Advertisement

Varianzanalytische Methoden

  • Lothar Sachs

Zusammenfassung

Im 2. Kapitel haben wir unter dem Begriff Response Surface Experimentation eine experimentelle Strategie zur Qualitätsverbesserung im weitesten Sinne erwähnt. Ein wesentlicher Teil dieser speziellen Theorie der optimalen Versuchsplanung basiert auf der Regressionsanalyse und auf der sogenannten Varianzanalyse, die R.A. Fisher (1890–1962) für die Planung und Auswertung von Experimenten, insbesondere von Feldversuchen, geschaffen hat und die es gestattet, wesentliche von unwesentlichen Einflußgrößen zu unterscheiden. Eine besondere Rolle spielen hierbei Vergleiche von Mittelwerten. Da die Varianzanalyse wie der t-Test Normalverteilung und Gleichheit der Varianzen voraussetzt, wollen wir zunächst dem F-Test entsprechende Verfahren kennenlernen, die zur Prüfung der Gleichheit oder der Homogenität mehrerer Varianzen dienen. Sind die Varianzen mehrerer Stichprobengruppen gleich, dann lassen sich auch die Mittelwerte varianzanalytisch vergleichen. Dies ist die einfachste Form der Varianzanalyse. Für die sichere Erfassung mehrerer wesentlicher Einflußgrößen ist es notwendig, daß die Beobachtungswerte aus speziellen Versuchsanordnungen gewonnen werden (vgl. Abschnitt 77).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Addelman, S.: (1) Techniques for constructing fractional replicate plans. J. Amer. Statist. Assoc. 58 (1963), 45–71. (2) Sequences of two-level fractional factorial plans. Technometrics 11 (1969), 477-509 (vgl. auch Davies-Hay, Biometrics 6 [1950], 233-249).MathSciNetzbMATHGoogle Scholar
  2. Ahrens, H.: Varianzanalyse. (WTB, Akademie-Vlg., 198 S.), Berlin 1967.Google Scholar
  3. Anscombe, F. J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35 (1948), 246–254.MathSciNetzbMATHGoogle Scholar
  4. Kullback, S., and Tukey, J.W.: The examination and analysis of residuals. Technometrics 5 (1963), 141–159.MathSciNetGoogle Scholar
  5. Baker, A.G.: Analysis and presentation of the results of factorial experiments. Applied Statistics 6 (1957), 45–55.Google Scholar
  6. Bancroft, T.A.: (1) Analysis and inference for incompletely specified models involving the use of preliminary test(s) of significance. Biometrics 20 (1964), 427–442. (2) Topics in Intermediate Statistical Methods. Vol.1. (Iowa State University Press; pp.129) Ames, Iowa 1968, Chapters 1 and 6.MathSciNetzbMATHGoogle Scholar
  7. Barnett, V.D.: Large sample tables of percentage points for Hartley’s correction to Bartlett’s criterion for testing the homogeneity of a set of variances. Biometrika 49 (1962), 487–494.MathSciNetzbMATHGoogle Scholar
  8. Bartholomew, D. J.: Ordered tests in the analysis of variance. Biometrika 48 (1961), 325–332.MathSciNetzbMATHGoogle Scholar
  9. Bartlett, M.S.: (1) Properties of sufficiency and statistical tests. Proc. Roy. Soc. A 160 (1937), 268–282. (2) Some examples of statistical methods of research in agriculture and applied biology. J. Roy. Statist. Soc. Suppl. 4 (1937), 137-170. (3) The use of transformations. Biometrics 3 (1947), 39-52.Google Scholar
  10. Bechhofer, R. E.: A single-sample multiple decision procedure for ranking means of normal populations with known variances. Ann. Math. Statist. 25 (1954), 16–39 [vgl. auch Biometrika 54 (1967), 305-308 und 59 (1972), 217-219].MathSciNetzbMATHGoogle Scholar
  11. Binder, A.: The choice of an error term in analysis of variance designs. Psychometrika 20 (1955), 29–50.MathSciNetzbMATHGoogle Scholar
  12. Blischke, W.R.: Variances of estimates of variance components in a three-way classification. Biometrics 22 (1966), 553–565.MathSciNetGoogle Scholar
  13. Bliss, C.I., Cochran, W.G., and Tukey, J.W.: A rejection criterion based upon the range. Biometrika 43 (1956), 418–422.zbMATHGoogle Scholar
  14. Bose, R.C.: Paired comparison designs for testing concordance between judges. Biometrika 43 (1956), 113–121.MathSciNetzbMATHGoogle Scholar
  15. Box, G.E.P.: (1) Non-normality and tests on variances. Biometrika 40 (1953), 318–335. (2) The exploration and exploitation of response surfaces. Biometrics 10 (1954), 16-60.MathSciNetzbMATHGoogle Scholar
  16. Box, G.E.P., and Andersen, S. L.: Permutation theory in the derivation of robust criteria and the study of departures from assumption. With discussion. J. Roy. Statist. Soc, Ser. B 17 (1955), 1–34.zbMATHGoogle Scholar
  17. Box, G.E.P., and Cox, D.R.: An analysis of transformations. J. Roy, Statist. Soc, Ser. B 26 (1964), 211–252 [vgl. auch J. J. Schlesselman: J. Amer. Statist. Assoc. 68 (1973), 369-378].MathSciNetzbMATHGoogle Scholar
  18. Box, G.E.P., and Draper, N. R.: A basis for the selection of a response surface design. J. Amer. Statist. Assoc. 54 (1959), 622–654.MathSciNetzbMATHGoogle Scholar
