp Med 121: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Merad T, Archibald AR, Hancock IC, Harwood CR, Hobot JA (1989) Cell wall assembly in Bacillus subtilis: visualization of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid. J Gen Microbiol 135: 645–655

    PubMed  CAS  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, and Fouet A (2000). Bacterial SLH-domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall-polysaccharide pyruvylation. EMBO J 19: 4473–4484

    Article  PubMed  CAS  Google Scholar 

  • Mesnage S, Tosi Couture E, Mock M, Fouet A (1999a) The S-layer homology domain as a means for anchoring heterologous proteins on the cell surface of Bacillus anthracis. J Appl Microbiol 87: 256–260

    Article  PubMed  CAS  Google Scholar 

  • Mesnage S, Tosi-Couture E, Gounon P, Mock M, Fouet A (1998) The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis. J Bacteriol 180: 52–58

    PubMed  CAS  Google Scholar 

  • Mesnage S, Tosi-Couture E, Mock M, Gounon P, Fouet A (1997) Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23: 1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Mesnage S, Weber-Levy M, Haustant M, Mock M, Fouet A (1999b) Cell surface-exposed tetanus toxin fragment C produced by recombinant Bacillus anthracis protects against tetanus toxin. Infect Immun 67: 4847–4850

    PubMed  CAS  Google Scholar 

  • Messner P, Sleytr UB (1992) Crystalline bacterial cell-surface layers. Adv Microb Physiol 33: 212–275

    Google Scholar 

  • Meynell E, Meynell GG (1964) The roles of serum and carbon dioxide in capsule formation by Bacillus anthracis. J Gen Microbiol 34: 153–164

    Article  PubMed  CAS  Google Scholar 

  • Meynell GG, Meynell E (1966) The biosynthesis of poly D-glutamic acid, the capsular material of Bacillus anthracis. J Gen Microbiol 43: 119–138

    Article  PubMed  CAS  Google Scholar 

  • Mignot T, Mesnage S, Couture-Tosi E, Mock M, Fouet A (2002) Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol Microbiol 43: 1615–1627

    Article  PubMed  CAS  Google Scholar 

  • Molnár J, Prágai B (1971) Attempts to detect the presence of teichoic acid in Bacillus anthracis. Acta Microbiol Acad Sci Hung 18: 105–108

    PubMed  Google Scholar 

  • Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181: 6509–6515

    PubMed  CAS  Google Scholar 

  • Olabarría G, Carrascosa JL, de Pedro MA, Berenguer J (1996) A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J Bacteriol 178: 4765–4772

    PubMed  Google Scholar 

  • Parker CW, Thiel JA, Mitchell S (1965) The immunogenicity of hapten-polylysine conjugates. J Immunol 94: 289–294

    PubMed  CAS  Google Scholar 

  • Pooley HM (1976) Layered distribution, according to age, within the cell wall of Bacillus subtilis. J Bacteriol 125: 1139–1147

    PubMed  CAS  Google Scholar 

  • Preisz H (1909) Experimentelle Studien über Virulenz, Empfänglichkeit und Immunität beim Milzbrand. Zeitschr Immunitätsf 5: 341–452

    Google Scholar 

  • Quinn CP, Turnbull PCB (1998) Anthrax. In: Hausler Jr WJ, Sussman M (eds) Microbiology and Microbial Infections: Bacterial Infections. Topley and Wilson’s, Ninth edition London, Sydney, Auckland, Vol 3, pp 799–818

    Google Scholar 

  • Ray KC, Mesnage S, Washburn R, Mock M, Fouet A, Blaser M (1998) Complement binding to Bacillus anthracis mutants lacking surface structures. Abstracts Book Poster 98th General Meeting. American Society for Microbiology Atlanta, Georgia, USA, pp B-418

    Google Scholar 

  • Record BR, Wallis RG (1956) Physicochemical examination of polyglutamic acid from Bacillus anthracis grown in vivo. Biochem J 63: 443–447

    PubMed  CAS  Google Scholar 

  • Ries W, Hotzy C, Schocher I, Sleytr UB, Sára M (1997) Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus pv72/p2 recognizes a secondary cell wall polymer. J Bacteriol 179: 3892–3898

    PubMed  CAS  Google Scholar 

  • Roelants GE, Senyk G, Goodman JW (1969) Immunochemical studies on the polyg-d-glutamyl capsule of Bacillus anthracis. V. The in vivo fate and distribution in rabbits of the polypeptide in immunogenic and nonimmunogenic forms. Israel J Med Sci 5: 196–208

    Google Scholar 

  • Roth IL, Lewis J, CWL, Williams RP (1960) Electron microscope study of Bacillus anthracis in mouse spleen. J Bacteriol 80: 772–782

    PubMed  CAS  Google Scholar 

  • Roth IL, Williams RP (1964) Nature of the cytopathic area surrounding virulent cells of Bacillus anthracis in mouse spleen. J Bacteriol 88: 523–530

    PubMed  CAS  Google Scholar 

  • Salton MRJ (1994) The bacterial cell envelope–a historical perspective. In: Ghuysen J-M, Hakenbeck R (eds.) The Bacterial Cell Wall. Elsevier Science B.V. Amsterdam, The Netherlands, Vol 27, pp 1–22

