Advertisement

Varianzanalytische Methoden

  • Lothar Sachs
Chapter
  • 503 Downloads

Zusammenfassung

  1. 1.

    Untersuchungseinheiten zu homogenen Untergruppen zusammenfassen, in denen unterschiedliche Behandlungen bei gleichen Ausgangschancen verglichen werden können.

     
  2. 2.

    Möglichst unterschiedliche Untergruppen bilden, um die Resultate verallgemeinern zu können.

     
  3. 3.

    In jeder Untergruppe durch zufällige Zuordnung der unterschiedlichen Behandlungen zu den Untersuchungseinheiten unbekannte systematische Fehler vermeiden und hierdurch gleiche Ausgangschancen erzwingen (Randomisierung).

     
  4. 4.

    Falls zur Ausschaltung von Suggestionen notwendig, dürfen die Probanden und diejenigen, die die Probanden am Ende der Studie zu beurteilen haben, vor dieser Beurteilung über die Behandlungs-Zuordnungen nicht informiert werden (Blindversuche).

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zur Varianzanalyse

  1. Bortz, J. (1993): Statistik für Sozialwissenschaftler. 4. vollständig überarbeitete Aufl. (Springer; 753 S.) Berlin, Heidelberg, New YorkGoogle Scholar
  2. Collyer, Ch.E., and Enns, J.T. (1987): Analysis of Variance: The Basic Designs. (Nelson-Hall; pp. 310) ChicagoGoogle Scholar
  3. Diehl, J.M. (1983): Varianzanalyse. 4. Auf. (Verlagsabteilung für Psychologie; 368 S.) Frankfurt/M., Kiesstr. 38Google Scholar
  4. Dobson, A.J. (1990): An Introduction to Generalized Linear Models. (Chapman + Hall; pp. 174) London [vgl. B. Francis u. a. (Eds.; 1993): The GLIM System. Release 4 Manual. (Clarendon Press; pp. 821) Oxford]Google Scholar
  5. Dunn, O.J., and Clark, V.A. (1987): Applied Statistics: Analysis of Variance and Regression. 2nd ed. (Wiley; pp. 445) New YorkzbMATHGoogle Scholar
  6. Edgington, E.S. (1995): Randomization Tests. 3rd revised and expanded ed. (STATISTICS, Vol. 147) (M. Dekker; pp. 424) New York and BaselGoogle Scholar
  7. Edwards, L.K. (1993): Applied Analysis of Variance in Behavioral Science. (STATISTICS, Vol. 137) (M. Dekker; pp. 648) New YorkGoogle Scholar
  8. Fleiss, J.L. (1986): The Design and Analysis of Clinical Experiments. (Wiley; pp. 432) New YorkGoogle Scholar
  9. Gnanadesikan, R. (Ed.; 1983 ): Statistical Data Analysis. (Proc. Symposia in Applied Math., Vol. 28) (American Mathematical Society; pp. 141 ) Providence, Rhode IslandGoogle Scholar
  10. Hoaglin, D.C., and Moore, D.S. (Eds.; 1991 ): Perspectives on Contemporary Statistics. (Mathematical Association of America; pp. 192) WashingtonGoogle Scholar
  11. Hochstädter, D., und Kaiser, Ulrike (1988): Varianz- und Kovarianzanalyse. (H. Deutsch; 154 S.) Frankfurt/M. und ThunGoogle Scholar
  12. Howell, D.C. (1987): Statistical Methods for Psychology. 2nd ed. (Duxbury Press; pp. 636 ) Boston, Mass.Google Scholar
  13. Kshirsagar, A.M. (1983): A Course in Linear Models. (Statistics, Vol. 45) (M. Dekker; pp. 448) New York and BaselGoogle Scholar
  14. Lindman, H. R. (1992): Analysis of Variance in Experimental Designs. (Springer; pp. 531) New York, Berlin, Heidelberg [vgl. auch The American Statistician 49 (1995), 376–381]Google Scholar
  15. Maxwell, S.E., and Delaney, H.D. (1990): Designing Experiments and Analyzing Data: A Model Comparison Perspective. (Wadsworth; pp. 902 ) Belmont, Calif.zbMATHGoogle Scholar
  16. Miller, R.G., Jr. (1986): Beyond ANOVA, Basics of Applied Statistics. (Wiley; pp. 317) New YorkGoogle Scholar
  17. Ott, L. (1988): An Introduction to Statistical Methods and Data Analysis. 3rd. ed. (Duxbury Press; pp. 945) Boston, Mass. (4th ed., 1993, pp. 1183) [vgl. auch P.R. Nelson, Technometrics 35 (1993), 61–71 sowie Biometrical Journal 35 (1993), 371–378]Google Scholar
  18. Pruscha, H. (1989): Angewandte Methoden der Mathematischen Statistik. Lineare, loglineare, logistische Modelle. (Teubner; 391 S.) Stuttgart (2. Aufl. 1996, 412 S.)Google Scholar
  19. Saville, D., and Wood, G. (1991): Statistical Methods: The Geometric Approach. (Springer; pp. 560) New YorkGoogle Scholar
  20. Searle, S.R., Casella, G., and McCulloch, Ch.E. (1992): Variance Components. (Wiley; pp. 501) New York and Chichester [vgl. auch die Übersicht in Metrika 42 (1995), 215–230]Google Scholar
  21. Snedecor, G.W., and Cochran, W.G. (1980): Statistical Methods. 7th ed. (Iowa State Univ. Press; pp. 507) Ames, Iowa [8th ed. 1989]Google Scholar
  22. Toit, du, S.H.C., Steyn, A.G.W., and Stumpf, R.H. (1986): Graphical Exploratory Data Analysis. (Springer; pp. 314 ) New York, Berlin, HeidelbergzbMATHCrossRefGoogle Scholar
  23. Weber, Erna: Grundriß der Biologischen Statistik. 7. überarb. Aufl., Stuttgart 1972, S. 143–160 [9. durchgesehene Aufl. 1986, 652 S.]Google Scholar
  24. Wilcox, R.R. (1987): New designs in analysis of variance. Annual Review of Psychology 38, 29–60CrossRefGoogle Scholar