  19. Box, G.E.P., and Hunter, J. S.: Condensed calculations for evolutionary operation programs. Technometrics 1 (1959), 77–95.MathSciNetGoogle Scholar
  20. Box, G.E.P., and Wilson, K.B.: On the experimental attainment of optimum conditions. J. Roy. Statist. Soc., Ser. B 13 (1951), 1–45.MathSciNetzbMATHGoogle Scholar
  21. Bradley, R. A., and Schumann, D.E. W.: The comparison of the sensitivities of similar experiments: applications. Biometrics 13 (1957), 496–510.Google Scholar
  22. Bratcher, T. L., Moran, M. A., and Zimmer, W. J.: Tables of sample sizes in the analysis of variance. J. Qual. Technol. 2 (1970), 156–164.Google Scholar
  23. Brownlee, K.A.: The principles of experimental design. Industrial Quality Control 13 (February 1957), 12–20.Google Scholar
  24. Cochran, W.G.: (1) The distribution of the largest of a set of estimated variances as a fraction of their total. Ann. Eugen. (Lond.) 11 (1941), 47-61. (2) Some consequences when assumptions for the analysis of variance are not satisfied. Biometrics 3 (1947), 22–38. (3) Testing a linear relation among variances. Biometrics 7 (1951), 17-32. (4) Analysis of covariance: its nature and use. Biometrics 13 (1957), 261-281. (5) The Design of Experiments. In Flagle, CD., Huggins, W.H., and Roy, R.H. (Eds.): Operations Research and Systems Engineering, pp. 508-553. Baltimore 1960.MathSciNetGoogle Scholar
  25. Cole, J.W.L. and Grizzle, J.E.: Applications of multivariate analysis of variance to repeated measurements experiments. Biometrics 22 (1966), 810–828 [vgl. auch 28 (1972), 39-53 u. 55-71].Google Scholar
  26. Conover, W. J.: Two k-sample slippage tests. J. Amer. Statist. Assoc. 63 (1968), 614–626.Google Scholar
  27. Cooper, B.E.: A unifying computational method for the analysis of complete factorial experiments. Communications of the ACM 10 (Jan. 1967), 27–34.zbMATHGoogle Scholar
  28. Cunningham, E.P.: An iterative procedure for estimating fixed effects and variance components in mixed model situations. Biometrics 24 (1968), 13–25.MathSciNetGoogle Scholar
  29. Daniel, C.: Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 4 (1959), 311–341.MathSciNetGoogle Scholar
  30. David, H.A.: (1) Further applications of range to the analysis of variance. Biometrika 38 (1951), 393–409. (2) The ranking of variances in normal populations. J. Amer. Statist. Assoc. 51 (1956), 621-626. (3) The Method of Paired Comparisons (Griffin, pp. 124) London 1969.MathSciNetzbMATHGoogle Scholar
  31. David, H.A., Hartley, H.O., and Pearson, E.S.: The distribution of the ratio, in a single normal sample of range to standard deviation. Biometrika 41 (1954), 482–493.MathSciNetzbMATHGoogle Scholar
  32. Dolby, J.L.: A quick method for choosing a transformation. Technometrics 5 (1963), 317–325.zbMATHGoogle Scholar
  33. Duncan, D.B.: (1) Multiple range and multiple F tests. Biometrics 11 (1955), 1–42 (vgl. auch für n i ≠ konst. Kramer 12 [1956], 307/310), (vgl. auch Technometrics 11 [1969], 321/329). (2) Multiple range tests for correlated and heteroscedastic means. Biometrics 13 (1957), 164-176. (3) A Bayesian approach to multiple comparisons. Technometrics 7 (1965), 171-222.MathSciNetGoogle Scholar
  34. Dunn, Olive J.: (1) Confidence intervals for the means of dependent, normally distributed variables. J. Amer. Statist. Assoc. 54 (1959), 613–621. (2) Multiple comparisons among means. J. Amer. Statist. Assoc. 56 (1961), 52-64 [vgl. auch Technometrics 6 (1964), 241-252].MathSciNetzbMATHGoogle Scholar
  35. Eisen, E. J.: The quasi-F test for an unnested fixed factor in an unbalanced hierarchal design with a mixed model. Biometrics 22 (1966), 937–942.Google Scholar
  36. Eisenhart, C.: The assumptions underlying the analysis of variance. Biometrics 3 (1947), 1–21.MathSciNetGoogle Scholar
  37. Enderlein, G.: Die Kovarianzanalyse. In: Regressionsanalyse und ihre Anwendungen in der Agrarwissenschaft. Vorträge des 2. Biometrischen Seminars der Deutschen Akademie der Landwirtschaftswissenschaften zu Berlin, im März 1965. Tagungsberichte Nr. 87, Berlin 1967, S. 101-132.Google Scholar
  38. Endler, N.S.: Estimating variance components from mean squares for random and mixed effects analysis of variance models. Perceptual and Motor Skills 22 (1966), 559–570 (siehe auch die von Whimbey et al. 25 [1967], 668 gegebenen Korrekturen).Google Scholar
  39. Evans, S. H., and Anastasio, E.J.: Misuse of analysis of covariance when treatment effect and covariate are confounded. Psychol. Bull. 69 (1968), 225–234 (vgl. auch 75 [1971], 220-222).Google Scholar
  40. Federer, W.T.: Experimental error rates. Proc. Amer. Soc. Hort. Sci. 78 (1961), 605–615.Google Scholar
  41. Fisher, R.A., and Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research. 6th ed. London 1963.Google Scholar
  42. Fleckenstein, Mary, Freund, R.A., and Jackson, J.E.: A paired comparison test of typewriter carbon papers. Tappi 41 (1958), 128–130.Google Scholar
  43. Freeman, M.F., and Tukey, J.W.: Transformations related to the angular and the square root. Ann. Math. Statist. 21 (1950), 607–611.MathSciNetzbMATHGoogle Scholar
  44. Friedman, M.: (1) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32 (1937), 675–701. (2) A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Statist. 11 (1940), 86-92.Google Scholar
  45. Gabriel, K.R.: Analysis of variance of proportions with unequal frequencies. J. Amer. Statist. Assoc. 58 (1963), 1133–1157.MathSciNetzbMATHGoogle Scholar
  46. Games, P. A.: Robust tests for homogeneity of variance. Educat. Psychol. Msmt. 32 (1972), 887–909 [vgl. auch J. Amer. Statist. Assoc. 68 (1973), 195-198].Google Scholar
  47. Gates, Ch.E., and Shiue, Ch.-J.: The analysis of variance of the s-stage hierarchal classification. Biometrics 18 (1962), 529–536.zbMATHGoogle Scholar
  48. Ghosh, M.N., and Sharma, D.: Power of Tukey test for non-additivity, J. Roy. Statist. Soc. B 25 (1963), 213–219.MathSciNetGoogle Scholar
  49. Gower, J. C.: Variance component estimation for unbalanced hierarchical classifications. Biometrics 18 (1962), 537–542.zbMATHGoogle Scholar
  50. Green, B. F. jr., and Tukey, J.W.: Complex analyses of variance: general problems. Psychometrika 25 (1960), 127–152.MathSciNetzbMATHGoogle Scholar
  51. Grimm, H.: Transformation von Zufallsvariablen. Biometrische Zeitschr. 2 (1960), 164–182.zbMATHGoogle Scholar
  52. Hamaker, H.C.: Experimental design in industry. Biometrics 11 (1955), 257–286.Google Scholar
  53. Harsaae, E.: On the computation and use of a table of percentage points of Bartlett’s M. Biometrika 56 (1969), 273–281.MathSciNetGoogle Scholar
  54. Harte, Cornelia: Anwendung der Covarianzanalyse beim Vergleich von Regressionskoeffizienten. Biometrische Zeitschr. 7 (1965), 151–164.Google Scholar
  55. Harter, H.L.: (1) Error rates and sample sizes for range tests in multiple comparisons. Biometrics 13 (1957), 511–536. (2) Tables of range and Studentized range. Ann. Math. Statist. 31 (1960), 1122-1147. (3) Expected values of normal order statistics. Biometrika 48 (1961), 151-165.Google Scholar
  56. Hartley, H.O.: (1) The use of range in analysis of variance. Biometrika 37 (1950), 271–280. (2) The maximum F-ratio as a short cut test for heterogeneity of variance. Biometrika 37 (1950), 308-312. (3) Some recent developments in the analysis of variance. Comm. Pure and Applied Math. 8 (1955), 47-72.MathSciNetzbMATHGoogle Scholar
  57. Hartley, H.O., and Pearson, E.S.: Moments constants for the distribution of range in normal samples. I. Foreword and tables. Biometrika 38 (1951), 463 + 464.Google Scholar
  58. Harvey, W.R.: Estimation of variance and covariance components in the mixed model. Biometrics 26 (1970), 485–504.Google Scholar
  59. Hays, W.L.: Statistics for Psychologists. (Holt, Rinehart and Winston, pp.719), New York 1963, pp.439-455.Google Scholar
  60. Healy, M.J.R. and Taylor, L.R.: Tables for power-law transformations. Biometrika 49 (1962), 557–559.MathSciNetGoogle Scholar
  61. Herzberg, Agnes M., and Cox, D.R.: Recent work on the design of experiments: a bibliography and a review. J. Roy. Statist. Soc. A 132 (1969), 29–67.MathSciNetGoogle Scholar
  62. Holland, D.A.: Sampling errors in an orchard survey involving unequal numbers of orchards of distinct type. Biometrics 21 (1965), 55–62.Google Scholar
  63. Imberty, M.: Esthétique expérimentale: la methode de comparison par paires appliquée à l’étude de l’organisation perceptive de la phrase musicale chez l’enfant. Revue de Statistique Appliquée 16, No.2 (1968), 25–63.Google Scholar
  64. Jackson, J.E., and Fleckenstein, Mary: An evaluation of some statistical techniques used in the analysis of paired comparison data. Biometrics 13 (1957), 51–64.Google Scholar
  65. Jaech, J.L.: The latin square. J. Qual. Technol. 1 (1969), 242–255.Google Scholar
  66. Kastenbaum, M.A., Hoel, D.G., and Bowman, K.O.: (1) Sample size requirements: one-way analysis of variance. Biometrika 57 (1970), 421-430. (2) Sample size requirements: randomized block designs. Biometrika 57 (1970), 573–577 [vgl. auch Biometrika 59 (1972), 234].zbMATHGoogle Scholar
  67. Kempthorne, V.: The randomization theory of experimental inference. J. Amer. Statist. Assoc. 50 (1955), 946–967.MathSciNetGoogle Scholar
  68. Kempthorne, V., and Barclay, W.D.: The partition of error in randomized blocks. J. Amer. Statist. Assoc. 48 (1953), 610–614.Google Scholar
  69. Kendall, M.G.: On the future of statistics — a second look. J. Roy. Statist. Soc. A 131 (1968), 182–294.Google Scholar
  70. Kiefer, J.C.: Optimum experimental designs. J. Roy. Statist. Soc., Ser. B 21 (1959), 272–319.MathSciNetzbMATHGoogle Scholar
  71. Knese, K.H., und Thews, G.: Zur Beurteilung graphisch formulierter Häufigkeitsverteilungen bei biologischen Objekten. Biometrische Zeitschr. 2 (1960), 183–193.zbMATHGoogle Scholar
  72. Koch, G.G.: A general approach to the estimation of variance components. Technometrics 9 (1967), 93–118 (siehe 10, 551-558).MathSciNetzbMATHGoogle Scholar
  73. Koch, G.G., and Sen, K.P.: Some aspects of the statistical analysis of the “mixed model”. Biometrics 24 (1968), 27–48.MathSciNetGoogle Scholar
  74. Koller, S.: (1) Statistische Auswertung der Versuchsergebnisse. In Hoppe-Seyler/Thierfelder’s Handb. d. physiologisch-und pathologisch-chemischen Analyse, 10. Aufl., Bd. II, S. 931-1036. Berlin-Göttingen-Heidelberg 1955, S. 1011-1016 [vgl. auch Arzneim.-Forschg. 18 (1968), 71–77]. (2) Statistische Auswertungsmethoden. In H.M. Rauen (Hrsg.), Biochemisches Taschenbuch, II. Teil, S. 959-1046, Berlin-Göttingen-Heidelberg-New York 1964.Google Scholar
  75. Kramer, C.Y.: On the analysis of variance of a two-way classification with unequal sub-class numbers. Biometrics 11 (1955), 441–452 [vgl. auch Psychometrika 36 (1971), 31-34].Google Scholar
  76. Kurtz, T.E., Link, R.F., Tukey, J.W., and Wallace, D.L.: (1) Short-cut multiple comparisons for balanced single and double classifications: Part 1, Results. Technometrics 7 (1965), 95–161. (2) Short-cut multiple comparisons for balanced single and double classifications: Part 2. Derivations and approximations. Biometrika 52 (1965), 485-498.Google Scholar
  77. Kussmaul, K., and Anderson, R. L.: Estimation of variance components in two-stage nested designs with composite samples. Technometrics 9 (1967), 373–389.MathSciNetzbMATHGoogle Scholar
  78. Lehmann, W.: Einige Probleme der varianzanalytischen Auswertung von Einzelpflanzenergebnissen. Biometrische Zeitschr. 12 (1970), 54–61.Google Scholar
  79. Le Roy, H.L.: (1) Wie finde ich den richtigen F-Test? Mitteilungsbl. f. math. Statistik 9 (1957), 182–195. (2) Testverhältnisse bei der doppelten Streuungszerlegung (Zweiwegklassifikation). Schweiz. Landw. Forschg. 2 (1963), 329-340. (3) Testverhältnisse beim a · b · c- und a · b · c · d-Faktorenversuch. Schweiz. Landw. Forschg. 3 (1964), 223-234. (4) Vereinfachte Regel zur Bestimmung des korrekten F-Tests beim Faktorenversuch. Schweiz. Landw. Forschg. 4 (1965), 277-283. (5) Verbale und bildliche Interpretation der Testverhältnisse beim Faktorenversuch. Biometrische Zeitschr. 14 (1972), 419-427 [vgl. auch Metrika 17 (1971), 233-242].Google Scholar
  80. Leslie, R.T., and Brown, B.M.: Use of range in testing heterogeneity of variance. Biometrika 53 (1966), 221–227.MathSciNetGoogle Scholar
  81. Li, C.C.: Introduction to Experimental Statistics. (McGraw-Hill, pp.460), New York 1964, pp. 258-334.Google Scholar
  82. Li, J. C. R.: Statistical Inference I. (Edwards Brothers, pp. 658), Ann Arbor, Mich. 1964, Chapter 19.Google Scholar
  83. Lienert, G.A.: Über die Anwendung von Variablen-Transformationen in der Psychologic Biometrische Zeitschr. 4 (1962), 145–181.zbMATHGoogle Scholar
  84. Lienert, G.A., Huber, H., und Hinkelmann, K.: Methode zur Analyse quantitativer Verlaufskriterien. Biometrische Zeitschr. 7 (1965), 184–193.Google Scholar
  85. Linhart, H.: (1) Approximate tests for m rankings. Biometrika 47 (1960), 476–480. (2) Streuungszerlegung für Paar-Vergleiche. Metrika 10 (1966), 16-38.zbMATHGoogle Scholar
  86. Link, R.F., and Wallace, D.L.: Some Short Cuts to Allowances. Princeton University, March 1952.Google Scholar
  87. Mandel, J.: Non-additivity in two-way analysis of variance. J. Amer. Statist. Assoc. 56 (1961), 878–888.MathSciNetzbMATHGoogle Scholar
  88. Martin, L.: Transformations of variables in clinical-therapeutical research. Method. Inform. Med. 1 (1962), 1938–1950.Google Scholar
  89. McDonald, B.J., and Thompson, W.A. jr.: Rank sum multiple comparisons in one-and two-way classifications. Biometrika 54 (1967), 487–497.MathSciNetGoogle Scholar
  90. Michaelis, J.: Schwellenwerte des Friedman-Tests. Biometr. Zeitschr. 13 (1971), 118–129.zbMATHGoogle Scholar
  91. Mosteller, F., and Youtz, C.: Tables of the Freeman-Tukey transformations for the binomial and Poisson distributions. Biometrika 48 (1961), 433–440.MathSciNetzbMATHGoogle Scholar
  92. Natrella, Mary G.: Experimental Statistics. NBS Handbook 91. (U.S. Gvt. Print. Office) Washington 1963, Chapters 11/14.Google Scholar
  93. Newman, D.: The distribution of the range in samples from normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 31 (1939), 20–30.MathSciNetzbMATHGoogle Scholar
