Skip to main content

Structure and Function of Anthrax Toxin

  • Chapter
Anthrax

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 271))

Abstract

Anthrax toxin is a binary A-B toxin comprised of protective antigen (PA) and two enzymatic moieties, edema factor (EF) and lethal factor (LF). In the presence of a host cell-surface receptor, PA can mediate the delivery of EF and LF from the extracellular milieu into the host cell cytosol to effect toxicity.In this delivery, PA undergoes multiple structural changes — from a monomer to a heptameric prepore to a membrane-spanning heptameric pore. The catalytic factors also undergo dramatic structural changes as they unfold to allow for their translocation across the endosomal membrane and refold to preserve their catalytic activity within the cytosol. In addition to these gross structural changes, the intoxication mechanism depends on the ability of PA to form specific interactions with the host cell receptor, EF, and LF. This chapter presents a review of experiments probing these structural interactions and rearrangements in the hopes of gaining a molecular understanding of toxin action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arora N (1997) Site directed mutagenesis of histidine residues in anthrax toxin lethal factor binding domain reduces toxicity. Mol Cell Biochem 177: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Arora N, Leppla SH (1993) Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem 268: 3334–41

    PubMed  CAS  Google Scholar 

  • Arora N, Leppla SH (1994) Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect Immun 62: 4955–61

    PubMed  CAS  Google Scholar 

  • Ballard JD, Collier RJ, Starnbach MN (1996) Anthrax toxin-mediated delivery of a cytotoxic T-cell epitope in vivo. Proc Natl Acad Sci USA 93: 12531–4

    Article  PubMed  CAS  Google Scholar 

  • Beauregard KE, Collier RJ, Swanson JA (2000) Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell Microbiol 2: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Beauregard KE, Wimer-Mackin S, Collier RJ, Lencer WI (1999) Anthrax toxin entry into polarized epithelial cells. Infect Immun 67: 3026–30

    PubMed  CAS  Google Scholar 

  • Benson EL, Huynh PD, Finkelstein A, Collier RJ (1998) Identification of residues lining the anthrax protective antigen channel. Biochemistry 37: 3941–8

    Article  PubMed  CAS  Google Scholar 

  • Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci USA 93: 8437–42

    Article  PubMed  CAS  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86: 2209–13

    Article  PubMed  CAS  Google Scholar 

  • Bragg TS, Robertson DL (1989) Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G (1990) Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol 111: 2851–9

    Article  PubMed  CAS  Google Scholar 

  • Brossier F, Sirard JC, Guidi-Rontani C, Duflot E, Mock M (1999) Functional analysis of the carboxy-terminal domain of Bacillus anthracis protective antigen. Infect Immun 67: 964–7

    PubMed  CAS  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280: 734–7

    Article  PubMed  CAS  Google Scholar 

  • Eidels L, Proia RL, Hart DA (1983) Membrane receptors for bacterial toxins. Microbiol Rev 47: 596–620

    PubMed  CAS  Google Scholar 

  • Elliott JL, Mogridge J, Collier RJ (2000) A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen. Biochemistry 39: 6706–6713

    Article  PubMed  CAS  Google Scholar 

  • Escuyer V, Collier RJ (1991) Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59: 3381–6

    PubMed  CAS  Google Scholar 

  • Escuyer V, Duflot E, Sezer O, Danchin A, Mock M (1988) Structural homology between virulence-associated bacterial adenylate cyclases. Gene 71: 293–8

    Article  PubMed  CAS  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261: 7123–7126

    PubMed  CAS  Google Scholar 

  • Friedman TC, Gordon VM, Leppla SH, Klimpel KR, Birch NP, Loh YP (1995) In vitro processing of anthrax toxin protective antigen by recombinant PC1 (SPC3) and bovine intermediate lobe secretory vesicle membranes. Arch Biochem Biophys 316: 5–13

    Article  PubMed  CAS  Google Scholar 

  • Gill DM (1978). Seven toxic peptides that cross cell membranes. In Bacterial Toxins and Cell Membranes, J. Jeljaszewicz and T. Wadstrom, eds. ( New York: Academic Press ), pp 291–332.

