Advertisement

Notizen zur Epidemiologie

  • Lothar Sachs
Chapter
  • 495 Downloads

Zusammenfassung

In vielen Bereichen dient die Statistik gewissermaßen als Filter, durch das neue Entwicklungen erst hindurch müssen, bevor sie anerkannt und angewandt werden und der Statistiker als Katalysator wissenschaftlicher Untersuchungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zur Sequenzanalyse

  1. Breslow, N.E., and Day, N.E. (1980, 1987 ): Statistical Methods in Cancer Research. Vol. I: The Analysis of Case-Control Studies. Vol. II: The Design and Analysis of Cohort Studies. (IARC Scientific Publ. No. 32 and 82; International Agency for Research on Cancer [auch: Oxford Univ. Press]; pp. 338 and 406) Lyon [Oxford]Google Scholar
  2. Gart, J.J. (1962): Approximate confidence limits for the relative risk. Journal of the Royal Statistical Society B 24, 454–463Google Scholar
  3. Goodman, L.A. (1983): The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds. Biometrics 39, 149–160MathSciNetzbMATHCrossRefGoogle Scholar
  4. Hills, M., and Alexander, Freda (1989): Statistical methods used in assessing the risk of disease near a source of possible environmental pollution: a review. With discussion. Journal of the Royal Statistical Society Series A 152, 353–384 [vgl. auch International Statistical Review 61 (1993), 203–204]Google Scholar
  5. Kahn, H.A., and Sempos, Ch.T. (1989): Statistical Methods in Epidemiology. (Oxford University Press; pp. 292) Oxford and New YorkzbMATHGoogle Scholar
  6. Lemeshow, S., and Lwanga, S.K. (1990): Sample Size Determination in Health Studies. A Practical Manual. (WHO; pp. 80) Genf 27 [vgl. auch Statistical Methods in Medical Research 4 (1995), 311–337]Google Scholar
  7. McPherson, G. (1990): Statistics in Scientific Investigation. Its Basis, Application and Interpretation. (Springer; pp. 666 ) New York, Berlin, HeidelbergzbMATHCrossRefGoogle Scholar
  8. Schlesselman, J.J. (1982): Case Control Studies. Design, Conduct, Analysis. (Oxford Univ. Press; pp. 354) New York (man benutze ein 2nd printing Exemplar) [n? for matched pairs: vgl. J. L. Fleiss und B. Levin, Journal of Clinical Epidemiology 41 (1988), 727–730]Google Scholar
  9. Reynolds, H.T. (1977): The Analysis of Cross-Classifications. (The Free Press; pp. 236) New YorkGoogle Scholar
  10. Rothman, K.J. (1986): Modern Epidemiology. (Little, Brown and Company; pp. 358) Boston and Toronto [Weak Associations, vgl. International Journal of Epidemiology 17 (1988), No. 4 (Suppl.) 950–963]Google Scholar
  11. Becher, H., und Steindorf, Karen (1993): Epidemiologische Methoden und Wege der Risikoabschätzung. Informatik, Biometrie und Epidemiologie in Medizin und Biologie 24, 14–27 [vgl. auch International Statistical Review 61 (1993), 203–244]Google Scholar
  12. Checkoway, H., Pearce, N., and Crawford-Brown, D. J. (1989): Research Methods in Occupational Epidemiology. (Oxford University Press; pp. 344) New York and Oxford [vgl. auch Epidemiology 3 (1992), 279–281]Google Scholar
  13. Hills, M., and Alexander, Freda (1989): Statistical methods used in assessing the risk of disease near a source of possible environmental pollution: a review. With discussion. Journal of the Royal Statistical Society Series A 152, 353–384 [vgl. auch International Statistical Review 61 (1993), 203–204]Google Scholar
  14. Toutenburg, H. (1992): Lineare Modelle. (Physica-Verlag; 324 S.) HeidelbergzbMATHGoogle Scholar
  15. Walter, S.D. (1992): The analysis of regional patterns in health data. I. Distributional considerations. II. The power to detect environmental effects. American Journal of Epidemiology 136, 730–741, 742–759Google Scholar
  16. Wynder, E.L., Szklo, M., Feinleib, M., Stellman, S.D., Stallones, R.A., and Schlesselman, J.J. (1987): Workshop on Guidelines to the Epidemiology of Weak Associations. Preventive Medicine 16, 139–212 [vgl. auch Statistics in Medicine 15 (1996), 681–952]Google Scholar
  17. Elwood, J.M. (1988): Causal Relationships in Medicine. A Practical System for Critical Appraisal. (Oxford Univ. Press; pp. 332) Oxford, New York, Melbourne [vgl. auch M. Susser, American Journal of Epidemiology 133 (1991), 635–648]Google Scholar
  18. Greenland, S., and Morgenstern, H. (1990): Matching and efficiency in cohort studies. American Journal of Epidemiology 131, 151–159 [vgl. auch Statistics in Medicine 13 (1994), 557–567]Google Scholar
  19. Armitage, P., and Gehan E.A. (1974): Statistical methods for the identification and use of prognostic factors. International Journal of Cancer 13, 16–36CrossRefGoogle Scholar
  20. Whitehead, J. (1983): The Design and Analysis of Sequential Cinical Trials. (Wiley; pp. 272) New York [2nd ed. 1992, pp. 298, vgl. auch Biometrika 83 (1996), 453–461]Google Scholar
  21. Breslow, N.E., and Day, N.E. (1980, 1987 ): Statistical Methods in Cancer Research. Vol. I: The Analysis of Case-Control Studies. Vol. II: The Design and Analysis of Cohort Studies. (IARC Scientific Publ. No. 32 and 82; International Agency for Research on Cancer [auch: Oxford Univ. Press]; pp. 338 and 406) Lyon [Oxford]Google Scholar
  22. Kahn, H.A., and Sempos, Ch.T. (1989): Statistical Methods in Epidemiology. (Oxford University Press; pp. 292) Oxford and New YorkzbMATHGoogle Scholar
  23. Adena, M.A., and Wilson, S.R. (1982): Generalised Linear Models in Epidemiologic Research: Case-Control Studies. (INSTAT; pp. 165 ) Forestville, NSW 2087, AustraliaGoogle Scholar
  24. Erdreich, Linda S., and Lee, Elisa T. (1981): Use of relative operating characteristic analysis in epidemiology. A method for dealing with subjective judgement. American Journal of Epidemiology 114, 649–662 [vgl. auch 116 (1982), 196–197]Google Scholar
  25. Feinstein, A.R. (1985): Clinical Epidemiology: The Architecture of Clinical Research. (W.B. Saunders; pp. 812) PhiladelphiaGoogle Scholar
  26. Feinstein, A.R. (1987): Clinimetrics. (Yale University Press; pp. 288) New HavenGoogle Scholar
  27. Greenland, S. (1987): Quantitative methods in the review of epidemiologic literature. Epidemiologic Reviews 9, 1–30 [vgl. auch 14 (1992), 154–176 sowie S.G. Thompson und S. J. Pocock, The Lancet 338 (1991), 1127–1130, 1464, 1465 ]Google Scholar
  28. Greenland, S. (1989): Confounding in epidemiologic studies. Biometrics 15, 1309–1322 [vgl. auch 43 (1987), 751–765 und American Journal of Epidemiology 135 (1992), 1077–1082, 1186–1187; 137 (1993), 1–8]Google Scholar
  29. Greenland, S., and Morgenstern, H. (1990): Matching and efficiency in cohort studies. American Journal of Epidemiology 131, 151–159 [vgl. auch Statistics in Medicine 13 (1994), 557–567]Google Scholar
  30. Guggermoos-Holzmann, Irene (Hrsg.; 1991 ): Quantitative Methoden in der Epidemiologie. 35. Jahrestagung der GMDS, Berlin, September 1990 (Medizinische Informatik und Statistik, Bd. 72) (Springer; 387 S.) Berlin, Heidelberg, New YorkGoogle Scholar
  31. Kasuga, H. (Ed.; 1990 ): Indoor Air Quality. (Springer; pp. 510 ), Berlin, Heidelberg, New YorkGoogle Scholar
  32. Keiding, N. (1987): The method of expected number of deaths, 1786–1886–1986. International Statistical Review 55, 1 – 20MathSciNetzbMATHCrossRefGoogle Scholar
  33. Keiding, N., and Vaeth, M. (1986): Calculating expected mortality. Statistics in Medicine 5, 327–334CrossRefGoogle Scholar
  34. Kelsey, Jennifer L., Thompson, W.D., and Evans, A.S. (1986): Methods in Observational Epidemiology. (Oxford Univ. Press; pp. 366) New York and Oxford [vgl. auch American Journal of Epidemiology 127 (1988), 885–892] [2nd ed., 1996, pp. 448]Google Scholar
  35. Last, J.M. (Ed.; 1988 ). A Dictionary of Epidemiology. 2nd ed. (for the International Epidemiological Association) (Oxford Univ. Press; pp. 141 ) New York, Oxford, TorontoGoogle Scholar
  36. Preston, S. (1987): Relations among standard epidemiology measures in a population. American Journal of Epidemiology 126, 336–345CrossRefGoogle Scholar
  37. Rao, B.R., and Marsh, G.M. (1990): Simultaneous statistical inference concerning the standardized mortality ratios (SMR) of several strata in an epidemiologic study. Biometrical Journal 32, 107–123 [vgl. auch Österr. Zeitschrift für Statistik 24 (1995), 47–59]Google Scholar
  38. Rothman, K.J. (1986): Modern Epidemiology. (Little, Brown and Company; pp. 358) Boston and Toronto [Weak Associations, vgl. International Journal of Epidemiology 17 (1988), No. 4 (Suppl.) 950–963]Google Scholar
  39. Schlesselman, J.J. (1982): Case Control Studies. Design, Conduct, Analysis. (Oxford Univ. Press; pp. 354) New York (man benutze ein 2nd printing Exemplar) [n? for matched pairs: vgl. J. L. Fleiss und B. Levin, Journal of Clinical Epidemiology 41 (1988), 727–730]Google Scholar
  40. Selvin, S. (1991): Statistical Analysis of Epidemiologic Data. (Monogr. Epidem. Biostat. 17) (Oxford Univ. Press; pp. 375) New York and Oxford [2nd ed., 1996, pp. 488]Google Scholar
  41. Wu, Margaret C., and McCurry, Ressie (Eds.; 1988 ): Proceedings of “Methods for longitudinal data analysis in epidemiological and clinical studies”, Bethesda, Md., 25–26 Sept., 1986. Statistics in Medicine 7, 1–361Google Scholar
  42. Wynder, E.L., Szklo, M., Feinleib, M., Stellman, S.D., Stallones, R.A., and Schlesselman, J.J. (1987): Workshop on Guidelines to the Epidemiology of Weak Associations. Preventive Medicine 16, 139–212 [vgl. auch Statistics in Medicine 15 (1996), 681–952]Google Scholar
  43. Margetts, B.M., and Nelson, M. (Eds.; 1991 ): Design Concepts in Nutritional Epidemiology. (Oxford University Press; pp. 420) OxfordGoogle Scholar
  44. Willett, W. (1990): Nutritional Epidemiology. (Monograph in Epidemiology and Biostatistics; Vol. 15) (Oxford University Press; pp. 396) Oxford [vgl. auch C.-C. Hsieh u. Mitarb., Epidemiology 2 (1991), 137–140]Google Scholar
  45. Elwood, J.M. (1988): Causal Relationships in Medicine. A Practical System for Critical Appraisal. (Oxford Univ. Press; pp. 332) Oxford, New York, Melbourne [vgl. auch M. Susser, American Journal of Epidemiology 133 (1991), 635–648]Google Scholar
  46. Greenland, S., and Morgenstern, H. (1990): Matching and efficiency in cohort studies. American Journal of Epidemiology 131, 151–159 [vgl. auch Statistics in Medicine 13 (1994), 557–567]Google Scholar
  47. Hagenaars, J.A. (1990): Categorical Longitudinal Data. Log-Linear Panel, Trend, and Cohort Analysis. (Sage; pp. 398) Beverly Hills and LondonGoogle Scholar
  48. Kahn, H.A., and Sempos, Ch.T. (1989): Statistical Methods in Epidemiology. (Oxford University Press; pp. 292) Oxford and New YorkzbMATHGoogle Scholar
  49. Kelsey, Jennifer L., Thompson, W.D., and Evans, A.S. (1986): Methods in Observational Epidemiology. (Oxford Univ. Press; pp. 366) New York and Oxford [vgl. auch American Journal of Epidemiology 127 (1988), 885–892] [2nd ed., 1996, pp. 448]Google Scholar
  50. Nesselroade, J.R., and Baltes, P.B. (Eds.; 1979 ): Longitudinal Research in the Study of Behavior and Development. (Academic Press; pp. 386) New York, London, Toronto [vgl. auch Psychological Bulletin 88 (1980), 622–637]Google Scholar
  51. Plewis, I. (1985): Analysing Change: Measurement and Explanation Using Longitudinal Data. (Wiley; pp. 182) Chichester and New YorkGoogle Scholar
  52. Becker, M.P. (1989): Models for the analysis of association in multivariate contingency tables. Journal of the American Statistical Association 84, 1014–1019CrossRefGoogle Scholar
  53. Cornell, R.G. (Ed.; 1984 ): Statistical Methods for Cancer Studies. (Statistics, Vol. 51) (M. Dekker; pp. 479) New York and BaselzbMATHGoogle Scholar
  54. Elwood, J.M. (1988): Causal Relationships in Medicine. A Practical System for Critical Appraisal. (Oxford Univ. Press; pp. 332) Oxford, New York, Melbourne [vgl. auch M. Susser, American Journal of Epidemiology 133 (1991), 635–648]Google Scholar
  55. Hosmer, D. W., Taber, S., and Lemeshow, S. (1991): The importance of assessing the fit of logistic regression models: a case study. American Journal of Public Health 81, 1630–1635CrossRefGoogle Scholar
  56. Jones, B., and Kenward, M.G. (1989): Design and Analysis of Cross-Over Trials. (Chapman and Hall; pp. 340) LondonGoogle Scholar
  57. Machin, D., and Campbell, M.J. (1987): Statistical Tables for the Design of Clinical Trials. (Blackwell; pp. 210 ) Oxford, London, EdinburghGoogle Scholar
  58. Meinert, C.L. [and Tonascia, Susan] (1986): Clinical Trials. Design, Conduct, and Analysis. (Oxford Univ. Press; pp. 469) New York and OxfordGoogle Scholar
  59. Pocock, S.J. (1983): Clinical Trials. A Practical Approach. (Wiley; pp. 266) Chichester and New York [vgl. auch Controlled Clinical Trials 10 (1989), 57–70 und Statistical Science 5 (1990), 299–317 sowie 7 (1992), 428–456]Google Scholar
  60. Pocock, S.J., Geller, Nancy L., and Tsiatis, A.A. (1987): The analysis of multiple endpoints in clinical trials. Biometrics 43, 487–498 [vgl. auch 49 (1993), 23–30]Google Scholar
  61. Shapiro, S.H., and Louis, T.A. (Eds.; 1983 ): Clinical Trials: Issues and Approaches. (M. Dekker; pp. 209) New York and BaselGoogle Scholar
  62. Whitehead, J. (1983): The Design and Analysis of Sequential Cinical Trials. (Wiley; pp. 272) New York [2nd ed. 1992, pp. 298, vgl. auch Biometrika 83 (1996), 453–461]Google Scholar
  63. Hoppe, F.M. (Ed.; 1993 ): Multiple Comparisons, Selection, and Applications in Biometry. (STATISTICS, Vol. 134) (M. Dekker; pp. 558 ) New York, Basel, Hong KongGoogle Scholar
  64. Lee, Elisa T. (1992): Statistical Methods for Survival Data Analysis. 2nd ed. (Wiley; pp. 482) New York [vgl. auch Allgemeines Statistisches Archiv 77 (1993), 371–389]Google Scholar
  65. Peace, K.E. (Eds.; 1988 ): Biopharmaceutical Statistics for Drug Development. (STATISTSICS; Vol. 86) (M. Dekker; pp. 640) New York and BaselGoogle Scholar
  66. Petermann, F. (Hrsg.; 1989 ): Einzelfallanalyse. 2. völlig überarb. Aufl. (R. Oldenbourg; 318 S.) München und WienGoogle Scholar
  67. Senn, S.J. (1993): Cross-Over Trials In Clinical Research. (Wiley; pp. 266) Chichester and New YorkGoogle Scholar
  68. Simon, R. (1991): A decade of progress in statistical methodology for clinical trials. Statistics in Medicine 10, 1789–1817 [vgl. auch 14 (1995), 1655–1682]Google Scholar
  69. Tukey, J.W. (1991): Use of many covariates in clinical trials. International Statistical Review 59, 123–137zbMATHCrossRefGoogle Scholar
  70. Feinstein, A.R. (1987): Clinimetrics. (Yale University Press; pp. 288) New HavenGoogle Scholar
  71. Ghosh, B.K. (1970): Sequential Tests of Statistical Hypotheses. (Addison-Wesley; pp. 454 ) Reading, Mass.zbMATHGoogle Scholar
  72. Gottman, J.M., and Roy, A.K. (1990): Sequential Analysis. A Guide for Behavioral Researchers. (Cambridge University Press; pp. 275) Cambridge and New YorkGoogle Scholar
  73. Hinkley, D.V., Reid, N., and Snell E.J. (Eds.; 1991 ): Statistical Theory and Modelling. In Honour of Sir David Cox, FRS. (Chapman & Hall; pp. 350) LondonGoogle Scholar
  74. Johnson, F.N., and Johnson, Susan (Eds.; 1977 ): Clinical Trials. (Blackwell; pp. 212) Oxford and London [vgl. G.A. Diamond und J.A. Forrester, Annals of Internal Medicine 98 (1983), 385–394]Google Scholar
  75. Siegmund, D. (1985): Sequential Analysis: Tests and Confidence Intervals. (Springer; pp. 272 ) New York, Heidelberg, BerlinzbMATHCrossRefGoogle Scholar
  76. Stuart, A., and Ord, J.K. ( 1983, 1987, 1991): Kendall’s Advanced Theory of Statistics. Vol. 1–3 [1: Distribution Theory; 2: Classical Inference and Relationship; 3: Design and Analysis and Time Series] (E. Arnold; pp. 620, 718, 790 ) Sevenoaks, Kent (siehe auch A. O’Hagan)]Google Scholar
  77. Wallis, W.A. (1980): The Statistical Research Group, 1942–1945. With comments. Journal of the American Statistical Association 75, 320–335MathSciNetzbMATHGoogle Scholar
  78. Wetherill, G.B., and Glazebrook, K.D. (1986): Sequential Methods in Statistics. 3rd ed. (Chapman and Hall; pp. 264) London and New YorkGoogle Scholar
  79. Whitehead, J. (1983): The Design and Analysis of Sequential Cinical Trials. (Wiley; pp. 272) New York [2nd ed. 1992, pp. 298, vgl. auch Biometrika 83 (1996), 453–461]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Lothar Sachs
    • 1
  1. 1.KlausdorfDeutschland

Personalised recommendations