  94. Neyman, J. and Scott, E.L.: Correction for bias introduced by a transformation of variables. Ann. Math. Statist. 31 (1960), 643–655 [vgl. auch Int. Statist. Rev. 41 (1973), 203-223].MathSciNetzbMATHGoogle Scholar
  95. Ott, E. R.: Analysis of means — a graphical procedure. Industrial Quality Control 24 (August 1967), 101–109.MathSciNetGoogle Scholar
  96. Pachares, J.: Table of the upper 10% points of the Studentized range. Biometrika 46 (1959), 461–466.MathSciNetGoogle Scholar
  97. Page, E. B.: Ordered hypotheses for multiple treatments: A significance test for linear ranks. J. Amer. Statist. Assoc. 58 (1963), 216–230 [vgl. auch 67 (1972), 850-854 und Psychological Review 71 (1964), 505-513 sowie Psychometrika 38 (1973), 249-258].MathSciNetzbMATHGoogle Scholar
  98. Pearson, E.S.: The probability integral of the range in samples of n observations from a normal population. Biometrika 32 (1941/1942), 301–308.MathSciNetGoogle Scholar
  99. Pearson, E.S., and Stephens, M.A.: The ratio of range to standard deviation in the same normal sample. Biometrika 51 (1964), 484–487.MathSciNetzbMATHGoogle Scholar
  100. Peng, K. C.: The Design and Analysis of Scientific Experiments. (Addison-Wesley, pp. 252) Reading, Mass. 1967, Chapter 10.Google Scholar
  101. Plackett, R.L.: Models in the analysis of variance. J. Roy. Statist. Soc. B 22 (1960), 195–217.MathSciNetzbMATHGoogle Scholar
  102. Plackett, R.L., and Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33 (1946), 305–325.MathSciNetzbMATHGoogle Scholar
  103. Quade, D.: Rank analysis of covariance. J. Amer. Statist. Assoc. 62 (1967), 1187–1200.MathSciNetGoogle Scholar
  104. Rao, P.V., and Kupper, L.L.: Ties in paired-comparison experiments: a generalization of the Bradley-Terry model. J. Amer. Statist. Assoc. 62 (1967), 194–204 (siehe 63, 1550).MathSciNetGoogle Scholar
  105. Rasch, D.: (1) Probleme der Varianzanalyse bei ungleicher Klassenbesetzung. Biometrische Zeitschr. 2 (1960), 194–203. (2) Gemischte Klassifikationen der dreifachen Varianzanalyse. Biometrische Zeitschr. 13 (1971), 1-20.zbMATHGoogle Scholar
  106. Reinach, S.G.: A nonparametric analysis for a multi-way classification with one element per cell. South Africa J. Agric. Sci. (Pretoria) 8 (1965), 941–960 [vgl. auch S. Afr. Statist. J. 2 (1968), 9-32].Google Scholar
  107. Reisch, J.S., and Webster, J.T.: The power of a test in covariance analysis. Biometrics 25 (1969), 701–714.Google Scholar
  108. Rives, M.: Sur l’analyse de la variance. I. Emploi de transformations. Ann. Inst. nat. Rech. agronom., Ser. B 3 (1960), 309–331.Google Scholar
  109. Rutherford, A.A., and Stewart, D. A.: The use of subsidiary information in the improvement of the precision of experimental estimation. Record of Agricultural Research 16, Part 1 (1967), 19–24.Google Scholar
  110. Ryan, T.A.: (1) Multiple comparisons in psychological research. Psychol. Bull. 56 (1959), 26–47. (2) Comments on orthogonal components. Psychol. Bull. 56 (1959), 394-396.Google Scholar
  111. Sachs, L.: Statistische Methoden. Ein Soforthelfer. 2. neubearb. Aufl. (Springer, 105 S.), Berlin, Heidelberg, New York 1975, S. 94-97.Google Scholar
  112. Scheffé, H.: (1) An analysis of variance for paired comparisons. J. Amer. Statist. Assoc. 47 (1952), 381–400. (2) A method for judging all contrasts in the analysis of variance. Biometrika 40 (1953), 87-104, Corrections 56 (1969), 229. (3) The Analysis of Variance. (Wiley, pp.477), New York 1959, Chapters 6 and 8.MathSciNetzbMATHGoogle Scholar
  113. Searle, S.R.: (1) Linear Models. (Wiley, pp.532) London 1971. (2) Topics in variance component estimation. Biometrics 27 (1971), 1–76.MathSciNetGoogle Scholar
  114. Searle, S.R., and Henderson, C.R.: Computing procedures for estimating components of variance in the two-way classification, mixed model. Biometrics 17 (1961), 607–616.zbMATHGoogle Scholar
  115. Siotani, M.: Internal estimation for linear combinations of means. J. Amer. Statist. Assoc. 59 (1964), 1141–1164 (vgl. auch 60 [1965], 573-583).MathSciNetzbMATHGoogle Scholar
  116. Snell, E. J.: A scaling procedure for ordered categorical data. Biometrics 20 (1964), 592–607.MathSciNetzbMATHGoogle Scholar
  117. Spjøtvoll, E.: A mixed model in the analysis of variance. Optimal properties. Skand. Aktuarietidskr. 49 (1966), 1–38.Google Scholar
  118. Sprott, D. A.: Note on Evans and Anastasio on the analysis of covariance. Psychol. Bull. 73 (1970), 303–306 [vgl. auch 69 (1968), 225-234 und 79 (1973), 180].Google Scholar
  119. Starks, T.H., and David, H.A.: Significance tests for paired-comparison experiments. Biometrika 48 (1961), 95–108, Corrigenda 475.MathSciNetGoogle Scholar
  120. Student: Errors of routine analysis. Biometrika 19 (1927), 151–164.Google Scholar
  121. Taylor, L. R.: Aggregation, variance and the mean. Nature 189 (1961), 723–735 (vgl. auch Biometrika 49 [1962], 557-559).Google Scholar
  122. Teichroew, D.: Tables of expected values of order statistics and products of order statistics for samples of size twenty and less from the normal distribution. Ann. Math. Statist. 27 (1956), 410–426.MathSciNetzbMATHGoogle Scholar
  123. Terry, M.E., Bradley, R.A., and Davis, L.L.: New designs and techniques for organoleptic testing. Food Technology 6 (1952), 250–254 [vgl. auch Biometrics 20 (1964), 608-625].Google Scholar
  124. Tietjen, G. L., and Beckman, R. J.: Tables for use of the maximum F-ratio in multiple comparison procedures. J. Amer. Statist. Assoc. 67 (1972), 581–583 [vgl. auch Biometrika 60 (1973), 213 + 214].zbMATHGoogle Scholar
  125. Tietjen, G.L., and Moore, R.H.: On testing significance of components of variance in the unbalanced nested analysis of variance. Biometrics 24 (1968), 423–429.Google Scholar
  126. Trawinski, B.J.: An exact probability distribution over sample spaces of paired comparisons. Biometrics 21 (1965), 986–1000.MathSciNetGoogle Scholar
  127. Tukey, J.W.: (1) Comparing individual means in the analysis of variance. Biometrics 5 (1949), 99–114. (2) One degree of freedom for non-additivity. Biometrics 5 (1949), 232-242 (vgl. 10 [1954], 562-568), (vgl. auch Ghosh und Sharma 1963). (3) Some selected quick and easy methods of statistical analysis. Trans. N. Y. Acad. Sciences (II) 16 (1953), 88-97. (4) Answer to query 113. Biometrics 11 (1955), 111-113. (5) On the comparative anatomy of transformations. Ann. Math. Statist. 28 (1957), 602-632. (6) The future of data analysis. Ann. Math. Statist. 33 (1962), 1-67.MathSciNetGoogle Scholar
  128. Vessereau, A.: Les méthodes statistiques appliquées au test des caractères organoleptiques. Revue de Statistique Appliquée 13 (1965, No. 3), 7–38.Google Scholar
  129. Victor, N.: Beschreibung und Benutzeranleitung der interaktiven Statistikprogramme ISTAP. Gesellschaft für Strahlen-und Umweltforschung mbH; 52 S.) München 1972, S. 39.Google Scholar
  130. Wartmann, R.: Rechnen mit gerundeten bzw. verschlüsselten Zahlen, insbesondere bei Varianzanalyse. Biometrische Zeitschr. 1 (1959), 190–202.zbMATHGoogle Scholar
  131. Watts, D.G. (Ed.): The Future of Statistics. (Proc. Conf. Madison, Wisc., June 1967; Academic Press, pp. 315), New York 1968.Google Scholar
  132. Weiling, F.: (1) Weitere Hinweise zur Prüfung der Additivität bei Streuungszerlegungen (Varianzanalysen). Der Züchter 33 (1963), 74–77. (2) Möglichkeiten der Analyse von Haupt-und Wechselwirkungen bei Varianzanalysen mit Hilfe programmgesteuerter Rechner. Biometrische Zeitschr. 14 (1972), 398-408.Google Scholar
  133. Wilcoxon, F., and Wilcox, Roberta, A.: Some Rapid Approximate Statistical Procedures. Lederle Laboratories, Pearl River, New York 1964.Google Scholar
  134. Wilk, M.B., and Kempthorne, O.: Fixed, mixed, and random models. J. Amer. Statist. Assoc. 50 (1955), 1144–1167.zbMATHGoogle Scholar
  135. Williams, J.D.: (Letter) Quick calculations of critical differences for Scheffé’s test for unequal sample sizes. The American Statistician 24 (April 1970), 38 + 39.Google Scholar
  136. Winer, B.J.: Statistical Principles in Experimental Design. (McGraw-Hill, pp.672), New York 1962, pp. 140-455 [2nd ed., pp.907, N.Y. 1971].Google Scholar

Multiple Vergleiche

  1. Bancroft, T.A.: Topics in Intermediate Statistical Methods. Vol. I. (Iowa State University Press; pp. 129) Ames, Iowa 1968, Chapter 8.Google Scholar
  2. Bechhofer, R.E.: Multiple comparisons with a control for multiply-classified variances of normal populations. Technometrics 10 (1968), 715–718 (sowie 693-714).MathSciNetGoogle Scholar
  3. Crouse, C.F.: A multiple comparison of rank procedure for a one-way analysis of variance. S. Afr. Statist. J. 3 (1969), 35–48.Google Scholar
  4. Dudewicz, E.J., and Ramberg, J.S.: Multiple comparisons with a control; unknown variances. Annual Techn. Conf. Transact. Am. Soc. Qual. Contr. 26 (1972), 483–488.Google Scholar
  5. Duncan, D.B.: A Bayesian approach to multiple comparisons. Technometrics 7 (1965), 171–222.zbMATHGoogle Scholar
  6. Dunn, Olive J.: (1) Confidence intervals for the means of dependent, normally distributed variables. J. Amer. Statist. Assoc. 54 (1959), 613–621. (2) Multiple comparisons among means. J. Amer. Statist. Assoc. 56 (1961), 52-64. (3) Multiple comparisons using rank sums. Technometrics 6 (1964), 241-252.MathSciNetzbMATHGoogle Scholar
  7. Pearson, E.S., and Massey, jr., F.J.: Estimating of multiple contrasts using t-distributions. J. Amer. Statist. Assoc. 60 (1965), 573–583.MathSciNetGoogle Scholar
  8. Dunnett, C.W.: (1) A multiple comparison procedure for comparing several treatments with a control. J. Amer. Statist. Assoc. 50 (1955), 1096–1121 [siehe auch Dudewicz u. Ramberg (1972)]. (2) New tables for multiple comparisons with a control. Biometrics 20 (1964), 482-491. (3) Multiple comparison tests. Biometrics 26 (1970), 139-141.zbMATHGoogle Scholar
  9. Enderlein, G.: Die Maximum-Modulus-Methode zum multiplen Vergleich von Gruppenmitteln mit dem Gesamtmittel. Biometrische Zeitschr. 14 (1972), 85–94.zbMATHGoogle Scholar
  10. Gabriel, K. R.: (1) A procedure for testing the homogeneity of all sets of means in analysis of variance. Biometrics 20 (1964), 458–477. (2) Simultaneous test procedures for multiple comparisons on categorical data. J. Amer. Statist. Assoc. 61 (1966), 1081-1096.MathSciNetGoogle Scholar
  11. Games, P. A.: Inverse relation between the risks of type I and type II errors and suggestions for the unequal n case in multiple comparisons. Psychol. Bull. 75 (1971), 97–102 (vgl. auch 71 [1969], 43-54 und Amer. Educat. Res. J. 8 [1971], 531-565).Google Scholar
  12. Hahn, G. J. and Hendrickson, R.W.: A table of percentage points of the distribution of the largest absolute value of k Student t variates and its applications. Biometrika 58 (1971), 323–332.MathSciNetzbMATHGoogle Scholar
  13. Hollander, M.: An asymptotically distribution-free multiple comparison procedure treatments vs. control. Ann. Math. Statist. 37 (1966), 735–738.MathSciNetzbMATHGoogle Scholar
  14. Keuls, M.: The use of the studentized range in connection with an analysis of variance. Euphytica 1 (1952), 112–122.Google Scholar
  15. Kramer, C.Y.: Extension of multiple range tests to group correlated adjusted means. Biometrics 13 (1957), 13–18 [vgl. auch Psychometrika 36 (1971), 31-34].MathSciNetGoogle Scholar
  16. Kurtz, T.E., Link, R.F., Tukey, J.W., and Wallace, D.L.: Short-cut multiple comparisons for balanced single and double classifications: Part 1, Results. Technometrics 7 (1965), 95–161.Google Scholar
  17. Kurtz, T.E., Link, R.F., Tukey, J.W., Link, R.F., Tukey, J.W., and Wallace, D.L.: Short-cut multiple comparisons for balanced single and double classifications: Part 2. Derivations and approximations. Biometrika 52 (1965), 485–498.MathSciNetGoogle Scholar
  18. Link, R.F.: On the ratio of two ranges. Ann. Math. Statist. 21 (1950), 112–116.MathSciNetzbMATHGoogle Scholar
  19. —, and Wallace, D.L.: Some Short Cuts to Allowances. Princeton University, March 1952.Google Scholar
  20. Marascuilo, L.A.: Large-sample multiple comparisons. Psychol. Bull. 65 (1966), 280–290 (vgl. auch J. Cohen, 67 [1967], 199-201).Google Scholar
  21. McDonald, B. J., and Thompson, W. A., Jr.: Rank sum multiple comparisons in one-and two-way classifications. Biometrika 54 (1967), 487–497.MathSciNetGoogle Scholar
  22. Miller, R.G.: Simultaneous Statistical Inference. (McGraw-Hill, pp.272), New York 1966 (Chapter 2, pp. 37-109).Google Scholar
  23. Morrison, D.F.: Multivariate Statistical Methods. (McGraw-Hill, pp. 338), New York 1967.Google Scholar
  24. Nemenyi, P.: Distribution-Free Multiple Comparisons. New York, State University of New York, Downstate Medical Center 1963.Google Scholar
  25. O’Neill, R. and Wetherill, G. B.: The present state of multiple comparison methods. With discussion. J. Roy. Statist. Soc. B 33 (1971), 218–250.MathSciNetGoogle Scholar
  26. Perlmutter, J. and Myers, J.L.: A comparison of two procedures for testing multiple contrasts. Psychol. Bull. 79 (1973), 181–184.Google Scholar
  27. Petrinovich, L.F., and Hardyck, C.D.: Error rates for multiple comparison methods. Some evidence concerning the frequency of erroneous conclusions. Psychol. Bull. 71 (1969), 43–54 (vgl. auch 75 [1971], 97-102 und 80 [1973], 31 + 32).Google Scholar
  28. Rhyne, A.L., and Steel, R.G.D.: A multiple comparisons sign test: all pairs of treatments. Biometrics 23 (1967), 539–549.MathSciNetGoogle Scholar
  29. Rhyne jr., A.L., and Steel, R.G.D.: Tables for a treatment versus control multiple comparisons sign test. Technometrics 7 (1965), 293–306.MathSciNetGoogle Scholar
  30. Ryan, T.A.: Significance tests for multiple comparison of proportions, variances and other statistics. Psychol. Bull. 57 (1960), 318–328.Google Scholar
  31. Scheffé, H.: A method for judging all contrasts in the analysis of variance. Biometrika 40 (1953), 87–104, Corrections 56 (1969), 229.MathSciNetzbMATHGoogle Scholar
  32. Seeger, P.: Variance Analysis of Complete Designs. Some Practical Aspects. (Almqvist and Wiksell, pp.225) Uppsala 1966, pp. 111-160.Google Scholar
  33. Siotani, M.: Interval estimation for linear combinations of means. J. Amer. Statist. Assoc. 59 (1964), 1141–1164.MathSciNetzbMATHGoogle Scholar
  34. Slivka, J.: A one-sided nonparametric multiple comparison control percentile test: treatment versus control. Biometrika 57 (1970), 431–438.MathSciNetzbMATHGoogle Scholar
