Advertisement

Statistische Entscheidungstechnik

  • Lothar Sachs
Chapter
  • 542 Downloads

Zusammenfassung

Den Gegenstand enpirischer Wissenschaften bilden nicht einmalige isolierte, ein einzelnes Individuum oder Element betreffende Ereignisse oder Merkmale, sondern WIEDERHOLBARE ERFAHRUNGEN, eine Gesamtheit von — als gleichartig betrachteten — Erfahrungrn, über die Aussagen gefordert werden.

Benutztes Schrifttum und weiterführende Literatur

  1. Polasek, W. (1987): Explorative Wahlanalyse: Dargestellt anhand der Bundespräsidentenwahlen 1986. Österreichische Zeitschrift für Statistik und Informatik 17, 3–26Google Scholar
  2. (13).
    Tukey, J.W.: Data analysis, computation and mathematics. Quart. Appl. Math. 30 (1972), 51–65 [vgl. auch Statistical Science 6 (1991), 100–116]Google Scholar
  3. Levin, B. (1981): A representation for multinomial cumulative distribution functions. The Annals of Statistics 9, 1123–1126MathSciNetzbMATHCrossRefGoogle Scholar
  4. Christensen, R. (1984): Data Distributions. (Entropy Ltd.; pp. 300 ) Lincoln, MAGoogle Scholar
  5. Cohen, A.C. (1991): Truncated and Censored Samples. Theory and Applications. (STATISTICS, Vol. 119) (M. Dekker; pp. 312) New YorkGoogle Scholar
  6. Hahn, G.J., and Meeker, W.Q. (1991): Statistical Intervals: A Guide for Practitioners. (Wiley; pp. 392) New YorkGoogle Scholar
  7. Hoaglin, D.C., Mosteller, F., and Tukey, J.W. (Eds.; 1985 ): Exploring Data Tables, Trends and Shapes. (Wiley; pp. 527) New YorkzbMATHGoogle Scholar
  8. Patel, J.K., Kapadia, C.H., and Owen, D.B. (1976): Handbook of Statistical Distributions. (M. Dekker; pp. 302) New York and BaselzbMATHGoogle Scholar
  9. Pitman, J. (1993): Probability. (Springer; pp. 559 ) New York, Heidelberg, BerlinzbMATHCrossRefGoogle Scholar
  10. Kocherlakota, S., and Kocherlakota, Kathleen (1992): Bivariate Discrete Distributions. (STATISTICS, Vol. 132) (M. Dekker; pp. 361 ) New York, Basel, Hong KongzbMATHGoogle Scholar
  11. Lehmann, R. (1977): General derivation of partial and multiple rank correlation coefficients. Biometrical Journal 19, 229–236zbMATHCrossRefGoogle Scholar
  12. Lehn, J., Wegmann, H., und Rettig, S. (1994): Aufgabensammlung zur Einführung in die Statistik. 2. überarbeitete und erweiterte Aufl. (Teubner; 256 S.) StuttgartGoogle Scholar
  13. Leiner, B. (1985): Stichprobentheorie. Grundlagen, Theorie und Technik. (R. Oldenbourg; 156 S.) München und WienGoogle Scholar
  14. Lemeshow, S., Hosmer, D.W., Klar, J., and Lwanga, K. (1990): Adequacy Of Sample Size In Health Studies. (Wiley; pp. 239 ) Chichester, New YorkGoogle Scholar
  15. Lemeshow, S., and Lwanga, S.K. (1990): Sample Size Determination in Health Studies. A Practical Manual. (WHO; pp. 80) Genf 27 [vgl. auch Statistical Methods in Medical Research 4 (1995), 311–337]Google Scholar
  16. Lemeshow, S., Hosmer, D.W., Jr. and Klar, Janelle (1988): Sample size requirements for studies estimating odds ratios or relative risks. Statistics in Medicine 7, 759–764CrossRefGoogle Scholar
  17. Lentner, M., and Bishop, T. (1986): Experimental Design and Analysis. (Valley Book Company; pp. 565 ) Blacksburg, VAGoogle Scholar
  18. Lenz, H.-J., Wetherill, G.B., and Wilrich, P.-Th. (Eds.; 1981, 1984, 1987, 1992 ): Frontiers in Statistical Quality Control. (Vol. (1), 2–4. (Physica-Vlg.; pp. 288, 292, 265, 266) Würzburg und WienGoogle Scholar
  19. Lessler, Judith T., and Kalsbeek, W.D. (1992): Nonsampling Error in Surveys. (Wiley; pp. 412) New York and ChichesterzbMATHGoogle Scholar
  20. Leven, F.J. (1990): Datenbank Design-Modellierung durch Daten. Software Kurier 3, 1–13Google Scholar
  21. Levenbach, H., and Cleary, J.P. (1984): The Modern Forecaster: The Forecasting Process Through Data Analysis. (Lifetime Learning Publ.; pp. 450 ) Belmont, Calif 94002Google Scholar
  22. Levin, B. (1981): A representation for multinomial cumulative distribution functions. The Annals of Statistics 9, 1123–1126MathSciNetzbMATHCrossRefGoogle Scholar
  23. Levy, P.S., and Lemeshow, S. (1991): Sampling of Populations: Methods and Applications. 2nd ed. (Wiley; pp. 420) New YorkGoogle Scholar
  24. Lewis, E. E. (1987): Introduction to Reliability Engineering. (Wiley; pp. 400) New YorkGoogle Scholar
  25. Li, C.C. (1982): Analysis of Unbalanced Data. A Pre-Program Introduction. (Cambridge Univ. Press; pp 145) Câmbridge, London, New York [vgl. auch: Analysis of dichotomized factorial data. Journal of Chronic Diseases 29 (1976), 355–370]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Lothar Sachs
    • 1
  1. 1.KlausdorfDeutschland

Personalised recommendations