    Google Scholar 

  • Gladstone GP (1946) Immunity to anthrax: protective antigen present in cell-free culture filtrates. Br J Exp Pathol 27: 349–418

    Google Scholar 

  • Goletz TJ, Klimpel KR, Leppla SH, Keith JM, Berzofsky JA (1997) Delivery of antigens to the MHC class I pathway using bacterial toxins. Hum Immunol 54: 129–36

    Article  PubMed  CAS  Google Scholar 

  • Gordon VM, Klimpel KR,Arora N, Henderson MA, Leppla SH (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63: 82–7

    CAS  Google Scholar 

  • Gordon VM, Leppla SH, Hewlett EL (1988) Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56: 1066–9

    PubMed  CAS  Google Scholar 

  • Gordon VM, Rehemtulla A, Leppla SH (1997) A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect Immun 65: 3370–5

    PubMed  CAS  Google Scholar 

  • Goyard S, Orlando C, Sabatier JM, Labruyere E, d’Alayer J, Fontan G, van Rietschoten J, Mock M, Danchin A, Ullmann A, et al. (1989) Identification of a common domain in calmodulin-activated eukaryotic and bacterial adenylate cyclases. Biochemistry 28: 1964–7

    Article  PubMed  CAS  Google Scholar 

  • Guidi-Rontani C, Weber-Levy M, Mock M, Cabiaux V (2000) Translocation of Bacillus anthracis lethal and oedema factors across endosome membranes. Cell Microbiol 2: 259–264

    Article  PubMed  CAS  Google Scholar 

  • Hanna PC, Kruskal BA, Ezekowitz RA, Bloom BR, Collier RJ (1994) Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med 1: 7–18

    PubMed  CAS  Google Scholar 

  • Klimpel KR, Arora N, Leppla SH (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13: 1093–100

    Article  PubMed  CAS  Google Scholar 

  • Klimpel KR, Molloy SS, Thomas G, Leppla SH (1992) Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA 89: 10277–81

    Article  PubMed  CAS  Google Scholar 

  • Kochi SK, Martin I, Schiavo G, Mock M, Cabiaux V (1994) The effects of pH on the interaction of anthrax toxin lethal and edema factors with phospholipid vesicles. Biochemistry 33: 2604–9

    Article  PubMed  CAS  Google Scholar 

  • Koehler TM, Collier RJ (1991) Anthrax toxin protective antigen: low-pHinduced hydrophobicity and channel formation in liposomes. Mol Microbiol 5: 1501–6

    Article  PubMed  CAS  Google Scholar 

  • Labruyere E, Mock M, Ladant D, Michelson S, Gilles AM, Laoide B, Barzu O (1990) Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase. Biochemistry 29: 4922–8

    Article  PubMed  CAS  Google Scholar 

  • Labruyere E, Mock M, Surewicz WK, Mantsch HH, Rose T, Munier H, Sarfati RS, Barzu O (1991) Structural and ligand-binding properties of a truncated form of Bacillus anthracis adenylate cyclase and of a catalytically inactive variant in which glutamine substitutes for lysine-346. Biochemistry 30: 2619–24

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5: 898–902

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1982a) Anthrax toxin edema factor: a bacterial adenylate cyclase that increase cAMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162– 3166

    Google Scholar 

  • Leppla SH (1982b) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79: 3162–6

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH, Friedlander AM, Cora E (1987). Proteolytic activation of anthrax toxin bound to cellular receptors. In: Bacterial toxins, F. Fehrenbach, J. E. Alouf, P. Falmagne, W. Goebel, J. Jeljaszewicz, D. Jurgens and R. Rappuoli, eds. ( Stuttgart, Germany: Gustav Fischer Verlag ), pp 111–12.