    Google Scholar 

  • Sára M, Kuen B, Mayer HF, Mandl F, Schuster KC, Sleytr UB (1996) Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and the S-layer-deficient variant T5 in continuous culture and studies of the cell wall composition. J Bacteriol 178: 2108–2117

    PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477

    PubMed  CAS  Google Scholar 

  • Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC, Kuroda A (1995) Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol 177:5582– 5589

    Google Scholar 

  • Shockman GD, Barrett JF (1983) Structure, function and assembly of cell walls of gram-positive bacteria. Ann Rev Microbiol 37: 501–527

    Article  CAS  Google Scholar 

  • Shockman GD, Höltje J-V (1994) Microbial peptidoglycan (murein) hydrolases. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial Cell Wall. Elsevier Science B.V. Amsterdam, The Netherlands, Vol 27, pp 131–166

    Google Scholar 

  • Simonen M, Palva I (1993) Protein secretion in Bacillus species. Microbiol Rev 57: 109–137

    PubMed  CAS  Google Scholar 

  • Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Ann Rev Microbiol 37: 311–339

    Article  CAS  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1993) Crystalline bacterial cell surface layers. Mol Microbiol 10: 911–916

    Article  PubMed  CAS  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1996) Occurrence, location, ultrastructure and morphogenesis of S-Layers. In: Sleytr UW, Messner P, Pum D, Sara M (eds) Crystalline Bacterial Cell Surface Proteins. Academic Press New York, pp 5–33

    Google Scholar 

  • Smith TJ, Blackman SA, Foster SJ (1996) Peptidoglycan hydrolases of Bacillus subtilis 168. Microb Drug Resist 2: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Soldo B, Lazarevic V, Pagni M, Karamata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31: 795–805

    Article  PubMed  CAS  Google Scholar 

  • Takumi K, Koga T, Oka T, Endo Y (1991) Self-assembly, adhesion, and chemical properties of tetragonarly arrayed S-layer proteins of Clostridium. J Gen Appl Microbiol 37: 455–465

    Article  CAS  Google Scholar 

  • Thorne CB (1956) Capsule formation and glutamyl polypeptide synthesis by Bacillus anthracis and Bacillus subtilis. In: Spooner ETC, Stocker BAD (eds) Bacterial Anatomy. Cambridge University Press Cambridge, pp 68–80

    Google Scholar 

  • Thorne CB (1993) Bacillus anthracis. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive Bacteria. American Society for Microbiology Washington, DC, pp 113–124

    Google Scholar 

  • Thorne CB, Leonard CG (1958) Isolation of d-and l-glutamyl polypeptides from culture filtrates of Bacillus subtilis. J Biol Chem 233: 1109–1112

    PubMed  CAS  Google Scholar 

  • Tomcsik J (1956) Bacterial capsules and their relation to the cell wall. In: Spooner ETC, Stocker BAD (eds.) Bacterial Anatomy. Cambridge University Press Cambridge, pp 41–67

    Google Scholar 

  • Tomcsik J, Szongott H (1933) Ueber ein spezifisches Protein der Kapsel des Milzbrandbazillus. Zeitschr Immunitätsf 78: 86–99

    CAS  Google Scholar 

  • Troy FA (1973a) Chemistry and biosynthesis of the poly (y-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane mediated biosynthetic reaction. J Biol Chem 248:305–315

    CAS  Google Scholar 

  • Troy FA (1973b) Chemistry and biosynthesis of the poly (y-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesis polymer. J Biol Chem 248: 316–324

    PubMed  CAS  Google Scholar 

  • Tsuboi A, Tsukagoshi N, Udaka S (1982) Reassembly in vitro of hexagonal surface arrays in a protein-producing bacterium, Bacillus brevis 47. J Bacteriol 151:1485– 1497

    Google Scholar 

  • Uchida I, Makino S, Sasakawa C,Yoshikawa M, Sugimoto C, Terakado N (1993) Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol 9: 487–496

    CAS  Google Scholar 

  • Uchida I, Sekizaki T, Hashimoto K, Terakado N (1985) Association of the encapsulation of Bacillus anthracis with a 60-megadalton plasmid. J Gen Microbiol 131: 363–367

    PubMed  CAS  Google Scholar 

  • Vanden Boom T, Cronan Jr. JE (1989) Genetics and regulation of bacterial lipid metabolism. Annu Rev Microbiol 43: 317–343

    Article  Google Scholar 

  • Welkos SL (1991) Plasmid-associated virulence factors of non-toxigenic (pXO1–) Bacillus anthracis. Microb Pathog 10: 183–198

    Article  PubMed  CAS  Google Scholar 

  • Zipperle Jr. GF, Ezzell Jr. J, Doyle RJ (1984) Glucosamine substitution and muramidase susceptibility in Bacillus anthracis. Can J Microbiol 30: 553–559

    Article  PubMed  CAS  Google Scholar 

  • Zwartouw HT, Smith H (1956) Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggressin activity. Biochem J 63: 437–454

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fouet, A., Mesnage, S. (2002). Bacillus anthracis Cell Envelope Components. In: Koehler, T.M. (eds) Anthrax. Current Topics in Microbiology and Immunology, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05767-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05767-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07799-9

  • Online ISBN: 978-3-662-05767-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics