Advertisement

Vorbemerkungen

  • Lothar Sachs
Chapter

Zusammenfassung

Im folgenden werden einige mathematische Elementarkenntnisse wiederholt. Sie bilden mit wenigen Ausnahmen einen Teil des für die mittlere Reife geforderten Wissens. Diese Kenntnisse reichen vollauf für das Verständnis der im Text behandelten Probleme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ackoff, R.L.: Scientific Method: Optimizing Applied Research Decisions. New York 1962.Google Scholar
  2. Ageno, M., and Frontali, C.: Analysis of frequency distribution curves in overlapping Gaussians. Nature 198 (1963), 1294–1295.Google Scholar
  3. Aitchison, J., and Brown, J.A.C.: The Lognormal Distribution. Cambridge 1957.Google Scholar
  4. Alluisi, E. A.: Tables of binary logarithms, uncertainty functions, and binary log functions. Percept. Motor Skills 20 (1965), 1005–1012.Google Scholar
  5. Anderson, O.: Probleme der statistischen Methodenlehre in den Sozialwissenschaften, 4. Aufl. (Physica-Vlg., 358 S.) Würzburg 1963, Kapitel IV.Google Scholar
  6. Baade, F.: Dynamische Weltwirtschaft. (List, 503 S.) München 1969 (vgl. auch: Weltweiter Wohlstand. Stalling, 224 S., Oldenburg u. Hamburg 1970).Google Scholar
  7. Bachi, R.: Graphical Rational Patterns. A New Approach to Graphical Presentation of Statistics. (Israel Universities Press; pp. 243) Jerusalem 1968.Google Scholar
  8. Barnard, G.A.: The Bayesian controversy in statistical inference. J. Institute Actuaries 93 (1967), 229–269.Google Scholar
  9. Bartko, J.J.: (1) Notes approximating the negative binomial. Technometrics 8 (1966), 345–350 (2) Letter to the Editor. Technometrics 9 (1967), 347 + 348 (siehe auch S. 498).Google Scholar
  10. Bernard, G.: Optimale Strategien unter Ungewißheit. Statistische Hefte 9 (1968), 82–100.Google Scholar
  11. Bertin, J.: Semiology Graphique. Les Diagrammes — Les Reseau — Les Cartes. (Gautier Villars, pp.431) Paris 1967.Google Scholar
  12. Bhattacharya, C.G.: A simple method of resolution of a distribution into Gaussian components. Biometrics 23 (1967), 115–135.Google Scholar
  13. Binder, F.: (1) Die log-normale Häufigkeitsverteilung. Radex-Rundschau (Radentheim, Kärnten) 1962, Heft 2, S. 89–105. (2) Die einseitig und beiderseitig begrenzte lognormale Häufigkeitsverteilung. Radex-Rundschau (Radentheim, Kärnten) 1963, Heft 3, S. 471-485.Google Scholar
  14. Birnbaum, A.: Combining independent tests of significance. J. Amer. Statist. Assoc. 49 (1954), 559–574 [vgl. auch 66 (1971), 802-806].MathSciNetzbMATHGoogle Scholar
  15. Bliss, C.I.: (1) Fitting the negative binomial distribution to biological data. Biometrics 9 (1953), 176–196 and 199-200. (2) The analysis of insect counts as negative binomial distributions. With discussion. Proc. Tenth Internat. Congr. Entomology 1956, 2 (1958), 1015-1032.MathSciNetGoogle Scholar
  16. Blyth, C.R., and Hutchinson, D.W.: Table of Neyman-shortest unbiased confidence intervals for the binomial parameter. Biometrika 47 (1960), 381–391.MathSciNetzbMATHGoogle Scholar
  17. Bolch, B.W.: More on unbiased estimation of the standard deviation. The American Statistician 22 (June 1968), 27 (vgl. auch 25 [April 1971], 40, 41 u. [Oct. 1971], 30-32).Google Scholar
  18. Botts, R.R.: „Extreme value“ methods simplified. Agric. Econom. Research 9 (1957), 88–95.Google Scholar
  19. Boyd, W. C.: A nomogram for chi-square. J. Amer. Statist. Assoc. 60 (1965), 344–346 (vgl. 61 [1966] 1246).Google Scholar
  20. Bradley, J.V.: Distribution-Free Statistical Tests. (Prentice-Hall; pp.388) Englewood Cliffs, N.J. 1968, Chapter 3.Google Scholar
  21. Bright, J.R. (Ed.): Technological Forecasting for Industry and Government, Methods and Applications. (Prentice-Hall Int., pp.484) London 1969.Google Scholar
  22. Bruckmann, G.: Schätzung von Wahlresultaten aus Teilergebnissen. (Arbeiten aus dem Institut für Höhere Studien und Wissenschaftliche Forschung, Wien) (Physica-Vlg., 148 S.) Wien und Würzburg 1966 [vgl. auch P. Mertens (Hrsg.): Prognoserechnung. (Physica-Vlg., 196 S.) Würzburg u. Wien 1972].Google Scholar
  23. Brugger, R. M.: A note on unbiased estimation of the standard deviation. The American Statistician 23 (October 1969), 32 (vgl. auch 26 [Dec. 1972], 43).Google Scholar
  24. Bühlmann, H., Loeffel, H. und Nievergelt, E.: Einführung in die Theorie und Praxis der Entscheidung bei Unsicherheit. Heft 1 der von M. Beckmann und H.P. Künzi herausgegebenen Reihe: Lecture Notes in Operations Research and Mathematical Economics. Berlin-Heidelberg-New York 1967 (122 S.) (2. Aufl. 1969, 125 S.).Google Scholar
  25. Bunge, M.: Scientific Research. I. The Search for System. II. The Search for Truth. (Springer; 536 S., 374 S.) Berlin, Heidelberg 1967.Google Scholar
  26. Bunt, L.: Das Testen einer Hypothese. Der Mathematikunterricht 8 (1962), 90–108.Google Scholar
  27. Calot, G.: Signicatif ou non signicatif? Réflexions à propos de la théorie et de la pratique des tests statistiques. Revue de Statistique Appliquée 15 (No. 1, 1967), 7–69 (siehe auch 16 [No. 3, 1968], 99-111).Google Scholar
  28. Cetron, M.J.: Technological Forecasting: A Practical Approach. (Gordon and Breach, pp.448) New York 1969.Google Scholar
  29. Chernoff, H., and Moses, L.E.: Elementary Decision Theory. New York 1959.Google Scholar
  30. Chissom, B.S.: Interpretation of the kurtosis statistic. The American Statistician 24 (Oct. 1970), 19–22.Google Scholar
  31. Clancey, V.J.: Statistical methods in chemical analysis. Nature 159 (1947), 339–340.Google Scholar
  32. Cleary, T. A., and Linn, R. L.: Error of measurement and the power of a statistical test. Brit. J. Math. Statist. Psychol. 22 (1969), 49–55.Google Scholar
  33. Cochran, W.G.: Note on an approximate formula for the significance levels of z. Ann. Math. Statist. 11 (1940), 93–95.MathSciNetGoogle Scholar
  34. Cohen, A.C. jr.: (1) On the solution of estimating equations for truncated and censored samples from normal populations. Biometrika 44 (1957), 225–236. (2) Simplified estimators for the normal distribution when samples are singly censored or truncated. Technometrics 1 (1959), 217-237. (3) Tables for maximum likelihood estimates: singly truncated and singly censored samples. Technometrics 3 (1961), 535-541.MathSciNetzbMATHGoogle Scholar
  35. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. (Academic Press, pp.416) New York 1969.Google Scholar
  36. Cornfield, J.: (1) Bayes theorem. Rev. Internat. Statist. Inst. 35 (1967), 34–49. (2) The Bayesian outlook and its application. With discussion. Biometrics 25 (1969), 617-642 and 643-657.MathSciNetzbMATHGoogle Scholar
  37. Cox, D.R.: (1) Some simple approximate tests for Poisson variates. Biometrika 40 (1953), 354–360, (2) Some problems connected with statistical inference. Ann. Math. Statist. 29 (1958), 357-372.MathSciNetzbMATHGoogle Scholar
  38. Craig, I.: On the elementary treatment of index numbers. Applied Statistics 18 (1969), 141–152.Google Scholar
  39. Crowe, W. R.: Index Numbers, Theory and Applications. London 1965.Google Scholar
  40. Daeves, K., und Beckel, A.: Großzahl-Methodik und Häufigkeits-Analyse, 2. Aufl. Weinheim/Bergstr. 1958.Google Scholar
  41. D’Agostino, R.B.: Linear estimation of the normal distribution standard deviation. The American Statistician 24 (June 1970), 14 + 15 [vgl. auch J. Amer. Statist. Assoc. 68 (1973), 207-210].Google Scholar
  42. Dalenius, T.: The mode-a neglected statistical parameter. J. Roy. Statist. Soc. A 128 (1965), 110–117 [vgl. auch Ann. Math. Statist. 36 (1965), 131-138 u. 38 (1967), 1446-1455].MathSciNetGoogle Scholar
  43. Darlington, R.B.: Is kurtosis really “peakedness”? The American Statistician 24 (April 1970), 19–22 (vgl. auch 24 [Dec. 1970], 41 und 25 [Febr. 1971], 42, 43, 60).Google Scholar
  44. David, Florence N.: Games, Gods and Gambling. New York 1963.Google Scholar
  45. Day, N.E.: Estimating the components of a mixture of normal distributions. Biometrika 56 (1969), 463–474 (vgl. auch 59 [1972], 639-648 und Technometrics 12 [1970], 823-833).MathSciNetzbMATHGoogle Scholar
  46. Defense Systems Department, General Electric Company: Tables of the Individual and Cumulative Terms of Poisson Distribution. Princeton, N.J. 1962.Google Scholar
  47. DeLury, D.B., and Chung, J.H.: Confidence Limits for the Hypergeometric Distribution. Toronto 1950.Google Scholar
  48. Dickinson, G.C.: Statistical Mapping and the Presentation of Statistics. (E. Arnold, pp.160) London 1963.Google Scholar
  49. Dietz, K.: Epidemics and rumours: a survey. J. Roy. Statist. Soc. A 130 (1967), 505–528.MathSciNetGoogle Scholar
  50. Documenta Geigy: Wissenschaftliche Tabellen. (6. u.) 7. Aufl., Basel (1960 u.) 1968, S. 85-103, 107, 108, 128.Google Scholar
  51. Dubey, S.D.: Graphical tests for discrete distributions. The American Statistician 20 (June 1966), 23 + 24.Google Scholar
  52. Dudewicz, E. J. and Dalai, S. R.: On approximations to the t-distribution. J. Qual. Technol. 4 (1972), 196–198 [vgl. auch Ann. Math. Statist. 34 (1963), 335-337].Google Scholar
  53. Elderton, W.P., and Johnson, N.L.: Systems of Frequency Curves. (Cambridge University Press, pp. 214) Cambridge 1969.Google Scholar
  54. Faulkner, E. J.: A new look at the probability of coincidence of birthdays in a group. Mathematical Gazette 53 (1969), 407–409 (vgl. auch 55 [1971], 70-72).Google Scholar
  55. Federighi, E.T.: Extended tables of the percentage points of Student’s t-distribution. J. Amer. Statist. Assoc. 54 (1959), 683–688.MathSciNetGoogle Scholar
  56. Fenner, G.: Das Genauigkeitsmaß von Summen, Produkten und Quotienten der Beobachtungsreihen. Die Naturwissenschaften 19 (1931), 310.zbMATHGoogle Scholar
  57. Ferris, C.D., Grubbs, F.E., and Weaver, C.L.: Operating characteristics for the common statistical tests of significance. Ann. Math. Statist. 17 (1946), 178–197.MathSciNetzbMATHGoogle Scholar
  58. Finucan, H. M.: A note on kurtosis. J. Roy. Statist. Soc., Ser. B 26 (1964), 111 + 112, p. 112.MathSciNetGoogle Scholar
  59. Fishburn, P.C.: (1) Decision and Value Theory. New York 1964. (2) Decision under uncertainty: an introductory exposition. Industrial Engineering 17 (July 1966), 341–353.Google Scholar
  60. Fisher, R. A.: (1) The negative binomial distribution. Ann. Eugenics 11 (1941), 182–187. (2) Theory of statistical estimation. Proc. Cambr. Phil. Soc. 22 (1925), 700-725. (3) Note on the efficient fitting of the negative binomial. Biometrics 9 (1953), 197-200. (4) The Design of Experiments. 7th ed. (Ist ed. 1935), Edinburgh 1960, Chapter II.MathSciNetGoogle Scholar
  61. Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. Übers. a. d. Poln. Berlin 1965, S. 196-203.Google Scholar
  62. Flechtheim, O.K.: Futurologie. Der Kampf um die Zukunft. (Vlg. Wissenschaft u. Politik, 432 S.) Köln 1970.Google Scholar
  63. Freudenberg, K.: Grundriß der medizinischen Statistik. Stuttgart 1962.Google Scholar
  64. Freudenthal, H., und Steiner, H.-G.: Aus der Geschichte der Wahrscheinlichkeitstheorie und der mathematischen Statistik. In H. Behnke, G. Bertram und R. Sauer (Herausgeb.): Grundzüge der Mathematik. Bd. IV: Praktische Methoden und Anwendungen der Mathematik. Göttingen 1966, Kapitel 3, S. 149-195, vgl. S. 168.Google Scholar
  65. Gaddum, J.: Lognormal distribution. Nature 156 (1945), 463–466.MathSciNetzbMATHGoogle Scholar
  66. Garland, L.H.: Studies on the accuracy of diagnostic procedures. Amer. J. Roentg. 82 (1959), 25–38 (insbesondere S. 28).Google Scholar
  67. Gebelein, H.: (1) Logarithmische Normalverteilungen und ihre Anwendungen. Mitteilungsblatt f. math. Statistik 2 (1950), 155–170. (2) Einige Bemerkungen und Ergänzungen zum graphischen Verfahren von Mosteller und Tukey. Mitteilungsbl. math. Stat. 5 (1953), 125-142.MathSciNetzbMATHGoogle Scholar
  68. Gebhardt, F.: (1) On the effect of stragglers on the risk of some mean estimators in small samples. Ann. Math. Statist. 37 (1966), 441–450. (2) Some numerical comparisons of several approximations to the binomial distribution. J. Amer. Statist. Assoc. 64 (1969), 1638-1646 (vgl. auch 66 [1971], 189-191).MathSciNetzbMATHGoogle Scholar
  69. Gehan, E.A.: Note on the “Birthday Problem”. The American Statistician 22 (April 1968), 28 Geppert, Maria-Pia: Die Bedeutung statistischer Methoden für die Beurteilung biologischer Vorgänge und medizinischer Erkenntnisse. Klin. Monatsblätter f. Augenheilkunde 133 (1958), 1–14.Google Scholar
  70. Gini, C.: Logic in statistics. Metron 19 (1958), 1–77.zbMATHGoogle Scholar
  71. Glick, N.: Hijacking planes to Cuba: an up-dated version of the birthday problem. The American Statistician 24 (Febr. 1970), 41–44.Google Scholar
  72. Good, I. J.: How random are random numbers? The American Statistician 23 (October 1969), 42-45.Google Scholar
  73. Graul, E.H. und Franke, H.W.: Die unbewältigte Zukunft. (Kindler; 301 S.) München 1970.Google Scholar
  74. Gridgeman, N.T.: The lady tasting tea, and allied topics. J. Amer. Statist. Assoc. 54 (1959), 776–783.zbMATHGoogle Scholar
  75. Grimm, H.: (1) Tafeln der negativen Binomialverteilung. Biometrische Zeitschr. 4 (1962), 239–262.zbMATHGoogle Scholar
  76. (2) Tafeln der Neyman-Verteilung Typ A. Biometrische Zeitschr. 6 (1964), 10-23. (3) Graphical methods for the determination of type and parameters of some discrete distributions. In G.P. Patil (Ed.): Random Counts in Scientific Work. Vol.1: Random Counts in Models and Structures. (Pennsylvania State University Press, pp.268) University Park and London 1970, pp. 193-206 (siehe auch J.J. Gart: 171-191.Google Scholar
  77. Groot, M.H. de: Optimal Statistical Decisions. (McGraw-Hill, pp.489) New York 1970.Google Scholar
  78. Guenther, W.C.: Concepts of Statistical Inference. (McGraw-Hill, pp. 353) New York 1965 (2nd ed. 1973).Google Scholar
  79. Gumbel, E.J.: (1) Probability Tables for the Analysis of Extreme-Value Data. National Bureau of Standards, Appl. Mathem. Ser. 22, Washington, D.C., July 1953. (2) Statistics of Extremes. New York 1958 [vgl. auch Biometrics 23 (1967), 79–103 und J. Qual. Technol. 1 (Oct. 1969), 233-236] (3) Technische Anwendungen der statistischen Theorie der Extremwerte. Schweiz. Arch. angew. Wissenschaft Technik 30 (1964), 33-47.Google Scholar
  80. Gurland, J.: Some applications of the negative binominal and other contagious distributions. Amer. J. Public Health 49 (1959), 1388–1399 [vgl. auch Biometrika 49 (1962), 215–226 und Biometrics 18 (1962), 42-51].MathSciNetzbMATHGoogle Scholar
  81. Guterman, H.E.: An upper bound for the sample standard deviation. Technometrics 4 (1962), 134 + 135.Google Scholar
  82. Haight, F.A.: (1) Index to the distributions of mathematical statistics. J. Res. Nat. Bur. Stds. 65 B (1961), 23–60. (2) Handbook of the Poisson Distribution. New York 1967.MathSciNetGoogle Scholar
  83. Hald, A.: (1) Statistical Tables and Formulas. New York 1952, pp.47-59. (2) Statistical Theory with Engineering Applications. New York 1960, Chapter 7.Google Scholar
  84. Hall, A.D.: A Methodology for Systems Engineering. Princeton, N.J. 1962.Google Scholar
  85. Hanson, W.R.: Estimating the number of animals: a rapid method for unidentified individuals. Science 162 (1968), 675 + 676.Google Scholar
  86. Harris, D.: A method of separating two superimposed normal distributions using arithmetic probability paper. J. Animal Ecol. 37 (1968), 315–319.Google Scholar
  87. Harter, H.L.: (1) A new table of percentage points of the chisquare distribution. Biometrika 51 (1964), 231–239. (2) The use of order statistics in estimation. Operations Research 16 (1968), 783-798.MathSciNetzbMATHGoogle Scholar
  88. Harvard University, Computation Laboratory: Tables of the Cumulative Binomial Probability Distribution; Annals of the Computation Laboratory of Harvard University, Cambridge, Mass. 1955.Google Scholar
  89. Helmer, O. (u. Gordon, T.): Bericht über eine Langfrist-Vorhersage für die Welt der nächsten fünf Jahrzehnte. (Mosaik Vlg., 112 S.) Hamburg 1967.Google Scholar
  90. Hemelrijk, J.: Back to the Laplace definition. Statistica Neerlandica 22 (1968), 13–21.MathSciNetzbMATHGoogle Scholar
  91. Henning, H.-J., und Wartmann, R.: Auswertung spärlicher Versuchsdaten im Wahrscheinlichkeitsnetz. Ärztl. Forschung 12 (1958), 60–66.Google Scholar
  92. Herdan, G.: (1) The relation between the dictionary distribution and the occurrence distribution of word length and its importance for the study of quantitative linguistics. Biometrika 45 (1958), 222–228. (2) The Advanced Theory of Language as Choice and Chance. Berlin-Heidelberg-New York 1966, pp. 201-206.Google Scholar
  93. Herold, W.: Ein Verfahren der Dekomposition einer Mischverteilung in zwei normale Komponenten mit unterschiedlichen Varianzen. Biometrische Zeitschr. 13 (1971), 314–328.MathSciNetzbMATHGoogle Scholar
  94. Heyde, J.E.: Technik des wissenschaftlichen Arbeitens. Mit einem ergänzenden Beitrag: Dokumentation von H. Siegel. 10. durchges. Aufl. (Kiepert, 230 S.) Berlin 1970.Google Scholar
  95. Hill, G. W.: Reference table. “Student’s” t-distribution quantiles to 20 D. CSIRO Div. Math. Statist. Tech. Paper 35 (1972), 1–24.Google Scholar
  96. Hodges, J.L., Jr and E.L. Lehmann: A compact table for power of the t-test. Ann. Math. Statist. 39 (1968), 1629–1637.MathSciNetzbMATHGoogle Scholar
  97. Horowitz, I.: An Introduction to Quantitative Business Analysis. New York 1965, pp.81-101.Google Scholar
  98. Hotelling, H.: The statistical method and the philosophy of science. The American Statistician 12 (December 1958), 9–14.Google Scholar
  99. Huddleston, H. F.: Use of order statistics in estimating standard deviations. Agric. Econom. Research 8 (1956), 95–99.Google Scholar
  100. Ihm, P.: Subjektivistische Interpretation des Konfidenzschlusses. Biometr. Zeitschr. 8 (1966), 165–169.Google Scholar
  101. Johnson, E.E.: Nomograph for binomial and Poisson significance tests. Industrial Quality Control 15 (March 1959), 22 + 24.Google Scholar
  102. Jolly, G.M.: Estimates of population parameters from multiple recapture data with both death and dilution — deterministic model. Biometrika 50 (1963), 113–126.MathSciNetzbMATHGoogle Scholar
  103. Jungk, R. (Hrsg.): Menschen im Jahre 2000. Eine Übersicht über mögliche Zukünfte. (Umschau Vlg., 320 S.) Frankfurt/M. 1969.Google Scholar
  104. Kahn, H., und Wiener, A. J.: Ihr werdet es erleben. (F. Molden, 430 S.) Wien-München-Zürich 1968.Google Scholar
  105. Kendall, M.G.: Model Building and Its Problems. (Hafner, pp. 165) New York 1968.Google Scholar
  106. King, A.C., and Read, C.B.: Pathways to Probability. History of the Mathematics of Certainty and Chance. (Holt, Rinehart and Winston, pp. 139) New York 1963.Google Scholar
  107. Kitagawa, T.: Tables of Poisson Distribution. (Baifukan) Tokyo 1952.Google Scholar
  108. Kliemann, H.: Anleitungen zum wissenschaftlichen Arbeiten. Eine Einführung in die Praxis. 7. Aufl. (H. Steinberg u. M. Schütze, Hrsg.), (Rombach, 190 S.) Freiburg 1970.Google Scholar
  109. Kolmogoroff, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin 1933.Google Scholar
  110. Kramer, G.: Entscheidungsproblem, Entscheidungskriterien bei völliger Ungewißheit und Chernoff-.Google Scholar
  111. sches Axiomensystem. Metrika 11 (1966), 15-38 (vgl. Tab. 1, S. 22 u.23).Google Scholar
  112. Kröber, W.: Kunst und Technik der geistigen Arbeit. 6. neubearb. Aufl. (Quelle und Meyer, 202 S.) Heidelberg 1969.Google Scholar
  113. Lancaster, H. O.: (1) The combination of probabilities. (Query 237) Biometrics 23 (1967), 840–842. (2) The Chi-Squared Distribution. (Wiley, pp.356), New York 1969.Google Scholar
  114. Larson, H.R.: A nomograph of the cumulative binomial distribution. Industrial Quality Control 23 (Dec. 1966), 270–278 [vgl. auch Qualität u. Zuverlässigkeit 17 (1972) 231-242 u. 247-254].Google Scholar
  115. Laubscher, N.F.: Interpolation in F-tables. The American Statistican 19 (February 1965), 28 + 40.Google Scholar
  116. Lehmann, E.L.: Significance level and power. Ann. Math. Statist. 29 (1958), 1167–1176.zbMATHGoogle Scholar
  117. Lesky, Erna: Ignaz Philipp Semmelweis und die Wiener medizinische Schule. Österr. Akad. Wissensch., Philos.-histor. Kl. 245 (1964), 3. Abhandlung (93 S.) [vgl. auch Dtsch. Med. Wschr. 97 (1972), 627–632].Google Scholar
  118. Lieberman, G. J., and Owen, D. B.: Tables of the Hypergeometric Probability Distribution. Stanford, Calif. 1961.Google Scholar
  119. Liebscher, Klaudia: Die Abhängigkeit der Gütefunktion des F-Testes von den Freiheitsgraden. In Operationsforschung und mathematische Statistik I (Akademie-Verlag, 151 S.) Berlin 1968, S. 121-136.Google Scholar
  120. Liebscher, U.: Anwendung eines neuartigen Wahrscheinlichkeitsnetzes. Zschr. f. wirtschaftl. Fertigung 59 (1964), 507–510.Google Scholar
  121. Lienert, G.A.: Die zufallskritische Beurteilung psychologischer Variablen mittels verteilungsfreier Schnelltests. Psycholog. Beiträge 7 (1962), 183–217.Google Scholar
  122. Linstone, H. and Turoff, M.: The Delphi Method and Its Application. (American Elsevier) New York 1973.Google Scholar
  123. Lockwood, A.: Diagrams. A Survey of Graphs, Maps, Charts and Diagrams for the Graphic Designer. (Studio Vista; pp. 144) London 1969.Google Scholar
  124. Lubin, A.: Statistics. Annual Review of Psychology 13 (1962), 345–370.Google Scholar
  125. Mahalanobis, P.C.: A method of fractile graphical analysis. Econometrica 28 (1960), 325–351.Google Scholar
  126. Mallows, C.L.: Generalizations of Tchebycheff’s inequalities. With discussion. J. Roy. Statist. Soc., Ser.B 18 (1956), 139–176.MathSciNetzbMATHGoogle Scholar
  127. Manly, B.F.J., and Parr, M.J.: A new method of estimating population size, survivorship, and birth rate from capture-recapture data. Trans. Soc. Br. Ent. 18 (1968), 81–89 [vgl. Biometrika 56 (1969), 407-410 u. Biometrics 27 (1971), 415-424, 28 (1972), 337-343, 29 (1973), 487-500].Google Scholar
  128. Marascuilo, L.A. and Levin, J.R.: Appropriate post hoc comparisons for interaction and nested hypotheses in analysis of variance designs. The elimination of type IV errors. Amer. Educat. Res. J. 7 (1970), 397–421 [vgl. auch Psychol. Bull. 78 (1972), 368-374].Google Scholar
  129. Maritz, J.S.: Empirical Bayes Methods. (Methuen, pp. 192) London 1970.Google Scholar
  130. Martino, J.P.: The precision of Delphi estimates. Technol. Forecastg. (USA) 1 (1970), 293–299.Google Scholar
  131. Matthijssen, C., and Goldzieher, J.W.: Precision and reliability in liquid scintillation counting. Analyt. Biochem. 10 (1965), 401–408.Google Scholar
  132. McHale, J.: The Future of the Future. (Braziller, pp. 322) New York 1969.Google Scholar
  133. McLaughlin, D.H., and Tukey, J.W.: The Variance of Means of Symmetrically Trimmed Samples from Normal Populations and its Estimation from such Trimmed Samples. Techn. Report No. 42, Statist. Techn. Res. Group, Princeton University, July 1961.Google Scholar
  134. McNemar, Q.: Psychological Statistics. 4th ed. (Wiley; pp. 529) New York 1969, p. 75.Google Scholar
  135. Miller, J.C.P. (Ed.): Table of Binomial Coefficients. Royal Soc. Math. Tables Vol. III, Cambridge (University Press) 1954.Google Scholar
  136. Molenaar, W.: Approximations to the Poisson, Binomial, and Hypergeometric Distribution Functions. (Mathematisch Centrum, pp. 160) Amsterdam 1970.Google Scholar
  137. Molina, E.C.: Poisson’s Exponential Binomial Limit. (Van Nostrand) New York 1945.Google Scholar
  138. Montgomery, D.C.: An introduction to short-term forecasting. J. Industrial Engineering 19 (1968), 500–504.Google Scholar
  139. Morice, E.: Puissance de quelques tests classiques effectif d’échantillon pour des risques α, β fixes. Revue de Statistique Appliquée 16 (No. 1, 1968), 77–126.MathSciNetGoogle Scholar
  140. Moses, L. E.: Statistical theory and research design. Annual Review of Psychology 7 (1956), 233–258.Google Scholar
  141. Moses, L.E., and Oakford, R.V.: Tables of Random Permutations. (Allen and Unwin, pp.233) London 1963.Google Scholar
  142. Moshman, J.: Critical values of the log-normal distribution. J. Amer. Statist. Assoc. 48 (1953), 600–605.MathSciNetzbMATHGoogle Scholar
  143. Mosteller, F., and Tukey, J.W.: The uses and usefulness of binomial probability paper. J. Amer. Statist. Assoc. 44 (1949), 174–212.zbMATHGoogle Scholar
  144. Mudgett, B.: Index Numbers, New York 1951.Google Scholar
  145. National Bureau of Standards: Tables of the Binomial Probability Distribution. Applied Math. Series No. 6, Washington 1950.Google Scholar
  146. Natrella, Mary G.: Experimental Statistics. NBS Handbook 91. (U.S. Gvt. Print. Office) Washington 1963, Chapters 3 + 4.Google Scholar
  147. Naus, J. I.: An extension of the birthday problem. The American Statistician 22 (Febr. 1968), 227–29.Google Scholar
  148. Nelson, W.: The truncated normal distribution — with applications to component sorting. Industrial Quality Control 24 (1967), 261–271.Google Scholar
  149. Neumann von, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100 (1928), 295–320.MathSciNetzbMATHGoogle Scholar
  150. Neyman, J.: (1) On a new class of “contagious” distributions, applicable in entomology and bacteriology. Ann. Math. Statist. 10 (1939), 35–57. (2) Basic ideas and some recent results of the theory of testing statistical hypotheses. J. Roy. Statist. Soc. 105 (1942), 292-327. (3) First Course in Probability and Statistics. New York 1950, Chapter V: Elements of the Theory of Testing Statistical Hypotheses; Part 5 · 2 · 2: Problem of the Lady tasting tea. (4) Lectures and Conferences on Mathematical Statistics and Probability, 2nd rev. and enlarged ed., Washington 1952.Google Scholar
  151. Neyman, J., and Pearson, E. S.: (1) On the use and interpretation of certain test criteria for purposes of statistical inference. Part I and II. Biometrika 20A (1928), 175–240 and 263-294. (2) On the problem of the most efficient type of statistical hypotheses. Philosophical Transactions of the Royal Society A 231 (1933), 289-337.Google Scholar
  152. Noether, G.E.: Use of the range instead of the standard deviation. J. Amer. Statist. Assoc. 50 (1955), 1040–1055.zbMATHGoogle Scholar
  153. Norden, R.H.: A survey of maximum likelihood estimation. Int. Stat. Rev. 40 (1972), 329–354.MathSciNetGoogle Scholar
  154. Nothnagel, K.: Ein graphisches Verfahren zur Zerlegung von Mischverteilungen. Qualitätskontrolle 13 (1968), 21–24.Google Scholar
  155. Ord, J.K.: Graphical methods for a class of discrete distributions. J. Roy. Statist. Soc. A 130 (1967), 232–238.MathSciNetGoogle Scholar
  156. Owen, D.B.: Handbook of Statistical Tables. London 1962 (Errata: Mathematics of Computation 18, 87; Mathematical Reviews 28, 4608).Google Scholar
  157. Pachares, J.: Table of confidence limits for the binomial distribution. J. Amer. Statist. Assoc. 55 (1960), 521–533.MathSciNetzbMATHGoogle Scholar
  158. Paradine, C.G.: The probability distribution of χ2. Mathematical Gazette 50 (1966), 8–18.zbMATHGoogle Scholar
  159. Parks, G.M.: Extreme value statistics in time study. Industrial Engineering 16 (Nov.–Dec. 1965), 351–355.Google Scholar
  160. Parratt, L.G.: Probability and Experimental Errors in Science. London 1961.Google Scholar
  161. Paulson, E.: An approximate normalization of the analysis of variance distribution. Ann. Math. Statist. 13 (1942), 233–235.MathSciNetzbMATHGoogle Scholar
  162. Pearson, E. S. and Kendall, M. G. (Eds.): Studies in the History of Statistics and Probability. (Griffin, pp.481) London 1970.Google Scholar
  163. Pearson, E.S., and Tukey, J.W.: Approximate means and standard deviation based on distances between percentage points of frequency curves. Biometrika 52 (1965), 533–546.MathSciNetzbMATHGoogle Scholar
  164. Pfanzagl, J.: (1) Verteilungsunabhängige statistische Methoden. Zschr. angew. Math. Mech. 42 (1962), T 71–T 77. (2) Allgemeine Methodenlehre der Statistik, Bd. I, II (S.63) (Sammlung Göschen), Berlin 1964, 1966.Google Scholar
  165. Pitman, E.J.G.: (1) Lecture Notes on Nonparametric Statistics. Columbia University, New York 1949. (2) Statistics and science. J. Amer. Statist. Assoc. 52 (1957), 322–330.zbMATHGoogle Scholar
  166. Plackett, R.L.: Random permutations. J. Roy. Statist. Soc. B 30 (1968), 517–534.MathSciNetzbMATHGoogle Scholar
  167. Polak, F.L.: Prognostics. (Elsevier, pp.450) Amsterdam 1970.Google Scholar
  168. Popper, K.R.: (1) Science: problems, aims, responsibilities. Fed. Proc. 22 (1963), 961–972. (2) Logik der Forschung, 2. erw. Aufl., Tübingen 1966 [vgl. auch Nature 241 (1973), 293/294].Google Scholar
  169. Pratt, J.W., Raiffa, H., and Schlaifer, R.: The foundations of decision under uncertainty: an elementary exposition. J. Amer. Statist. Assoc. 59 (1964), 353–375.MathSciNetzbMATHGoogle Scholar
  170. Prescott, P.: A simple method of estimating dispersion from normal samples. Applied Statistics 17 (1968), 70–74 [vgl. auch Biometrika 58 (1971), 333-340].Google Scholar
  171. Pressat, R.: Demographic Analysis. Methods, Results, Applications. (Transl. by J. Matras). (Aldine-Atherton, pp.498) London 1972.Google Scholar
  172. Preston, E.J.: A graphical method for the analysis of statistical distributions into two normal components. Biometrika 40 (1953), 460–464.MathSciNetzbMATHGoogle Scholar
  173. Price de, D.J.S.: (1) Science Since Babylon. New Haven, Connecticut 1961. (2) Little Science, Big Science. New York 1963. (3) Research on Research. In Arm, D.L. (Ed.), Journeys in Science: Small Steps — Great Strides. The University of New Mexico Press, Albuquerque 1967. (4) Measuring the size of science. Proc. Israel Acad. Sci. Humanities 4 (1969), No. 6, 98-111.Google Scholar
  174. Quandt, R.E.: Old and new methods of estimation and the Pareto distribution. Metrika 10 (1966), 55–82.MathSciNetGoogle Scholar
  175. Raiffa, H., and Schlaifer, R.: Applied Statistical Decision Theory. Division of Research, Harvard Business School, Boston, Mass. 1961.Google Scholar
  176. Rao, C.R. and Chakravarti, I.M.: Some small sample tests of significance for a Poisson distribution. Biometrics 12 (1956), 264–282.MathSciNetGoogle Scholar
  177. Rasch, D.: Zur Problematik statistischer Schlußweisen. Wiss. Z. Humboldt-Univ. Berlin, Math.-Nat. R. 18 (1969) (2), 371–383.Google Scholar
  178. Rider, P.R.: The distribution of the quotient of ranges in samples from a rectangular population. J. Amer. Statist. Assoc. 46 (1951), 502–507.MathSciNetzbMATHGoogle Scholar
  179. Rigas, D.A.: A nomogram for radioactivity counting statistics. International Journal of Applied Radiation and Isotopes 19 (1968), 453–457.Google Scholar
  180. Riordan, J.: (1) An Introduction to Combinatorial Analysis. New York 1958. (2) Combinatorial Identities. (Wiley, pp.256) New York 1968.Google Scholar
  181. Roberts, H.V.: Informative stopping rules and inferences about population size. J. Amer. Statist. Assoc. 62 (1967), 763–775.MathSciNetGoogle Scholar
  182. Robson, D.S.: Mark-Recapture Methods of Population Estimation. In N. L. Johnson and H. Smith, Jr. (Eds.): New Developments in Survey Sampling. (Wiley-Interscience, pp.732) New York 1969, pp. 120-146.Google Scholar
  183. Rohrberg, A.: Die Anwendung der Wahrscheinlichkeits-und Häufigkeitsnetze. Herausgegeben von Schleicher und Schüll, Einbeck/Han. 1958.Google Scholar
  184. Romig, H.G.: 50–100 Binomial Tables. (Wiley) New York 1953.Google Scholar
  185. Rusch, E., und Deixler, A.: Praktische und theoretische Gesichtspunkte für die Wahl des Zentralwertes als statistische Kenngröße für die Lage eines Verteilungszentrums. Qualitätskontrolle 7 (1962), 128–134.Google Scholar
  186. Saaty, L.: Seven more years of queues: a lament and a bibliography. Naval Res. Logist. Quart. 13 (1966), 447–476.MathSciNetzbMATHGoogle Scholar
  187. Sachs, L.: Statistische Methoden. Ein Soforthelfer. 2. neubearb. Aufl. (Springer, 105 S.) Berlin, Heidelberg, New York 1972, S. 12-18.Google Scholar
  188. Sarhan, A.E., and Greenberg, B.G. (Eds.): Contributions to Order Statistics. New York 1962.Google Scholar
  189. Savage, I.R.: Probability inequalities of the Tchebycheff type. J. Res. Nat. Bur. Stds. 65B (1961), 211–222.MathSciNetGoogle Scholar
  190. Schindowski, E., und Schürz, O.: Das Binomialpapier. Fertigungstechnik 7 (1957), 465–468.Google Scholar
  191. Schmitt, S.A.: Measuring Uncertainty. An Elementary Introduction to Bayesian Statistics. (Addison-Wesley; pp.400) Reading, Mass. 1969.Google Scholar
  192. Schneeweiss, H.: Entscheidungskriterien bei Risiko. Berlin-Heidelberg 1967.Google Scholar
  193. Schön, W.: Schaubildtechnik. Die Möglichkeiten bildlicher Darstellung von Zahlen-und Sachbeziehungen. (Poeschel; 371 S.) Stuttgart 1969.Google Scholar
  194. Severo, N. C. and Zelen, M.: Normal approximation to the chi-square and non-central F probability functions. Biometrika 47 (1960), 411–416 [vgl. auch J. Amer. Statist. Assoc. 66 (1971), 577-582].MathSciNetzbMATHGoogle Scholar
  195. Smirnov, N.V. (Ed.): Tables for the Distribution and Density Functions of t-Distribution. London, Oxford 1961.Google Scholar
  196. Smith, J.H.: Some properties of the median as an average. The American Statistician 12 (October 1958), 24, 25, 41 [vgl. auch J. Amer. Statist. Assoc. 63 (1968), 627–635].Google Scholar
  197. Snyder, R.M.: Measuring Business Changes. New York 1955.Google Scholar
  198. Southwood, T.R.E.: Ecological Methods with Particular Reference to the Study of Insect Populations. (Methuen, pp.391), London 1966.Google Scholar
  199. Spear, Mary E.: Practical Charting Techniques. (McGraw-Hill, pp. 394) New York 1969.Google Scholar
  200. Stange, K.: Eine Verallgemeinerung des zeichnerischen Verfahrens zum Testen von Hypothesen im Wurzelnetz (Mosteller-Tukey-Netz) auf drei Dimensionen. Qualitätskontrolle 10 (1965), 45–52.Google Scholar
  201. Stegmüller, W.: Personelle und Statistische Wahrscheinlichkeit. 1. u. 2. Halbband (Bd. 4 der Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie) (Springer, 560 u. 420 S.) Berlin, Heidelberg, New York 1972.Google Scholar
  202. Stephenson, C.E.: Letter to the editor. The American Statistician 24 (April 1970), 37 + 38.Google Scholar
  203. Stevens, S.S.: On the theory of scales of measurement. Science 103 (1946), 677–680.zbMATHGoogle Scholar
  204. Student: The probable error of a mean. Biometrika 6 (1908), 1–25 [vgl. auch 30 (1939), 210-250, Metron 5 (1925), 105-120 sowie The American Statistician 26 (Dec. 1972), 43 + 44].Google Scholar
  205. Sturges, H.A.: The choice of a class interval. J. Amer. Statist. Assoc. 21 (1926), 65 + 66.Google Scholar
  206. Szameitat, K., and Deininger, R.: Some remarks on the problem of errors in statistical results. Bull. Int. Statist. Inst. 42, I (1969), 66-91 [vgl. auch Allgem. Statist. Arch. 55 (1971), 290–303].Google Scholar
  207. Teichroew, D.: A history of distribution sampling prior to the era of the computer and its relevance to simulation. J. Amer. Statist. Assoc. 60 (1965), 27–49.MathSciNetzbMATHGoogle Scholar