    Google Scholar 

  • Little SF, Leppla SH, Burnett JW, Friedlander AM (1994) Structure-function analysis of Bacillus anthracis edema factor by using monoclonal antibodies. Biochem Biophys Res Commun 199: 676–82

    Article  PubMed  CAS  Google Scholar 

  • Little SF, Leppla SH, Cora E (1988) Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect Immun 56: 1807–13

    PubMed  CAS  Google Scholar 

  • Little SF, Novak JM, Lowe JR, Leppla SH, Singh Y, Klimpel KR, Lidgerding BC, Friedlander AM (1996) Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology 142: 707–15

    Article  PubMed  CAS  Google Scholar 

  • Menard A, Altendorf K, Breves D, Mock M, Montecucco C (1996) The vacuolar ATPase proton pump is required for the cytotoxicity of Bacillus anthracis lethal toxin. FEBS Lett 386: 161–4

    Article  PubMed  CAS  Google Scholar 

  • Mikesell P, Ivins BE, Ristroph JD, Dreier TM (1983) Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun 39: 371–376

    PubMed  CAS  Google Scholar 

  • Miller CJ, Elliott JL, Collier RJ (1999) Anthrax protective antigen: prepore-topore conversion. Biochemistry 38: 10432–41

    Article  PubMed  CAS  Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10: 647–53

    Google Scholar 

  • Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269: 20607–12

    PubMed  CAS  Google Scholar 

  • Mock M, Labruyere E, Glaser P, Danchin A, Ullmann A (1988) Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 64: 77–84

    Article  Google Scholar 

  • Mogridge J, Mourez M, Collier RJ (2001) Involvement of domain 3 in oligomerization by the protective antigen moiety of anthrax toxin.J Bacteriol, 183: 2111–2116

    CAS  Google Scholar 

  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-XArg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267: 16396–402

    PubMed  CAS  Google Scholar 

  • Munier H, Blanco FJ,Precheur B,Diesis E,Nieto JL,Craescu CT, Barzu O (1993) Characterization of a synthetic calmodulin-binding peptide derived from Bacillus anthracis adenylate cyclase. J Biol Chem 268: 1695–701

    CAS  Google Scholar 

  • Munier H, Bouhss A, Krin E, Danchin A, Gilles AM, Glaser P, Barzu O (1992) The role of histidine 63 in the catalytic mechanism of Bordetella pertussis adenylate cyclase. J Biol Chem 267: 9816–20

    PubMed  CAS  Google Scholar 

  • Noskov AN, Kravchenko TB, Noskova VP (1996) [Detection of the functionally active domains in the molecule of protective antigen of the anthrax exotoxin]. Mol Gen Mikrobiol Virusol, 16–20

    Google Scholar 

  • Novak JM, Stein MP, Little SF, Leppla SH, Friedlander AM (1992) Functional characterization of protease-treated Bacillus anthracis protective antigen. J Biol Chem 267: 17186–93

    PubMed  CAS  Google Scholar 

  • Orlando C, d’Alayer J, Baillat G, Castets F, Jeannequin O, Mazie JC, Monneron A (1992) A monoclonal antibody directed against the catalytic site of Bacillus anthracis adenylyl cyclase identifies a novel mammalian brain catalytic subunit. Biochemistry 31: 3215–22

    Article  PubMed  CAS  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385: 833–8

    Article  PubMed  CAS  Google Scholar 

  • Pezard C, Berche P, Mock M (199 1) Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 59: 3472–7

    Google Scholar 

  • Quinn CP, Singh Y, Klimpel KR, Leppla SH (1991) Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J Biol Chem 266: 20124–30

    PubMed  CAS  Google Scholar 

  • Robertson DL (1988) Relationships between the calmodulin-dependent adenylate cyclases produced by Bacillus anthracis and Bordetella pertussis. Biochem Biophys Res Commun 157: 1027–32

    Article  PubMed  CAS  Google Scholar 

  • Robertson DL, Leppla SH (1986) Molecular cloning and expression in Escherichia coli of the lethal factor gene of Bacillus anthracis. Gene 44: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Robertson DL, Tippetts MT, Leppla SH (1988) Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. Gene 73: 363–71