  35. Steel, R.G.D.: (1) A multiple comparison rank sum test: treatment versus control. Biometrics 15 (1959), 560–572. (2) A rank sum test for comparing all pairs of treatments. Technometrics 2 (1960), 197-208. (3) Answer to Query: Error rates in multiple comparisons. Biometrics 17 (1961), 326-328. (4) Some rank sum multiple comparisons tests. Biometrics 17 (1961), 539-552.MathSciNetzbMATHGoogle Scholar
  36. Thöni, H.: A nomogram for testing multiple comparisons. Biometrische Zeitschr. 10 (1968), 219–221.Google Scholar
  37. Tobach, E., Smith, M., Rose, G., and Richter, D.: A table for making rank sum multiple paired comparisons. Technometrics 9 (1967), 561–567.MathSciNetGoogle Scholar

Versuchsplanung

  1. Bätz, G. (u. 16 Mitarb.): Biometrische Versuchsplanung. (VEB Dtsch. Landwirtschaftsvlg., 355 S.) Berlin 1972.Google Scholar
  2. Bancroft, T.A.: Topics in Intermediate Statistical Methods (Iowa State Univ. Press) Ames, Iowa 1968.Google Scholar
  3. Bandemer, H., Bellmann, A., Jung, W. und Richter, K.: Optimale Versuchsplanung. (WTB Bd. 131) (Akademie-Vlg., 180 S.) Berlin 1973.Google Scholar
  4. Billeter, E.P.: Grundlagen der repräsentativen Statistik. Stichprobentheorie und Versuchsplanung. (Springer, 160 S.) Wien und New York 1970, S. 99/152.Google Scholar
  5. Böse, R. C.: The design of experiments. Proc. Indian Sci. Congr. 34(II) (1947), 1–25 [vgl. auch Ann. Eugenics 9 (1939), 353-399, Sankhya 4 (1939), 337-372, J. Amer. Statist. Assoc. 75 (1952), 151-181 und K. D. Tocher: J. Roy. Statist. Soc. B 14 (1952), 45-100].Google Scholar
  6. Brownlee, K.A.: Statistical Theory and Methodology in Science and Engineering. (Wiley, pp. 570), New York 1960.Google Scholar
  7. Chew, V. (Ed.): Experimental Designs in Industry. New York 1958.Google Scholar
  8. Cochran, W.G., and Cox, Gertrude M.: Experimental Designs, 2nd ed., New York 1962.Google Scholar
  9. Davies, O.L. (Ed.): Design and Analysis of Industrial Experiments, 3rd ed., New York 1963.Google Scholar
  10. Dugue, D., et Girault, M.: Analyse de Variance et Plans d’Expérience. Paris 1959.Google Scholar
  11. Edwards, A.L.: Versuchsplanung in der Psychologischen Forschung. (Beltz, 501 S.) Weinheim, Berlin, Basel 1971.Google Scholar
  12. Federer, W.T.: Experimental Design. New York 1963.Google Scholar
  13. —, and Balaam, L.N.: Bibliography on Experiment and Treatment Design Pre 1968. (Oliver and Boyd; pp.765) Edinburgh and London 1973.Google Scholar
  14. Fisher, R.A.: The Design of Experiments. Edinburgh 1935 (7th ed. 1960).Google Scholar
  15. Hall, M., jr.: Combinatorial Theory. (Blaisdell, pp. 310) Waltham, Mass. 1967.Google Scholar
  16. Hedayat, A.: Book Review. Books on experimental design. (Gibt eine Liste mit 43 Büchern). Biometrics 26 (1970), 590–593.Google Scholar
  17. Herzberg, Agnes M., and Cox, D.R.: Recent work on the design of experiments: a bibliography and a review. J. Roy. Statist. Soc. 132 A (1969), 29–67.MathSciNetGoogle Scholar
  18. Hicks, C.R.: Fundamental Concepts in the Design of Experiments. New York 1964.Google Scholar
  19. Johnson, N.L., and Leone, F.C.: Statistics and Experimental Design in Engineering and the Physical Sciences. Vol. II, New York 1964.Google Scholar
  20. Kempthorne, O.: The Design and Analysis of Experiments, 2nd ed., New York 1960.Google Scholar
  21. Kendall, M.G., and Stuart, A.: The Advanced Theory of Statistics. Vol.3, Design and Analysis, and Time Series. 2nd ed. (Griffin; pp.557) London 1968, Chapters 35-38.Google Scholar
  22. Kirk, R.E.: Experimental Design. Procedures for the Behavioral Sciences. (Brooks-Coole; pp. 577), Belmont, Calif. 1968.Google Scholar
  23. Li, C.C.: Introduction to Experimental Statistics. New York 1964.Google Scholar
  24. Li, J.C.R.: Statistical Inference. Vol. I, II., Ann Arbor, Mich. 1964.Google Scholar
  25. Linder, A.: Planen und Auswerten von Versuchen. 3. erw. Aufl. (Birkhäuser, 344 S.), Basel und Stuttgart 1969.Google Scholar
  26. Mendenhall, W.: Introduction to Linear Models and the Design and Analysis of Experiments (Wadsworth Publ. Comp., pp. 465), Belmont, Calif. 1968.Google Scholar
  27. Myers, J. L.: Fundamentals of Experimental Design. 2nd ed. (Allyn and Bacon, pp. 407), Boston 1972.Google Scholar
  28. Peng, K.C.: The Design and Analysis of Scientific Experiments. Reading, Mass. 1967.Google Scholar
  29. Scheffé, H.: The Analysis of Variance. New York 1959.Google Scholar
  30. Winer, B. J.: Statistical Principles in Experimental Design. 2nd ed. (McGraw-Hill, pp. 907) New York 1971.Google Scholar
  31. Yates, F.: Experimental Design. Selected Papers. (Hafner, pp.296) Darien, Conn. (USA) 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Lothar Sachs

There are no affiliations available

Personalised recommendations