Advertisement

Abhängigkeitsmaße: Korrelation und Regression

  • Lothar Sachs
Chapter
  • 544 Downloads

Zusammenfassung

In vielen Situationen ist es wünschenswert, etwas über die Abhängigkeit zwischen zwei Merkmalen eines Individuums, Materials, Produktes oder Prozesses zu erfahren. In einigen Fällen mag es auf Grund theoretischer Überlegungen sicher sein, daß zwei Merkmale, X und Y, miteinander zusammenhängen (vgl. auch [123]: nach (1.11 A) und nach Übersicht 17). Das Problem besteht dann darin, Art und Grad des Zusammenhanges zu ermitteln. Zunächst wird man die Wertepaare (x i , y i ) in ein Koordinatensystem eintragen. Hierdurch erhält man eine Grundvorstellung über Streuung und Form der Punktwolke (vgl. Abb. 45). Liegt ein linearer Zusammenhang zwischen X und Y vor, so läßt sich ein Stichproben-Korrelationskoeffizient r angeben, der den entsprechenden Parameter ϱ (Rho) schätzt. Aufschlußreich sind häufig nach einem dritten Merkmal nebeneinander angeordnete Punktwolken.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise zur Korrelationsanalyse und Regressionsanalyse

  1. Cohen, J., and Cohen, P. (1975): Applied Multiple Regression Analysis. Correlation Analysis for the Behavioral Sciences. (Wiley; pp. 490) New York [2nd ed. 1983; vgl. auch Multivariate Behavioral Research 17 (1982), 301–304: set correlation]Google Scholar
  2. Förster, E., und Rönz, B. (1979): Methoden der Korrelations- und Regressionsanalyse. Ein Leitfaden für Ökonomen. (Vlg. Die Wirtschaft; 324 S.) BerlinGoogle Scholar
  3. Tiede, M. (1987): Statistik. Regressions-and Korrelationsanalyse. (R. Oldenbourg; 455 S.) München und WienGoogle Scholar
  4. Hutchinson, T.P., and Lai C.D. (1990): Continuous Bivariate Distributions. Emphasising Applications. (Rumsby Scientific Publ.; pp. 490) AdelaidezbMATHGoogle Scholar
  5. Tutz, G. (1990): Modelle für kategoriale Daten mit ordinalem Skalenniveau. Parametrische und nonparametrische Ansätze. Reihe: Angewandte Statistik und Ökonometrie 33. (Vandenhoeck & Ruprecht; 228 S.) Göttingen und ZürichGoogle Scholar
  6. Donner, A., and Rosner, B. (1980): On inferences concerning a common correlation coefficient. Applied Statistics 29, 69–76 [vgl. auch interclass correlation: Biometrics 46 (1990), 391–398]Google Scholar
  7. Rodgers, J.L., and Nicewander, W.A. (1988): Thirteen ways to look at the correlation coefficient. The American Statistician 42, 59–66CrossRefGoogle Scholar
  8. Odeh, R.E. (1982): Critical values of the sample product-moment correlation coefficient in the bivariate distribution. Communications in Statistics-Simulation and Computation 11, 1–26MathSciNetzbMATHCrossRefGoogle Scholar
  9. Day, S.J. (1985): Reflections on R2. Teaching Statistics 7, 11–12CrossRefGoogle Scholar
  10. Griffiths, D. (1982): Letter to the editor. The Statistician 31, 268–270Google Scholar
  11. Helland, I.S. (1987): On the interpretation and use of R2 in regression analysis. Biometrics 43, 61–69MathSciNetzbMATHCrossRefGoogle Scholar
  12. Ozer, D.J. (1985): Correlation and the coefficient of determination. Psychological Bulletin 97, 307–315 [vgl. auch 101 (1987), 471–474]Google Scholar
  13. Mardia, K.V. (1988): Directional data analysis: an overview. Journal of Applied Statistics 15, 115–122CrossRefGoogle Scholar
  14. Rousseeuw, P.J., and Leroy, A.M. (1987): Robust Regression and Outlier Detection. (Wiley; pp. 329) New York [vgl. P.L. Davies: Rob. lin. regr. Ann. Statist. 21 (1993), 1843–1899]Google Scholar
  15. Atkinson, A.C. (1985): Plots, Transformations, and Regression. An Introduction to Graphical Methods of Diagnostic Regression Analysis. (Oxford Univ. Press; Clarendon Press; pp. 282) Oxford [vgl. auch D. M. Rocke, Technometrics 35 (1993), 72–81 sowie 37 (1995), 385–398]Google Scholar
  16. Saville, D., and Wood, G. (1991): Statistical Methods: The Geometric Approach. (Springer; pp. 560) New YorkGoogle Scholar
  17. Robertson, T., Wright, F.T., and Dykstra, R.L. (1988): Order Restricted Statistical Inference. (Wiley; pp. 521) Chichester and New YorkGoogle Scholar
  18. Hunter, J.S. (1981): Calibration and the straight line; current statistical practices. Journal of the Association of Official and Analytic Chemists 64, 574–583 [vgl. auch Technometrics 31 (1989), 83–90 sowie International Statistical Review 59 (1991), 309–336]Google Scholar
  19. Miller, R.G., Jr. (1986): Beyond ANOVA, Basics of Applied Statistics. (Wiley; pp. 317) New YorkGoogle Scholar
  20. Martens, H., and Naes, T. (1989): Multivariate Calibration. (Wiley; pp. 419) Chichester and New York [vgl. auch R. Sundberg and P.J. Brown, Technometrics 31 (1989), 365–371 und E.V. Thomas 33 (1991), 405–413]Google Scholar
  21. Montgomery, D.C., and Peck, Elizabeth A. (1992): Introduction to Linear Regression Analysis. 2nd ed. (Wiley; pp. 525) New YorkzbMATHGoogle Scholar
  22. Draper, N.R. (1990, 1992 ): Applied regression analysis. Bibliography update 1988–89 and 1990–91.. Communications in Statistics-Theory and Methods 19, 1205–1229 and 21, 2415–2437 [Bibliographie für 1959–1982 siehe R.R. Hocking (1983), Technometrics 25, 219–230]Google Scholar
  23. Rocke, D.M. (1984): On testing for bioequivalance. Biometrics 40, 225–230 [vgl. auch 40, 819–825, 41 (1985), 561–563, 49 (1993), 1225–1230 und J. O’Quigley and C. Baudoin, The Statistician 37 (1988), 51–58 sowie S.-C. Chow and S.-K. Tse, Biometrial Journal 32 (1990), 597–607, 35 (1993), 47–55, 109–123 und C.S. Locke, Communications in Statistics — Theory and Methods 19 (1990), 3361–3373 sowie Biometrika 83 (1996), 236–237]Google Scholar
  24. Madansky, A. (1988): Prescriptions for Working Statisticians. (Springer; pp. 295 ) New York, Berlin, HeidelbergzbMATHCrossRefGoogle Scholar
  25. Rawlings, J.O. (1988): Applied Regression Analysis: A Research Tool. (Wadsworth and Brooks/Cole; pp. 553) Pacific Grove, Calif. [zu Kollinearität siehe auch G. W. Stuart, Statistical Science 2 (1987), 68–100]Google Scholar
  26. Vinod, H.D., and Ullah, A. (1981): Recent Advances in Regression Methods. (Statistics, Vol. 41) (M. Dekker; pp. 361) New York and BaselzbMATHGoogle Scholar
  27. Prunty, L. (1983): Curve fitting with smooth functions that are piecewise-linear in the limit. Biometrics 39, 857–866CrossRefGoogle Scholar
  28. Draper, N.R. (1990, 1992 ): Applied regression analysis. Bibliography update 1988–89 and 1990–91.. Communications in Statistics-Theory and Methods 19, 1205–1229 and 21, 2415–2437 [Bibliographie für 1959–1982 siehe R.R. Hocking (1983), Technometrics 25, 219–230]Google Scholar
  29. Andersen, B. (1990): Methodological Errors in Medical Research. An Incomplete Catalogue. (Blackwell Scentific; pp. 270) OxfordGoogle Scholar
  30. Fox, J., and Long, J.S. (Eds.; 1990 ): Modern Methods of Data Analysis. (Sage; pp. 416) Beverly Hills and LondonGoogle Scholar
  31. Goodman, L.A. (1978): Analyzing Qualitative/Categorical Data. Log-Linear Models and Latent-Structure Analysis. (Addison-Wesley; pp. 471 ) London, Amsterdam, Sydney, TokyoGoogle Scholar
  32. Hartung, J., und Elpelt, Bärbel (1989): Multivariate Statistik. Lehr- und Handbuch der angewandten Statistik. 3. Aufl. (R. Oldenbourg; 815 S.) München und Wien (5. Aufl. 1995 )Google Scholar
  33. Hubert, J.J. (1992): Bioassay. 3rd ed. (Kendall/Hunt; pp. 198 ) Dubuque, IowaGoogle Scholar
  34. Urban, D. (1993): Logit-Analyse. Statistische Verfahren zur Analyse von Modellen mit qualitativen Response-Variablen. (G. Fischer; 183 S.) Stuttgart, Jena, New YorkGoogle Scholar
  35. Pruscha, H. (1989): Angewandte Methoden der Mathematischen Statistik. Lineare, loglineare, logistische Modelle. (Teubner; 391 S.) Stuttgart (2. Aufl. 1996, 412 S.)Google Scholar
  36. Schulze, U. (1987): Mehrphasenregression, Stabilitätsprüfung, Schätzung, Hypothesenprüfung. (Akademie-Verlag; 178 S.) BerlinGoogle Scholar
  37. Narula, S.C., and Wellington, J.F. (1982): The minimum sum of absolute errors regression: a state of the art survey. International Statistical Review 50, 317–326MathSciNetzbMATHCrossRefGoogle Scholar
  38. Narula, S.C. (1987): The minimum sum of absolute errors regression. Journal of Quality Technology 19, 37–45Google Scholar
  39. Singh, M., and Kanji G.K. (1988): Fitting a non-linear model with errors in both variables and its application. Journal of Applied Statistics 15, 267–274 [vgl. auch 17 (1990), 245–254 und Statistical Science 2 (1987), 434–471]Google Scholar
  40. Narula, S.C. (1978): Orthogonal polynomial regression for unequal spacing and frequencies. Journal of Quality Technology 10, 170–179Google Scholar
  41. Narula, S.C. (1979): Orthogonal polynomial regression. International Statistical Review 47, 31–36zbMATHCrossRefGoogle Scholar
  42. Collett, D. (1991): Modelling Binary Data. (Chaptman & Hall; pp. 369) LondonGoogle Scholar
  43. DeMaris, A. (1992): Logit Modelling. Practical Applications. (Quant. Applic. Soc. Sci.; Vol. 86) (Sage; pp. 96) Beverly Hills and LondonGoogle Scholar
  44. Fox, J., and Long, J.S. (Eds.; 1990 ): Modern Methods of Data Analysis. (Sage; pp. 416) Beverly Hills and LondonGoogle Scholar
  45. Montgomery, D.C., and Peck, Elizabeth A. (1992): Introduction to Linear Regression Analysis. 2nd ed. (Wiley; pp. 525) New YorkzbMATHGoogle Scholar
  46. Urban, D. (1993): Logit-Analyse. Statistische Verfahren zur Analyse von Modellen mit qualitativen Response-Variablen. (G. Fischer; 183 S.) Stuttgart, Jena, New YorkGoogle Scholar
  47. Day, S.J. (1985): Reflections on R2. Teaching Statistics 7, 11–12CrossRefGoogle Scholar
  48. Griffiths, D. (1982): Letter to the editor. The Statistician 31, 268–270Google Scholar
  49. Helland, I.S. (1987): On the interpretation and use of R2 in regression analysis. Biometrics 43, 61–69MathSciNetzbMATHCrossRefGoogle Scholar
  50. Ozer, D.J. (1985): Correlation and the coefficient of determination. Psychological Bulletin 97, 307–315 [vgl. auch 101 (1987), 471–474]Google Scholar
  51. Vinod, H.D., and Ullah, A. (1981): Recent Advances in Regression Methods. (Statistics, Vol. 41) (M. Dekker; pp. 361) New York and BaselzbMATHGoogle Scholar
  52. Atkinson, A.C. (1985): Plots, Transformations, and Regression. An Introduction to Graphical Methods of Diagnostic Regression Analysis. (Oxford Univ. Press; Clarendon Press; pp. 282) Oxford [vgl. auch D. M. Rocke, Technometrics 35 (1993), 72–81 sowie 37 (1995), 385–398]Google Scholar
  53. Chatterjee, S., and Hadi, A.S. (1988): Sensitivity Analysis in Linear Regression. (Wiley; pp. 315) New YorkzbMATHCrossRefGoogle Scholar
  54. Chatterjee, S., and Hadi, A.S. (1988): Sensitivity Analysis in Linear Regression. (Wiley; pp. 315) New YorkzbMATHCrossRefGoogle Scholar
  55. Chatterjee, S., and Price B. (1991): Regression Analysis by Example. 2nd ed. (Wiley; pp. 278) New YorkGoogle Scholar
  56. Chatterjee, S., and Yilmaz, M.R. (1992): Chaos, fractals and statistics. With discussion. Statistical Science 7, 49–122MathSciNetzbMATHCrossRefGoogle Scholar
  57. Chaudhuri, A., and Vos, J.W.E. (1988): Unified Theory and Strategies of Survey Sampling. (North-Holland; pp. 414) AmsterdamzbMATHGoogle Scholar
  58. Checkoway, H., Pearce, N., and Crawford-Brown, D. J. (1989): Research Methods in Occupational Epidemiology. (Oxford University Press; pp. 344) New York and Oxford [vgl. auch Epidemiology 3 (1992), 279–281]Google Scholar
  59. Chen, H. (1990): The accuracy of approximate intervals for a binomial parameter. Journal of the American Statistical Association 85, 514–518MathSciNetzbMATHCrossRefGoogle Scholar
  60. Chen, Y.I., and Wolfe, D.A. (1990): A study of distribution-free tests for umbrella alternatives. Biometrical Journal 32, 47–57 [vgl. auch Communications in Statistics-Simulation and Computation 22 (1993), 749–764]Google Scholar
  61. Cheung, Y.L. (1989): Why poker is played with five cards. The Mathematical Gazette 73, 313–315CrossRefGoogle Scholar
  62. Chhikara, S., and Folks, J.L. (1989): The Inverse Gaussian Distribution. Theory, Methodology and Applications. (Dekker; pp. 214) New YorkzbMATHGoogle Scholar
  63. Chiang, C.L. (1980): An Introduction to Stochastic Processes and their Applications. (R.E. Krieger; pp. 517 ) Huntington, N.Y.zbMATHGoogle Scholar
  64. Chiang, C.L. (1984): The Life Table and its Applications. (R.E. Krieger; pp. 316) Malabar, Florida [vgl. auch The American Statistician 40 (1986), 185–190]Google Scholar
  65. Chou, Y.-M., and Johnson, G.M. (1987): Sample sizes for strong two-sided distribution-free tolerance limits. Statistische Hefte 28, 117–131MathSciNetzbMATHCrossRefGoogle Scholar
  66. Chou, Y.-M., and Owen, D.B. (1986): One-sided simultaneous lower prediction intervals for future samples from a normal distribution. Technometrics 28, 247–251MathSciNetzbMATHCrossRefGoogle Scholar
  67. Chow, S.-C., and Shao, J. (1990): On the difference between the classical and inverse methods of calibration. Applied Statistics 39, 219–228MathSciNetzbMATHCrossRefGoogle Scholar
  68. Chow, S.-C., and Liu, J.-P. (1992): Design and Analysis of Bioavailability and Bioequivalence Studies. (STATISTICS, Vol. 133) (M. Dekker; pp. 416) New York [vgl. auch Biometrical Journal 35 (1993), 109–123 sowie Communications in Statistics-Theory and Methods 21 (1992), 2591–2607 und 23 (1994), 325–339]Google Scholar
  69. Christensen, R. (1984): Data Distributions. (Entropy Ltd.; pp. 300 ) Lincoln, MAGoogle Scholar
  70. Christensen, R. (1990): Log-Linear Models. (Springer; pp. 408 ), New York, Berlin, HeidelbergzbMATHGoogle Scholar
  71. Chuang-Stein, Christy, and Francom, St.F. (1988): Some simple loglinear models for the analysis of ordinal response data. Journal of Applied Statistics 15, 285–294CrossRefGoogle Scholar
  72. Chun, C.S.Y., Dunn, O.J., and Yu, Mimi C (1989): Tests on the equality of two multiple correlation coefficients. Communications in Statistics-Theory and Methods 18, 909–928MathSciNetzbMATHGoogle Scholar
  73. Chung, K.L. (1978): Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse. (Übers. aus d. Engl. von H. Vogt) (Springer; 343 S.) Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  74. Ciba-Geigy AG (Hrsg.; 1980 ): Wissenschaftliche Tabellen Geigy, Teilband Statistik. 8. rev. u. erweit. Aufl. (Ciba-Geigy Ltd.; 241 S.) BaselGoogle Scholar
  75. CIS Extended Database (1993): A Computer-Readable Bibliography of the Literature of Statistics and Probability. A.erican Statistical Association (Richard Foley) Alexandria, VA 22314–3402 [vgl. auch A. Koch and U. Haag: The Statistical Software Guide ‘85/96. Computational Statistics and Data Analysis 21 (1996), 231–256]Google Scholar
  76. Cochran, W.G. [Moses, L.E., and Mosteller, F. Eds.]: (1983): Planning and Analysis of Observational Studies: (Wiley; pp. 145) New York [vgl. auch Sankhya A 35 (4) (1973), 417–446]Google Scholar
  77. Cohen, A.C. (1991): Truncated and Censored Samples. Theory and Applications. (STATISTICS, Vol. 119) (M. Dekker; pp. 312) New YorkGoogle Scholar
  78. Cohen, A.C., Jones Whitten, Betty (1988): Parameter Estimation in Reliability and Life Span Models. (M. Dekker; pp. 394) New YorkzbMATHGoogle Scholar
  79. Cohen, A.C., Jones Whitten, Betty, and Ding, Yihua (1985): Modified moment estimation for the three-parameter lognormal distribution. Journal of Quality Technology 17, 92–99Google Scholar
  80. Cohen, D.I.A. (1978): Basic Techniques of Combinatorial Theory. (Wiley; pp. 297) New YorkGoogle Scholar
  81. Cohen, J. (1988): Statistical Power Analysis for the Behavioral Sciences. 2nd ed. (L. Erlbaum; pp. 567) Hillsdale, NJ [vgl. ANOVA-Power: P. Koele, Psychological Bulletin 92 (1982), 513–516; vgl. standardized difference: Biomerics 51 (1995), 351–353]Google Scholar
  82. Cohen, J. (1992): A power primer. Psychological Bulletin 112, 155–159CrossRefGoogle Scholar
  83. Cohen, J., and Cohen, P. (1975): Applied Multiple Regression Analysis. Correlation Analysis for the Behavioral Sciences. (Wiley; pp. 490) New York [2nd ed. 1983; vgl. auch Multivariate Behavioral Research 17 (1982), 301–304: set correlation]Google Scholar
  84. Cohn, V. (1989): News and Numbers. A Guide to Reporting Statistical Claims and Controversies in Health and other Fields. (Iowa State University Press; pp. 178) Ames [vgl. auch zum Thema „Bias“ Ch. Chatfield 1991: Statistical Science 6, 240–268]Google Scholar
  85. Collett, D. (1991): Modelling Binary Data. (Chaptman & Hall; pp. 369) LondonGoogle Scholar
  86. Collins, Linda M., and Horn, J.L. (Eds.; 1991 ): Best Methods for the Analysis of Change: Recent Advances, Unanswered Questions, Future Directions. (American Psychological Assoc.; pp. 356 ) Washington, D.C. (and Hyattsville, MD 20784–0710 )Google Scholar
  87. Collyer, Ch.E., and Enns, J.T. (1987): Analysis of Variance: The Basic Designs. (Nelson-Hall; pp. 310) ChicagoGoogle Scholar
  88. Conover, W.J. (1980): Practical Nonparametric Statistics. 2nd. ed. (Wiley; pp. 510) LondonGoogle Scholar
  89. Conover, W.J., and Iman, R.L. (1978): Some exact tables for the squared ranks test. Communications in Statistics-Simulation and Computation B 7, 491–513CrossRefGoogle Scholar
  90. Constantine, G.M. (1987): Combinatorial Theory and Statistical Design. (Wiley; pp. 472) New YorkGoogle Scholar
  91. Consul, P.C. (1989): Generalized Poisson Distributions; Properties and Applications. (Statistics, Vol. 99) (M. Dekker; pp. 302) New York and Basel [vgl. auch Communications in Statistics-Theory and Methods 22 (1993), 705–715]Google Scholar
  92. Converse, J.M., and Presser, S. (1986): Survey Questions. Handcrafting the Standardized Questionnaire. (Sage Publ. Series 07–063; pp. 80) Beverly Hills and LondonGoogle Scholar
  93. Cook, T.D., and Campbell, D.T. (1979): Quasi-Experimentation. Design and Analysis Issues for Field Settings. (Rand McNally College Publ. Comp.; pp. 405) ChicagoGoogle Scholar

Literaturhinweise zu Spezialthemen aus dem Bereich multivariater Methoden

  1. Aitchison, J. (1987): The Statistical Analysis of Compositional Data. (Chapman & Hall; pp.416) London and New YorkGoogle Scholar
  2. Collett, D. (1991): Modelling Binary Data. (Chaptman & Hall; pp. 369) LondonGoogle Scholar
  3. Cornell, J.A. (1990): Experiments with Mixtures. Designs, Models, and the Analysis of Mixture Data. 2nd ed. (Wiley; pp. 632) New York [vgl. auch Technometrics 35 (1993), 337–350]Google Scholar
  4. Cox, D.R., and Snell, E.J. (1989): Analysis of Binary Data. 2nd ed. (Chapman and Hall; pp. 236) LondonGoogle Scholar
  5. Dobson, A.J. (1990): An Introduction to Generalized Linear Models. (Chapman + Hall; pp. 174) London [vgl. B. Francis u. a. (Eds.; 1993): The GLIM System. Release 4 Manual. (Clarendon Press; pp. 821) Oxford]Google Scholar
  6. Becker, M.P. (1989): Models for the analysis of association in multivariate contingency tables. Journal of the American Statistical Association 84, 1014–1019CrossRefGoogle Scholar
  7. Vogt, H. (1988): Methoden der Statistischen Qualitätskontrolle (Teubner; 295 S.) StuttgartGoogle Scholar
  8. von der Lippe, P. (1996): Wirtschaftsstatistik. 5. völlig neubearbeitete und erweiterte Aufl. (UTB 209) (G. Fischer; 516 S.) Jena und StuttgartGoogle Scholar
  9. Vonesh, E.F., and Schork, M.A. (1986): Sample sizes in the multivariate analysis of repeated measurements. Biometrics 42, 601–610zbMATHCrossRefGoogle Scholar
  10. von Eye, A. (Ed.; 1990 ): Statistical Methods in Longitudinal Research. Vol. I: Principles and Structuring Change; Vol. II: Time Series and Categorical Longitudinal Data. (Academic Press; pp. 570 + 17 ) San Diego, Calif.Google Scholar
  11. von Rosen, D. (1991): The growth curve model: a review. Communications in Statistics-Theory and Methods 20, 2791–2822MathSciNetzbMATHCrossRefGoogle Scholar
  12. Vovk, V.G. (1993): A logic of probability, with application to the foundation of statistics. With discussion. Journal of the Royal Statistical Society B 55, 317–351MathSciNetzbMATHGoogle Scholar
  13. Walker, A.M., Martin-Moreno, J.M., and Artalejo, F.R. (1988): Odd man out: A graphical approach to meta-analysis. American Journal of Public Health 78, 961–966CrossRefGoogle Scholar
  14. Wallenstein, Sylvan, Gould, Madelyn S., and Kleinman, Marjorie (1989): Use of the scan statistic to detect time-space clustering. American Journal of Epidemiology 130, 1057–1064Google Scholar
  15. Wallis, W.A. (1980): The Statistical Research Group, 1942–1945. With comments. Journal of the American Statistical Association 75, 320–335MathSciNetzbMATHGoogle Scholar
  16. Walter, E. (1988): Biomathematik für Mediziner. 3. überarb. Aufl. (Teubner; 206 S.) StuttgartGoogle Scholar
  17. Walter, S.D. (1992): The analysis of regional patterns in health data. I. Distributional considerations. II. The power to detect environmental effects. American Journal of Epidemiology 136, 730–741, 742–759Google Scholar
  18. Watson, G.S. (1983): Statistics on Spheres. (Wiley; pp. 238) New York [vgl. auch Journal of Applied Statistics 17 (1990), 277–281]Google Scholar
  19. Weed, R.M. (1982): Bounds for correlated compound probabilities. Journal of Quality Technology 14, 196–200Google Scholar
  20. Wegmann, E.J., Nour, El-Sayad, and Kukuk, C. (1980): A time series approach to life table construction. Communications in Statistics-Theory and Methods A 9, 1587–1607CrossRefGoogle Scholar
  21. Weiß, P. (1987): Stochastische Modelle für Anwender. (Teubner; 192 S.) Stuttgart [vgl. Auch Hinkley u. Mitarb. 1991: Chapter 8]Google Scholar
  22. Wellek, S. (1989): Computing exact p-values in Page’s nonparametric test against trend. Biometrie und Informatik in Medizin und Biologie 20, 163–170Google Scholar
  23. Wellek, S., and Michaelis, J. (1991): Elements of significance testing with equivalence problems. Methods of Information in Medicine 30, 194–198 [vgl. auch Psychological Bulletin 113 (1993), 553–565, Biometrical Journal 35 (1993), 47–55 und 109–123, Communications in Statistics-Theory and Methods 22 (1993), 3117–3141, Medizinische Informatik, Biometrie und Epidemiologie Band 76 (37. GMDS-Tagung: September 1992) (MMV Medizin Verlag, München 1993) die Seiten 139–158 sowie S. Wellek (1994): Statistische Methoden zum Nachweis von Äquivalenz. (G. Fischer, 183 S.) Stuttgart und Jena, Die Medizinische Welt 47 (1996), 215–218]Google Scholar
  24. Wetherill, G.B., and Brown, D.W. (1991): Statistical Process Control-Theory and Practice. (Chapman and Hall; pp. 400) LondonzbMATHGoogle Scholar
  25. Wetherill, G.B., Duncombe, P., Kenward, M., Kollerström, J., Paul, S.R., and Vowden, B.J. (1986): Regression Analysis with Applications. (Chapman and Hall; pp. 311) London and New YorkGoogle Scholar
  26. Wetherill, G.B., and Glazebrook, K.D. (1986): Sequential Methods in Statistics. 3rd ed. (Chapman and Hall; pp. 264) London and New YorkGoogle Scholar
  27. White, G. C., and Garrott, R.A. (1990): Analysis of Wildlife Radio-Tracking Data. (Academic Press; pp. 383 ) San Diego, Calif.Google Scholar
  28. Whitehead, J. (1983): The Design and Analysis of Sequential Cinical Trials. (Wiley; pp. 272) New York [2nd ed. 1992, pp. 298, vgl. auch Biometrika 83 (1996), 453–461]Google Scholar
  29. Whittaker, J. (1990): Graphical Models in Applied Multivariate Statistics. (Wiley; pp. 448) Chichester and New YorkGoogle Scholar
  30. Whittemore, Alice S. (1987): Methods old and new for analyzing occupational cohort data. American Journal of Industrial Medicine 12, 233–248 [vgl. auch J. J. Weinkam und Th. D. Sterling, Epidemiology 2 (1991), 133–137]Google Scholar
  31. Wichura, M.J. (1988): The percentage points of the normal distribution. Applied Statistics 37, 477–484CrossRefGoogle Scholar
  32. Wilcox, R.R. (1984): A review of exact hypothesis testing procedures (and selection techniques) that control power regardless of the variances. British Journal of Mathematical and Statistical Psychology 37, 34–38MathSciNetzbMATHCrossRefGoogle Scholar
  33. Wilcox, R.R. (1987): New designs in analysis of variance. Annual Review of Psychology 38, 29–60CrossRefGoogle Scholar
  34. Wilcox, R.R. (1987): Pairwise comparisons of J independent regression lines over a finite interval, simultaneous pairwise comparisons of their parameters, and the Johnson-Neyman procedure. British Journal of Mathematical and Statistical Psychology 40, 80–93MathSciNetzbMATHGoogle Scholar
  35. Wilcox, R. R. (1987): New Statistical Procedures for the Social Sciences. Modern Solutions to Basic Problems. (Erlbaum; pp. 423 ) Hillsdale, N. J. and LondonGoogle Scholar
  36. Willan, A.R., and Pater, J.L. (1986): Carryover and the two-period crossover clinical trial. Biometrics 42, 593–599 [vgl. auch 36 (1980), 60–79; 40 (1984), 1079–1087; 44 (1988), 211–218; 45 (1989), 663–667 sowie Biometrical Journal 31 (1989), 589–598 und 35 (1993), 181–191]Google Scholar
  37. Willett, W. (1990): Nutritional Epidemiology. (Monograph in Epidemiology and Biostatistics; Vol. 15) (Oxford University Press; pp. 396) Oxford [vgl. auch C.-C. Hsieh u. Mitarb., Epidemiology 2 (1991), 137–140]Google Scholar
  38. Williams, E.J. (1959): The comparison of regression variables. Journal of the Royal Statistical Society (Series B) 21, 396–399zbMATHGoogle Scholar
  39. Wilrich, P.-Th., und Henning, H.-J. (1987): Formeln und Tabellen der angewandten mathematischen Statistik (begründet von U. Graf und H.-J. Henning). 3. neu bearb. Aufl. (Springer; 529 S.) Berlin, Heidelberg, New York, TokyoGoogle Scholar
  40. Wilson, G.A., and Martin, S.A. (1983): An empirical comparison of two methods for testing the significance of a correlation matrix. Educational and Psychological Measurement 43, 11–14CrossRefGoogle Scholar
  41. Wise, M. E. (1954): A quickly convergent expansion for cumulative hypergeometric probabilities, direct and inverse. Biometrika 41, 317–329MathSciNetzbMATHGoogle Scholar
  42. Woodward, J.A., and Bonett, D.G. (1991): Simple main effects in factorial designs. Journal of Applied Statistics 18, 255–264CrossRefGoogle Scholar
  43. Woolson, R.F. (1987): Statistical Methods for the Analysis of Biomedical Data. (Wiley; pp. 513) New YorkGoogle Scholar
  44. Wright, T. (1990): When zero defectives appear in a sample: upper bounds on confidence coefficients of upper bounds. The American Statistician 44, 40–41Google Scholar
  45. Wu, Margaret C., and McCurry, Ressie (Eds.; 1988 ): Proceedings of “Methods for longitudinal data analysis in epidemiological and clinical studies”, Bethesda, Md., 25–26 Sept., 1986. Statistics in Medicine 7, 1–361Google Scholar
  46. (1).
    Wu, Margaret C., and McCurry, R. (1988): Methods for analysing repeated measurements. With discussion. 1–92Google Scholar
  47. (2).
    Wu, Margaret C., and McCurry, R. (1988): Repeated categorical response. With discussion. 93–173.Google Scholar
  48. (3).
    Wu, Margaret C., and McCurry, R. (1988): Risk factors and survival. With discussion. 203–302.Google Scholar
  49. (4).
    Wu, Margaret C., and McCurry, R. (1988): Analysis of data with missing values. With discussion. 303–361Google Scholar
  50. Wynder, E.L., Szklo, M., Feinleib, M., Stellman, S.D., Stallones, R.A., and Schlesselman, J.J. (1987): Workshop on Guidelines to the Epidemiology of Weak Associations. Preventive Medicine 16, 139–212 [vgl. auch Statistics in Medicine 15 (1996), 681–952]Google Scholar
  51. Yassouridis, A. (1990): A simple method to obtain all the sample-values and their probabilities of the Wald-Wolfowitz test statistics in the existence of ties. Biometrical Journal 32, 35–46CrossRefGoogle Scholar
  52. Younger, Mary S. (1979): A Handbook for Linear Regression. (Duxbury Press; pp. 569 ) North Scituate, Mass.Google Scholar
  53. Zacks, S. (1982): Classical and Bayesian approaches to the change-point problem: fixed sample and sequential procedures. Statistique et Analyse des Données 7, 48–81MathSciNetzbMATHGoogle Scholar
  54. Zacks, S. (1992): Introduction to Reliability Analysis. Probability Models and Statistical Methods. (Springer; pp. 212 ) New York, Heidelberg, BerlinzbMATHCrossRefGoogle Scholar
  55. Zahn, D.A., and Roberts, Gail C. (1971): Exact ×2 criterion tables with cell expectations one: an application to Coleman’s measure of consensus. Journal of the American Statistical Association 66, 145–148zbMATHGoogle Scholar
  56. Zar, J.H. (1984): Biostatistical Analysis. 2nd ed. (Prentice-Hall; pp. 718) Englewood CliffsGoogle Scholar
  57. Zimmermann, H. (1984): Die praktische Relevanz des McNemar-Tests. Biometrical Journal 26, 219–220CrossRefGoogle Scholar
  58. Barcikowski, R.S., and Robey, R.R. (1984): Decisions in single group repeated measures analysis: statistical tests and three computer packages. The American Statistician 38, 148–150Google Scholar
  59. Crowder, M.J., and Hand, D.J. (1991): Analysis of Repeated Measures. (Chapman and Hall; pp. 257) LondonGoogle Scholar
  60. Diggle, P.J. (1990): Time Series. A Biostatistical Introduction. (Clarendon Press; pp. 257) OxfordGoogle Scholar
  61. Diggle, P.J. (1990): Time Series. A Biostatistical Introduction. (Clarendon Press; pp. 257) OxfordGoogle Scholar
  62. Dunn, O.J., and Clark, V.A. (1987): Applied Statistics: Analysis of Variance and Regression. 2nd ed. (Wiley; pp. 445) New YorkzbMATHGoogle Scholar
  63. Edwards, L.K. (1993): Applied Analysis of Variance in Behavioral Science. (STATISTICS, Vol. 137) (M. Dekker; pp. 648) New YorkGoogle Scholar
  64. Fleiss, J.L. (1986): The Design and Analysis of Clinical Experiments. (Wiley; pp. 432) New YorkGoogle Scholar
  65. Gill, J.L. (1988): Repeated measurement: split-plot trend analysis versus analysis of first differences. Biometrics 44; 289–297CrossRefGoogle Scholar
  66. Hand, D.J., and Taylor, C.C. (1987): Multivariate Analysis of Variance and Repeated Measures. (Chapman and Hall; pp. 276) London [vgl. auch B. S. Everitt, The Statistician 44 (1995), 113–135]Google Scholar
  67. Howell, D.C. (1987): Statistical Methods for Psychology. 2nd ed. (Duxbury Press; pp. 636 ) Boston, Mass.Google Scholar
  68. Jöckel, K.-H., und Wolter, B. (1984): Statistische Überlegungen zur Verlaufskurvenanalyse. EDV in Medizin und Biologie 15, 100–106Google Scholar
  69. Jones, B., and Kenward, M.G. (1989): Design and Analysis of Cross-Over Trials. (Chapman and Hall; pp. 340) LondonGoogle Scholar
  70. Koch, G.G., Amara I.A., Stokes, M.E., and Gillings, D.B. (1980): Some views on parametric and non-parametric analysis for repeated measurements and selected bibliography. International Statistical Review 48, 249–265MathSciNetzbMATHCrossRefGoogle Scholar
  71. Lehmacher, W. (1987): Verlaufskurven und Crossover. Statistische Analyse von Verlaufskurven im Zwei-Stichproben-Vergleich und von Crossover-Versuchen. (Mediz. Informatik u. Statist., Bd. 67) (Springer; 176 S.) Berlin, Heidelberg, New York, TokyoGoogle Scholar
  72. Looney, S.W., and Stanley, W.B. (1989): Exploratory repeated measures analysis for two or more groups. Review and update. The American Statistician 43, 220–225Google Scholar
  73. Metzler, P., and Nickel, B. (1986): Zeitreihen- und Verlaufsanalyse. (Hirzel; 248 S.) LeipzigGoogle Scholar
  74. Berry, D.A. (Ed.; 1990 ): Statistical Methodology in the Pharmaceutical Sciences. (Statistics, Vol. 104) (M. Dekker; pp. 578) New York and BaselGoogle Scholar
  75. O’Brien, R.G., and Kaiser, Mary Kister (1985): MANOVA method for analyzing repeated measures designs: an extensive primer. Psychological Bulletin 97, 316–333 [vgl. auch J. Raz, Biometrics 45 (1989), 851–871]Google Scholar
  76. Ott, L. (1988): An Introduction to Statistical Methods and Data Analysis. 3rd. ed. (Duxbury Press; pp. 945) Boston, Mass. (4th ed., 1993, pp. 1183) [vgl. auch P.R. Nelson, Technometrics 35 (1993), 61–71 sowie Biometrical Journal 35 (1993), 371–378]Google Scholar
  77. Rogan, J.C., Keselman, H.S., and Mendoza, J.L. (1979): Analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology 32, 269–286 [vgl. auch A. Keen u. Mitarb., Statistica Neerlandica 40 (1986), 205–223]Google Scholar
  78. Rosenthal, R., and Rosnow, R.L. (1991): Essentials of Behavioral Research. Methods and Data Analysis. 2nd ed. (McGraw-Hill; pp. 629) New YorkGoogle Scholar
  79. Tandon, P.K., and Moeschberger, M.L. (1989): Comparison of nonparametric and parametric methods in repeated measures designs-a simulation study. Communications in Statistics-Simulation and Computation 18, 777–791MathSciNetzbMATHCrossRefGoogle Scholar
  80. Thompson, G.L., and Amman, L.P. (1990): Efficiencies of interblock rank statistics for repeated measures design. Journal of the American Statistical Association 85, 519–528MathSciNetzbMATHCrossRefGoogle Scholar
  81. Vonesh, E.F., and Schork, M.A. (1986): Sample sizes in the multivariate analysis of repeated measurements. Biometrics 42, 601–610zbMATHCrossRefGoogle Scholar
  82. von Eye, A. (Ed.; 1990 ): Statistical Methods in Longitudinal Research. Vol. I: Principles and Structuring Change; Vol. II: Time Series and Categorical Longitudinal Data. (Academic Press; pp. 570 + 17 ) San Diego, Calif.Google Scholar
  83. Wu, Margaret C., and McCurry, Ressie (Eds.; 1988 ): Proceedings of “Methods for longitudinal data analysis in epidemiological and clinical studies”, Bethesda, Md., 25–26 Sept., 1986. Statistics in Medicine 7, 1–361Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Lothar Sachs
    • 1
  1. 1.KlausdorfDeutschland

Personalised recommendations