  208. Theil, H.: (1) Optimal Decision Rules for Government and Industry. Amsterdam 1964. (2) Applied Economic Forecasting. (Vol.4 of Studies in Mathematical and Managerial Economics; North-Holland Publ. Co., pp.474) Amsterdam 1966.Google Scholar
  209. Thöni, H.: A table for estimating the mean of a lognormal distribution. J. Amer. Statist. Assoc. 64 (1969), 632–636. Corrigenda 65 (1970), 1011-1012.zbMATHGoogle Scholar
  210. Thorndike, Frances: Applications of Poisson’s probability summation. Bell System Techn. J. 5 (1926), 604–624.Google Scholar
  211. Troughton, F.: The rule of seventy. Mathematical Gazette 52 (1968), 52 + 53.Google Scholar
  212. Tukey, J. W.: (1) Some sampling simplified. J. Amer. Statist. Assoc. 45 (1950), 501–519. (2) Unsolved problems of experimental statistics. J. Amer. Statist. Assoc. 49 (1954), 706-731. (3) Conclusions vs. decisions. Technometrics 2 (1960), 423-433. (4) A survey of sampling from contaminated distributions. In I. Olkin and others (Eds.): Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling, pp. 448-485, Stanford 1960. (5) The future of data analysis. Ann. Math. Statist. 33 (1962), 1-67. (6) Data analysis, computation and mathematics. Quart. Appl. Math. 30 (1972), 51-65.MathSciNetzbMATHGoogle Scholar
  213. Tukey, J. W., and McLaughlin, D.H.: Less vulnerable confidence and significance procedures for location based on an single sample: Trimming/Winsorization I. Sankhya Ser. A 25 (1963), 331–352.MathSciNetzbMATHGoogle Scholar
  214. Vahle, H. und Tews, G.: Wahrscheinlichkeiten einer χ2-Verteilung. Biometrische Zeitschr. 11 (1969), 175–202.MathSciNetzbMATHGoogle Scholar
  215. Wacholder, K.: Die Variabilität des Lebendigen. Die Naturwissenschaften 39 (1952), 177–184 und 195-198.Google Scholar
  216. Waerden, B.L., van der: Der Begriff Wahrscheinlichkeit. Studium Generale 4 (1951), 65–68; S. 67 linke Spalte.MathSciNetGoogle Scholar
  217. Wagle, B.: Some techniques of short-term sales forecasting. The Statistician 16 (1966), 253–273.Google Scholar
  218. Wald, A.: Statistical Decision Functions. New York 1950.Google Scholar
  219. Wallis, W.A., und Roberts, H.V.: Methoden der Statistik, 2. Aufl., Freiburg/Br. 1962.Google Scholar
  220. Walter, E.: (1) Rezension des Buches „Verteilungsfreie Methoden in der Biostatistik“ von G. Lienert. Biometrische Zeitschr. 6 (1964), 61 + 62. (2) Persönliche Mitteilung, 1966.Google Scholar
  221. Wasserman, P., and Silander, F.S.: Decision-Making: An Annotated Bibliography Supplement, 1958–1963. Ithaca, N. Y. 1964.Google Scholar
  222. Weber, Erna: Grundriß der Biologischen Statistik. 7. überarb. Aufl., Stuttgart 1972, S. 143-160.Google Scholar
  223. Weibull, W.: Fatigue Testing and Analysis of Results. New York 1961.Google Scholar
  224. Weichselberger, K.: Über ein graphisches Verfahren zur Trennung von Mischverteilungen und zur Identifikation kupierter Normalverteilungen bei großem Stichprobenumfang. Metrika 4 (1961), 178–229.zbMATHGoogle Scholar
  225. Weintraub, S.: Tables of the Cumulative Binomial Probability Distribution for Small Values of p. (The Free Press of Glencoe, Collier-Macmillan) London 1963.Google Scholar
  226. Weiss, L.: Statistical Decision Theory. New York 1961.Google Scholar
  227. Weiss, L.L.: (1) A nomogram based on the theory of extreme values for determining values for various return periods. Monthly Weather Rev. 83 (1955), 69–71. (2) A nomogram for log-normal frequency analysis. Trans. Amer. Geophys. Union 38 (1957), 33-37.Google Scholar
  228. Wellnitz, K.: Kombinatorik. 6. Aufl. (Bagel/Hirt, 56 S.) Düsseldorf/Kiel 1971.Google Scholar
  229. Westergaard, H.: Contributions to the History of Statistics. (P.S. King and Son, pp.280) London 1932.Google Scholar
  230. Wilhelm, K.H.: Graphische Darstellung in Leitung und Organisation. 2. Aufl. (Vlg. Die Wirtschaft, 200 S.) Berlin 1971.Google Scholar
  231. Williams, C.B.: (1) A note on the statistical analysis of sentence length as a criterion of literary style. Biometrika 31 (1940), 356–361. (2) Patterns in the Balance of Nature. New York 1964.Google Scholar
  232. Williamson, E., and Bretherton, M.H.: Tables of the Negative Binomial Distribution. London 1963.Google Scholar
  233. Wilson, E.B., and Hilferty, M.M.: The distribution of chi-square. Proc. Nat. Acad. Sci. 17 (1931), 684–688 (vgl. auch Pachares, J.: Letter to the Editor. The American Statistician 22 [Oct. 1968], 50).Google Scholar
  234. Wold, H.O. A.: Time as the realm of forecasting. Annals of the New York Academy of Sciences 138 (1967), 525–560.Google Scholar
  235. Yamane, T.: Statistics. An Introductory Analysis. Chapter 8, pp. 168-226. New York 1964.Google Scholar
  236. Zacek, H.: (1) Graphisches Rechnen auf normalem Wahrscheinlichkeitspapier. Experientia 20 (1964), 1–5. (2) Graphisches Rechnen auf normalem Wahrscheinlichkeitspapier. Experientia 20 (1964), 413-414. (3) Eine Möglichkeit zur graphischen Berechnung des Standardfehlers bzw. Konfidenzintervalls eines Mittelwertes von Versuchsergebnissen. Arzneimittelforschung 14 (1964), 1326-1328. (4) Zum projektiv-verzerrten Wahrscheinlichkeitsnetz nach Liebscher und Fischer. Qualitätskontrolle 13 (1968), 142-146. Zum WN siehe auch Qualität u. Zuverlässigkeit 16 (1971), 156-159 u. 209-211.Google Scholar
  237. Zahlen, J.P.: Über die Grundlagen der Theorie der parametrischen Hypothesentests. Statistische Hefte 7 (1966), 148–174.Google Scholar
  238. Zarkovich, S.S.: Quality of Statistical Data (FAO, UN; pp. 395) Rome 1966.Google Scholar
  239. Zinger, A.: On interpolation in tables of the F-distribution. Applied Statistics 13 (1964), 51–53.Google Scholar

Stochastische Prozesse

  1. Bailey, N.T.J.: The Elements of Stochastic Processes with Applications to the Natural Sciences. New York 1964.Google Scholar
  2. Bartholomew, D.J.: Stochastische Modelle für soziale Vorgänge. (Übers. a. d. Engl. v. D. Pfaffenzeller) (Oldenbourg, 348 S.) Wien 1970.Google Scholar
  3. Bartlett, M.S.: (1) An Introduction to Stochastic Processes. Cambridge 1955. (2) Stochastic Population Models. London 1960. (3) Essays on Probability and Statistics. London 1962.Google Scholar
  4. Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and their Applications. New York 1960.Google Scholar
  5. Billingsley, P.: (1) Statistical Methods in Markov chains. Ann. Math. Statist. 32 (1961), 12–40. (2) Statistical Inference for Markov Processes. Chicago 1961.MathSciNetzbMATHGoogle Scholar
  6. Chiang, C. L.: Introduction to Stochastic Processes in Biostatistics. (Wiley, pp. 312) New York 1968.Google Scholar
  7. Cox, D.R., and Lewis, P.A.W.: The Statistical Analysis of Series of Events. London 1966.Google Scholar
  8. —, and Miller, H.D.: The Theory of Stochastic Processes. London 1965.Google Scholar
  9. —, and Smith, W.L.: Queues. London 1961.Google Scholar
  10. Cramer, H.: Model building with the aid of stochastic processes. Technometrics 6 (1964), 133–159.MathSciNetzbMATHGoogle Scholar
  11. Cramér, H., and Leadbetter, M.R.: Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications. (Wiley, pp. 348) New York and London 1967.Google Scholar
  12. Deming, L.S.: Selected bibliography of statistical literature: supplement, 1958–1960. J. Res. Nat. Bur. Standards 67B (1963), 91–133 (pp. 99-120).Google Scholar
  13. Doig, A.: A bibliography on the theory of queues. Biometrika 44 (1957), 490–514.MathSciNetzbMATHGoogle Scholar
  14. Feller, W.: An Introduction to Probability Theory and Its Appplications. Vol.1, 3rd ed., New York 1968; Vol.2, 2nd ed. New York 1971.Google Scholar
  15. Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. 3. Aufl., Berlin 1965, Kapitel 7 und 8.Google Scholar
  16. Gold, R.Z.: Tests auxiliary to χ2 tests in a Markov chain. Ann. Math. Statist. 34 (1963), 56–74.MathSciNetzbMATHGoogle Scholar
  17. Gurland, J. (Ed.): Stochastic Models in Medicine and Biology. Madison (University of Wisconsin) 1964.Google Scholar
  18. Karlin, S.: A First Course in Stochastic Processes. New York and London 1966.Google Scholar
  19. Kemeny, J.G., and Snell, J.L.: Finite Markov Chains. Princeton, N.J. 1960.Google Scholar
  20. —, Snell, J.L., and Knapp, A.W.: Denumerable Markov Chains. Princeton, N.J. 1966.Google Scholar
  21. Kullback, S., Kupperman, M., and Ku, H.H.: Tests for contingency tables and Markov chains. Technometrics 4 (1962), 573–608.MathSciNetzbMATHGoogle Scholar
  22. Lahres, H.: Einführung in die diskreten Markoff-Prozesse und ihre Anwendung. Braunschweig 1964.Google Scholar
  23. Lee, A.M.: Applied Queueing Theory. London 1966.Google Scholar
  24. Parzen, E.: (1) Modern Probability Theory and Its Applications. New York 1960. (2) Stochastic Processes. San Francisco 1962.Google Scholar
  25. Prabhu, N.U.: (1) Stochastic Processes. Basic Theory and Its Applications. New York 1965. (2) Queues and Inventories: a Study of Their Basic Stochastic Processes. New York 1965.Google Scholar
  26. Saaty, T.L.: Elements of Queueing Theory. New York 1961.Google Scholar
  27. Schneeweiss, H.: Zur Theorie der Warteschlangen. Zeitschr. f. handelswissenschaftl. Forschg. 12 (1960), 471–507.Google Scholar
  28. Takacs, L.: (1) Introduction to the Theory of Queues. Oxford Univ. Press 1962. (2) Stochastische Prozesse. München 1966. (3) Combinatorial Methods of Stochastic Processes (Wiley, pp.262) New York 1967.Google Scholar
  29. Wold, H.O.A.: The I.S.I. Bibliography on Time Series and Stochastic Processes. London 1965.Google Scholar
  30. Zahl, S.: A Markov process model for follow-up studies. Human Biology 27 (1955), 90–120.Google Scholar

Verteilungsunabhängige Methoden

  1. Billeter, E.P.: Grundlagen der erforschenden Statistik. Statistische Testtheorie. (Springer, 217 S.) Wien und New York 1972, S. 79/170 und 186/206.Google Scholar
  2. Bradley, J.V.: Distribution-Free Statistical Tests. (Prentice-Hall; pp.388) Englewood Cliffs, N.J. 1968.Google Scholar
  3. Conover, W.J.: Practical Nonparametric Statistics. (Wiley; pp.462) London 1971.Google Scholar
  4. David, H.A.: Order Statistics. (Wiley, pp.288) New York 1970.Google Scholar
  5. Gibbons, Jean D.: Nonparametric Statistical Inference. (McGraw-Hill, pp.306) New York 1971 [vgl. auch Biometrics 28 (1972), 1148/1149].Google Scholar
  6. Hàjek, J., and Sidàk, Z.: Theory of Rank-Tests (Academic Press, pp. 297) New York and London 1967.Google Scholar
  7. Hollander, M., and Wolfe, D. A.: Nonparametric Statistical Methods. (Wiley, pp. 503) New York 1973.Google Scholar
  8. Kraft, C.H., and Eeden, Constance Van: A Nonparametric Introduction to Statistics. (Macmillan, pp.304) New York 1968.Google Scholar
  9. Lienert, G.A.: Verteilungsfreie Methoden in der Biostatistik. 2. neubearb. Aufl. (A. Hain, Meisenheim am Glan) Band I (736 S.) 1973.Google Scholar
  10. Milton, R.C.: Rank Order Probabilities. Two-Sample Normal Shift Alternatives. (Wiley, pp.320) New York 1970.Google Scholar
  11. Noether, G.E.: Elements of Nonparametric Statistics. (Wiley, pp. 104) New York 1967.Google Scholar
  12. Puri, M.L.: Nonparametric Techniques in Statistical Inference. Proc. 1. Internat. Symp. Nonparametric Techniques, Indiana University, June 1969. (University Press, pp. 623) Cambridge 1970.Google Scholar
  13. Puri, M.L. and Sen, P.K.: Nonparametric Methods in Multivariate Analysis. (Wiley, pp.450) London 1971.Google Scholar
  14. Savage, I.R.: Bibliography of Nonparametric Statistics. (Harvard University Press, pp.284) Cambridge, Mass. 1962.Google Scholar
  15. Walsh, J.E.: Handbook of Nonparametric Statistics. Vol. I–III (Van Nostrand, pp.549, 686, 747) Princeton, N.J. 1962, 1965, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Lothar Sachs

There are no affiliations available

Personalised recommendations