    Article  PubMed  CAS  Google Scholar 

  • Sellman BR, Nassi S, Collier RJ (2001) Point mutations in anthrax protective antigen that block translocation. J Biol Chem, 276: 8371–8376

    Article  PubMed  CAS  Google Scholar 

  • Singh Y, Chaudhary VK, Leppla SH (1989) A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. J Biol Chem 264: 19103–7

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Arora N, Sharma M, Leppla SH (1994) The chymotrypsinsensitive site, FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor. J Biol Chem 269: 29039–46

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Quinn CP, Chaudhary VK, Leppla SH (1991) The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 266: 15493–7

    PubMed  CAS  Google Scholar 

  • Smith H, Keppie J, Stanley JL (1955) The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. anthracis in vivo. Br J Exp Pathol 36: 460–472

    PubMed  CAS  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274: 1859–66

    Article  PubMed  CAS  Google Scholar 

  • Stanley JL, Smith H (1961) Purification of factor I and recognition of a third factor of the anthrax toxin. J Gen Microbiol 26: 49–66

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Leppla SH (1999) Proteasome activity is required for anthrax lethal toxin to kill macrophages. Infect Immun 67: 3055–60

    PubMed  CAS  Google Scholar 

  • Tippetts MT, Robertson DL (1988) Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase. J Bacteriol 170: 2263–6

    PubMed  CAS  Google Scholar 

  • Varughese M, Teixeira AV, Liu S, Leppla SH (1999) Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun 67: 1860–5

    PubMed  CAS  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/ threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248: 706–11

    Article  PubMed  CAS  Google Scholar 

  • Vodkin MH, Leppla SH (1983) Cloning of the protective antigen gene of Bacillus anthracis. Cell 34: 693–7

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Mock M, Ruysschaert JM, Cabiaux V (1996) Secondary structure of anthrax lethal toxin proteins and their interaction with large unilamellar vesicles: a fourier-transform infrared spectroscopy approach. Biochemistry 35: 14939–46

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Wattiez R, Brossier F, Mock M, Falmagne P, Ruysschaert JM, Cabiaux V (1998) Use of a photoactivatable lipid to probe the topology of PA63 of Bacillus anthracis in lipid membranes. Eur J Biochem 256: 179–83

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Wattiez R, Mock M, Falmagne P, Ruysschaert JM, Cabiaux V (1997) Structure and interaction of PA63 and EF (edema toxin) of Bacillus anthracis with lipid membrane. Biochemistry 36: 14906–13

    Article  PubMed  CAS  Google Scholar 

  • Welkos SL, Lowe JR, Eden-McCutchan F, Vodkin M, Leppla SH, Schmidt JJ (1988) Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69: 287–300

    Article  PubMed  CAS  Google Scholar 

  • Wesche J, Elliott JL, Falnes PO, Olsnes S, Collier RJ (1998) Characterization of membrane translocation by anthrax protective antigen. Biochemistry 37: 15737–46

    Article  PubMed  CAS  Google Scholar 

  • Xia ZG, Storm DR (1990) A-type ATP binding consensus sequences are critical for the catalytic activity of the calmodulin-sensitive adenylyl cyclase from Bacillus anthracis. J Biol Chem 265: 6517–20

    PubMed  CAS  Google Scholar 

  • Bradley KA, Mogridge J, Mourez M, Collier RJ,Young, JA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414: 225–229

    CAS  Google Scholar 

  • Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415: 396–402

    Article  PubMed  CAS  Google Scholar 

  • Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR, Whitesides GM, Collier RJ (2001) Designing a polyvalent inhibitor of anthrax toxin. Nat Biotechnol 19: 958–961

    Article  PubMed  CAS  Google Scholar 

  • Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC (2001) Crystal structure of the anthrax lethal factor. Nature 414: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Sellman BR, Mourez M, Collier RJ (2001) Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292: 695–697

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lacy, D.B., Collier, R.J. (2002). Structure and Function of Anthrax Toxin. In: Koehler, T.M. (eds) Anthrax. Current Topics in Microbiology and Immunology, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05767-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05767-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07799-9

  • Online ISBN: 978-3-662-05767-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics