Advertisement

Weitere Prüfverfahren

  • Lothar Sachs

Zusammenfassung

Ist die Wirksamkeit zweier verschiedener Behandlungsmethoden zu vergleichen, so wird in vielen Fällen der Tierversuch erste Aufschlüsse bringen. Nehmen wir an, uns interessieren zwei Salbenpräparate. Die Fragestellung lautet: Besteht hinsichtlich der Wirksamkeit ein Unterschied zwischen den beiden Präparaten oder nicht. Uns stehen Versuchstiere zur Verfügung, an denen wir die Krankheitsherde erzeugen können. Das Maß für die Wirksamkeit sei die erforderliche Behandlungsdauer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adler, F.: Yates correction and the statisticians. J. Amer. Statist. Assoc. 46 (1951), 490–501 (vgl. auch 47 [1952], 303).CrossRefGoogle Scholar
  2. Bateman, G.: On the power function of the longest run as a test for randomness in a sequence of alternatives. Biometrika 35 (1948), 97–112 (vgl. auch 34, 335/9; 44, 168/78; 45, 253/6; 48, 461/5).MathSciNetzbMATHGoogle Scholar
  3. Bennett, B.M.: (1) Tests of hypotheses concerning matched samples. J. Roy. Statist. Soc. B 29 (1967), 468–474. (2) On tests for order and treatment differences in a matched 2 × 2. Biometrische Zeitschr. 13 (1971), 95-99.Google Scholar
  4. —, and Horst, C.: Supplement to Tables for Testing Significance in a 2 × 2 Contingency Table. New York 1966.Google Scholar
  5. Bennett, B.M., and Hsu, P.: On the power function of the exact test for the 2 × 2 contingency table. Biometrika 47 (1960), 393–397 [editorial note 397, 398, correction 48 (1961), 475].MathSciNetGoogle Scholar
  6. Bennett, B.M., and Underwood, R. E.: On McNemar’s test for the 2 × 2 table and its power function. Biometrics 26 (1970), 339–343.CrossRefGoogle Scholar
  7. Bennett, C.A.: Application of tests for randomness: Ind. Eng. Chem. 43 (1951), 2063–2067.Google Scholar
  8. —, and Franklin, N.L.: Statistical Analysis in Chemistry and the Chemical Industry. New York 1954, pp.678, 685.Google Scholar
  9. Berchtold, W.: Die Irrtumswahrscheinlichkeiten des χ2-Kriteriums für kleine Versuchszahlen. Z. angew. Math. Mech. 49 (1969), 634–636.MathSciNetCrossRefGoogle Scholar
  10. Bihn, W.R.: Wandlungen in der statistischen Zeitreihenanalyse und deren Bedeutung für die ökonomische Forschung. Jahrb. Nationalök. Statistik 180 (1967), 132–146 (vgl. auch Parzen 1967 und Nullau 1968).Google Scholar
  11. Birnbaum, Z.W.: Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size. J. Amer. Statist. Assoc. 47 (1952), 425–441.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Blyth, C.R., and Hutchinson, D.W.: Table of Neyman-shortest unbiased confidence intervals for the binomial parameter. Biometrika 47 (1960), 381–391.MathSciNetzbMATHGoogle Scholar
  13. Bogartz, R.S.: A least squares method for fitting intercepting line segments to a set of data points. Psychol. Bull. 70 (1968), 749–755 (vgl. auch 75 [1971], 294-296).CrossRefGoogle Scholar
  14. Box, G.E.P., and Jenkins, G.M.: Time Series Analysis, Forecasting and Control. (Holden-Day, pp.553) San Francisco 1970.Google Scholar
  15. Bradley, J. V.: A survey of sign tests based on the binomial distribution. J. Qual. Technol. 1 (1969), 89–101.Google Scholar
  16. Bredenkamp, J.: F-Tests zur Prüfung von Trends und Trendunterschieden. Z. exper. angew. Psychologie 15 (1968), 239–272.Google Scholar
  17. Bross, I. D. J.: Taking a covariable into account. J. Amer. Statist. Assoc. 59 (1964), 725–736.CrossRefGoogle Scholar
  18. Cochran, W.G.: (1) The comparison of percentages in matched samples. Biometrika 37 (1950), 256–266. (2) The χ2-test of goodness of fit. Ann. Math. Statist. 23 (1952), 315-345. (3) Some methods for strengthening the common chi-square tests. Biometrics 10 (1954), 417-451.MathSciNetzbMATHGoogle Scholar
  19. Conover, W. J.: A Kolmogorov goodness-of-fit test for discontinuous distributions. J. Amer. Statist. Assoc. 67 (1972), 591–596.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Cox, D.R., and Stuart, A.: Quick sign tests for trend in location and dispersion. Biometrika 42 (1955), 80–95.MathSciNetzbMATHGoogle Scholar
  21. Crow, E.L.: Confidence intervals for a proportion. Biometrika 43 (1956), 423–435.MathSciNetzbMATHGoogle Scholar
  22. Croxton, F.E. and Cowden, D.J.: Applied General Statistics. 2nd ed. (Prentice-Hall) New York 1955.Google Scholar
  23. Csorgo, M., and Guttman, I.: On the empty cell test. Technometrics 4 (1962), 235–247.MathSciNetCrossRefGoogle Scholar
  24. Cureton, E.E.: The normal approximation to the signed-rank sampling distribution when zero differences are present. J. Amer. Statist. Assoc. 62 (1967), 1068 + 1069.MathSciNetCrossRefGoogle Scholar
  25. Darling, D. A.: The Kolmogorov-Smirnov, Cramér-von Mises tests. Ann. Math. Statist. 28 (1957), 823–838.MathSciNetzbMATHCrossRefGoogle Scholar
  26. David, F.N.: (1) A χ2’ smooth’ test for goodness of fit, Biometrika 34 (1947), 299-310. (2) Two combinatorial tests of whether a sample has come from a given population. Biometrika 37 (1950), 97–110.zbMATHGoogle Scholar
  27. David, H.A., Hartley, H.O., and Pearson, E.S.: The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika 41 (1954), 482–493.MathSciNetzbMATHGoogle Scholar
  28. Davis, H.T.: The Analysis of Economic Time Series. San Antonio, Texas 1963.Google Scholar
  29. Dixon, W. J., and Mood, A. M.: The statistical sign test. J. Amer. Statist. Assoc. 41 (1946), 557–566.CrossRefGoogle Scholar
  30. Documenta Geigy: Wissenschaftliche Tabellen, 7. Aufl., Basel 1968, S. 85-103 und 109-123.Google Scholar
  31. Duckworth, W.E., and Wyatt, J.K.: Rapid statistical techniques for operations research workers. Oper. Res. Quarterly 9 (1958), 218–233.CrossRefGoogle Scholar
  32. Dunn, J.E.: A compounded multiple runs distribution. J. Amer. Statist. Assoc. 64 (1969), 1415–1423.CrossRefGoogle Scholar
  33. Eisenhart, C., Hastay, M. W., and Wallis, W. A.: Techniques of Statistical Analysis. New York 1947.Google Scholar
  34. Feldman, S.E., and Klinger, E.: Short cut calculation of the Fisher-Yates “exact test”. Psychometrika 28 (1963), 289–291.zbMATHCrossRefGoogle Scholar
  35. Finkelstein, J.M. and Schafer, R.E.: Improved goodness-of-fit tests. Biometrika 58 (1971), 641–645.zbMATHCrossRefGoogle Scholar
  36. Finney, D. J., Latscha, R., Bennett, B.M., and Hsu, P.: Tables for Testing Significance in a 2 × 2 Contingency Table. Cambridge 1963.Google Scholar
  37. Gart, J.J.: An exact test for comparing matched proportions in crossover designs. Biometrika 56 (1969), 75–80 [vgl. auch Biometrics 27 (1971), 945-959 und Rev. Int. Stat. Inst. 39 (1971), 148-169].CrossRefGoogle Scholar
  38. Gebhardt, F.: Verteilung und Signifikanzschranken des 3. und 4. Stichprobenmomentes bei normalverteilten Variablen. Biometrische Zeitschr. 8 (1966), 219–241.Google Scholar
  39. Gildemeister, M. und B.L. Van der Waerden: Die Zulässigkeit des χ2-Kriteriums für kleine Versuchszahlen. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl. 95 (1944), 145–150.Google Scholar
  40. Glasser, G. J.: A distribution-free test of independence with a sample of paired observations. J. Amer. Statist. Assoc. 57 (1962), 116–133.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Good, I.J.: Significance tests in parallel and in series. J. Amer. Statist. Assoc. 53 (1958), 799–813.MathSciNetzbMATHCrossRefGoogle Scholar
  42. Grizzle, J.E.: Continuity correction in the χ2-test for 2 × 2 tables. The American Statistician 21 (Oct. 1967), 28-32 (sowie 23 [April 1969], 35; vgl. auch Biometrics 28 (1972), 693–701).Google Scholar
  43. Harris, B. (Ed.): Spectral Analysis of Time Series. (Wiley, pp. 319) New York 1967.Google Scholar
  44. Horbach, L.: Die Anwendung von Standardisierungsverfahren bei der Auswertung therapeutischer Vergleichsreihen. Arzneimittelforschung 17 (1967), 1279–1288.Google Scholar
  45. Jenkins, G.M.: Spectral Analysis and Its Applications (Holden-Day, pp.520) San Francisco 1968.Google Scholar
  46. —, and Watts, D.E.: Spectrum Analysis and Its Applications. (Holden-Day, pp. 350) San Francisco 1968.Google Scholar
  47. Jesdinsky, H.J.: Orthogonale Kontraste zur Prüfung von Trends. Biometrische Zeitschrift 11 (1969), 252–264.CrossRefGoogle Scholar
  48. Johnson, E.M.: The Fisher-Yates exact test and unequal sample sizes. Psychometrika 37 (1971), 103–106.CrossRefGoogle Scholar
  49. Kincaid, W.M.: The combination of tests based on discrete distributions. J. Amer. Statist. Assoc. 57 (1962), 10–19 [vgl. auch 66 (1971), 802-806 und 68 (1973), 193-194].zbMATHCrossRefGoogle Scholar
  50. Klemm, P.G.: Neue Diagramme für die Berechnung von Vierfelderkorrelationen. Biometrische Zeitschr. 6 (1964), 103–109.CrossRefGoogle Scholar
  51. Kolmogorov, A.: Confidence limits for an unknown distribution function. Ann. Math. Statist. 12 (1941), 461–463.CrossRefGoogle Scholar
  52. Kruskal, W. H.: A nonparametric test for the several sample problem. Ann. Math. Statist. 23 (1952), 525–540.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Kullback, S., Kupperman, M., and Ku, H.H.: An application of information theory to the analysis of contingency tables, with a table of 2n In n, n = 1(1)10000. J. Res. Nat. Bur. Stds. B 66 (1962), 217–243.MathSciNetzbMATHGoogle Scholar
  54. Le Roy, H.L.: Ein einfacher χ2-Test für den Simultanvergleich der inneren Struktur von zwei analogen 2 × 2 — Häufigkeitstabellen mit freien Kolonnen-und Zeilentotalen. Schweizer, landw. Forschg. 1 (1962), 451–454.Google Scholar
  55. Levene, H.: On the power function of tests of randomness based on runs up and down. Ann. Math. Statist. 23 (1952), 34–56.MathSciNetzbMATHCrossRefGoogle Scholar
  56. Li, J. C. R.: Statistical Inference. Vol. I (Edwards Brothers, pp. 658) Ann Arbor, Mich. 1964, p. 466.Google Scholar
  57. Lienert, G.A.: Die zufallskritische Beurteilung psychologischer Variablen mittels verteilungsfreier Schnelltests. Psychol. Beiträge 7 (1962), 183–215.Google Scholar
  58. Lilliefors, H.W.: (1) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Amer. Statist. Assoc. 62 (1967), 399–402, Corrigenda 64 (1969), 1702. (2) On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Amer. Statist. Assoc. 64 (1969), 387-389.CrossRefGoogle Scholar
  59. Ludwig, O.: Über die stochastische Theorie der Merkmalsiterationen. Mitteilungsbl. math. Statistik 8 (1956), 49–82.MathSciNetzbMATHGoogle Scholar
  60. MacKinnon, W.J.: Table for both the sign test and distribution-free confidence intervals of the median for sample sizes to 1,000. J. Amer. Statist. Assoc. 59 (1964), 935–956.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Marascuilo, L.A., and McSweeney, Maryellen: Nonparametric post hoc comparisons for trend. Psychological Bulletin 67 (1967), 401–412.CrossRefGoogle Scholar
  62. Massey jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Amer. Statist. Assoc. 46 (1951), 68–78.zbMATHCrossRefGoogle Scholar
  63. Maxwell, A. E.: Comparing the classification of subjects by two independent judges. Brit. J. Psychiatry 116 (1970), 651–655.CrossRefGoogle Scholar
  64. McCornack, R.L.: Extended tables of the Wilcoxon matched pair signed rank statistic. J. Amer. Statist. Assoc. 60 (1965), 864–871 [vgl. auch 65 (1970), 974-975].MathSciNetCrossRefGoogle Scholar
  65. McNemar, Q.: Note on sampling error of the differences between correlated proportions or percentages. Psychometrika 12 (1947), 153 + 154.CrossRefGoogle Scholar
  66. Miller, L.H.: Table of percentage points of Kolmogorov statistics. J. Amer. Statist. Assoc. 51 (1956), 111–121.MathSciNetzbMATHCrossRefGoogle Scholar
  67. Moore, P.G.: The properties of the mean square successive difference in samples from various populations. J. Amer. Statist. Assoc. 50 (1955), 434–456.zbMATHCrossRefGoogle Scholar
  68. Neumann, J. von, Kent, R.H., Bellinson, H.B., and Hart, B.I.: The mean square successive difference. Ann. Math. Statist. 12 (1941), 153–162.CrossRefGoogle Scholar
  69. Nicholson, W.L.: Occupancy probability distribution critical points. Biometrika 48 (1961), 175–180.MathSciNetzbMATHGoogle Scholar
  70. Nullau, B.: Verfahren zur Zeitreihenanalyse. Vierteljahreshefte zur Wirtschaftsforschung, Berlin 1968, 1, 58–82.Google Scholar
  71. Olmstead, P.S.: Runs determined in a sample by an arbitrary cut. Bell Syst. Techn. J. 37 (1958), 55–82.Google Scholar
  72. Ott, R.L., and Free, S.M.: A short-cut rule for a one-sided test of hypothesis for qualitative data. Technometrics 11 (1969), 197–200.CrossRefGoogle Scholar
  73. Parzen, E.: The role of spectral analysis in time series analysis. Rev. Int. Statist. Inst. 35 (1967), 125–141 (vgl. auch das bei Holden-Day, San Francisco, Calif. 1969 erschienene Werk des Autors: Empirical Time Series Analysis).MathSciNetzbMATHCrossRefGoogle Scholar
  74. Patnaik, P.B.: The power function of the test for the difference between two proportions in a 2 × 2 table. Biometrika 35 (1948), 157–175.MathSciNetzbMATHGoogle Scholar
  75. Paulson, E., and Wallis, W. A.: Planning and analyzing experiments for comparing two percentages. In Eisenhart, Ch., M.W. Hastay and W.A. Wallis (Eds.), Selected Techniques of Statistical Analysis, McGraw-Hill, New York and London 1947, Chapter 7.Google Scholar
  76. Pearson, E.S.: Table of percentage points of √b 1 and b 2 in normal samples; a rounding off. Biometrika 52 (1965), 282–285.Google Scholar
  77. Pearson, E.S., and Hartley, H.O.: Biometrika Tables for Statisticians. Vol.1, 3rd ed., Cambridge 1966, 1970.Google Scholar
  78. Pearson, E.S., and Stephens, M.A.: The ratio of range to standard deviation in the same normal sample. Biometrika 51 (1964), 484–487.MathSciNetzbMATHGoogle Scholar
  79. Plackett, R.L.: The continuity correction in 2 × 2 tables. Biometrika 51 (1964), 327–337.MathSciNetzbMATHGoogle Scholar
  80. Quandt, R.E.: (1) Statistical discrimination among alternative hypotheses and some economic regularities. J. Regional Sci. 5 (1964), 1–23. (2) Old and new methods of estimation and the Pareto distribution Metrika 10 (1966), 55-82.CrossRefGoogle Scholar
  81. Radhakrishna, S.: Combination of results from several 2 × 2 contingency tables. Biometrics 21 (1965), 86–98.MathSciNetCrossRefGoogle Scholar
  82. Rao, C.R.: Linear Statistical Inference and Its Applications. New York 1965, pp. 337-342.Google Scholar
  83. Rehse, E.: Zur Analyse biologischer Zeitreihen. Elektromedizin 15 (1970), 167–180.Google Scholar
  84. Runyon, R.P., and Haber, A.: Fundamentals of Behavioral Statistics. (Addison-Wesley, pp.304) Reading, Mass. 1967, p. 258.Google Scholar
  85. Sachs, L.: (1) Der Vergleich zweier Prozentsätze — Unabhängigkeitstests für Mehrfeldertafeln. Biometrische Zeitschr. 7 (1965), 55–60. (2) Statistische Methoden. Ein Soforthelfer. 2. neubearb. Aufl. (Springer, 105 S.) Berlin, Heidelberg, New York 1972, S. 69/70, 72/75.CrossRefGoogle Scholar
  86. Sandler, J.: A test of the significance of the difference between the means of correlated measures, based on a simplification of Student’s t. Brit. J. Psychol. 46 (1955), 225 + 226.CrossRefGoogle Scholar
  87. Sarris, V.: Nichtparametrische Trendanalysen in der klinisch-psychologischen Forschung. Z. exper. angew. Psychologie 15 (1968), 291–316.Google Scholar
  88. Seeger, P.: Variance analysis of complete designs: Some practical aspects. (Almqvist and Wiksell, pp.225) Uppsala 1966, pp. 166-190.Google Scholar
  89. Seeger, P., and Gabrielsson, A.: Applicability of the Cochran Q test and the F test for statistical analysis of dichotomous data for dependent samples. Psychol. Bull. 69 (1968), 269–277.CrossRefGoogle Scholar
  90. Shapiro, S.S., and Wilk, M.B.: (1) An analysis of variance test for normality (complete samples). Biometrika 52 (1965), 591–611. (2) Approximations for the null distribution of the W statistic. Technometrics 10 (1968), 861-866 (vgl. auch Statistica Neerlandica 22 [1968], 241-248).MathSciNetzbMATHGoogle Scholar
  91. Shapiro, S.S., Wilk, M.B., and Chen, H.J.: A comparative study of various tests for normality. J. Amer. Statist. Assoc. 63 (1968), 1343–1372 [vgl. auch 66 (1971), 760-762].MathSciNetCrossRefGoogle Scholar
  92. Slakter, M.J.: A comparison of the Pearson chi-square and Kolmogorov goodness-of-fit tests with respect to validity. J. Amer. Statist. Assoc. 60 (1965), 854–858; Corrigenda: 61 (1966), 1249.MathSciNetzbMATHCrossRefGoogle Scholar
  93. Smirnov, N.: Tables for estimating the goodness of fit of empirical distributions. Ann. Math. Statist. 19 (1948), 279–281.zbMATHCrossRefGoogle Scholar
  94. Stange, K., und Henning, H.-J.: Formeln und Tabellen der mathematischen Statistik. 2. neu bearb. Aufl., Berlin 1966.Google Scholar
  95. Stephens, M.A.: Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related statistics without extensive tables. J. Roy. Statist. Soc. B 32 (1970), 115–122.Google Scholar
  96. Stevens, W.L.: (1) Distribution of groups in a sequence of alternatives. Ann. Eugenics 9 (1939), 10–17. (2) Accuracy of mutation rates. J. Genetics 43 (1942), 301-307.MathSciNetCrossRefGoogle Scholar
  97. Suits, D.B.: Statistics: An Introduction to Quantitative Economic Research. Chicago, Ill. 1963, Chapter 4.Google Scholar
  98. Swed, Frieda S., and Eisenhart, C.: Tables for testing randomness of grouping in a sequence of alternatives. Ann. Math. Statist. 14 (1943), 83–86.MathSciNetCrossRefGoogle Scholar
  99. Tate, M.W., and Brown, Sara M.: Note on the Cochran Q-test. J. Amer. Statist. Assoc. 65 (1970), 155–160 (vgl. auch Biometrics 21 [1965], 1008-1010).CrossRefGoogle Scholar
  100. Thomson, G. W.: Bounds for the ratio of range to standard deviation. Biometrika 42 (1955), 268 + 269.MathSciNetGoogle Scholar
  101. Tukey, J.W., and McLaughlin, D.H.: Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization. Sankhya Ser. A 25 (1963), 331–352.MathSciNetGoogle Scholar
  102. Ury, H.K.: A note on taking a covariable into account. J. Amer. Statist. Assoc. 61 (1966), 490–495.CrossRefGoogle Scholar
  103. Vessereau, A.: Sur les conditions d’application du criterium χ2 de Pearson. Bull. Inst. Int. Statistique 36(3) (1958), 87–101.MathSciNetGoogle Scholar
  104. Waerden, B.L. van der: Mathematische Statistik. (Springer, 360S.) Berlin und Heidelberg 1965, S. 224/226.Google Scholar
  105. Wallis, W.A.: Rough-and-ready statistical tests. Industrial Quality Control 8 (1952 (5), 35–40.Google Scholar
  106. Wallis, W.A., and Moore, G.H.: A significance test for time series analysis. J. Amer. Statist. Assoc. 36 (1941), 401–409.CrossRefGoogle Scholar
  107. Walter, E.: (1) Über einige nichtparametrische Testverfahren. I, II. Mitteilungsbl. Mathemat. Statistik 3 (1951), 31–44, 73-92. (2) χ2-Test zur Prüfung der Symmetrie bezüglich Null. Mitteilungsbl. Mathemat. Statistik 6 (1954), 92-104. (3) Einige einfache nichtparametrische überall wirksame Tests zur Prüfung der Zweistichprobenhypothese mit paarigen Beobachtungen. Metrika 1 (1958), 81-88.zbMATHGoogle Scholar
  108. Weichselberger, K.: Über eine Theorie der gleitenden Durchschnitte und verschiedene Anwendungen dieser Theorie. Metrika 8 (1964), 185–230.MathSciNetzbMATHCrossRefGoogle Scholar
  109. Wilcoxon, F., Katti, S.K., and Wilcox, Roberta A.: Critical Values and Probability Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed Rank Test. Lederle Laboratories, Division Amer. Cyanamid Company, Pearl River, New York, August 1963.Google Scholar
  110. —, and Wilcox, Roberta A.: Some Rapid Approximate Statistical Procedures. Lederle Laboratories, Pearl River, New York 1964.Google Scholar
  111. Wilk, M.B., and Shapiro, S.S.: The joint assessment of normality of several independent samples. Technometrics 10 (1968), 825–839 [vgl. auch J. Amer. Statist. Assoc. 67 (1972), 215-216].MathSciNetCrossRefGoogle Scholar
  112. Woolf, B.: The log likelihood ratio test (the G-test). Methods and tables for tests of heterogeneity in contingency tables. Ann. Human Genetics 21 (1957), 397–409.CrossRefGoogle Scholar
  113. Yamane, T.: Statistics: An Introductory Analysis. 2nd ed. (Harper and Row, pp.919) New York 1967, pp. 330-367, 845-873.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Lothar Sachs

There are no affiliations available

Personalised recommendations