Weitere Literatur zur Versuchsplanung

  1. Atkinson, A.C. (1982): Developments in the design of experiments. International Sta- tistical Review 50, 161–177 [vgl. auch Hinkley u. Mitarb. 1991: Chapter 9]Google Scholar
  2. Atkinson, A.C. (1988): Recent developments in the methods of optimum and related experimental designs. International Statistical Review 56, 99–115MathSciNetzbMATHCrossRefGoogle Scholar
  3. Box, G.E.P., and Draper, N.R. (1987): Empirical Model-Building and Response Surfaces. (Wiley; pp. 669) New York [vgl. auch Technometrics 28 (1986), 321–327 und 339–346]Google Scholar
  4. Dodge, Yadolah, Federov, Valeri V., and Wynn, H.P. (Eds.; 1988 ): Optimal Design and Analysis of Experiments. (North-Holland; pp. 370) AmsterdamGoogle Scholar
  5. Federer, W.T. (1980/81): Some recent results in experimental design with a bibliography, I-III. International Statistical Review 48, 357–368 und 49, 95–109, 185–197Google Scholar
  6. Fienberg, S.E., and Tanur, Judith M. (1987): Experimental and sampling structures: parallels diverging and meeting. International Statistical Review 55, 75–96 [vgl. auch 56 (1988), 165–180 und “Fisher and Neyman”: 64 (1996), 237–253]Google Scholar
  7. Fleiss, J.L. (1986): The Design and Analysis of Clinical Experiments. (Wiley; pp. 432) New YorkGoogle Scholar
  8. Härtler, Gisela (1976): Versuchsplanung und statistische Datenanalyse. (Akademie-Verlag; 103 S.) BerlinGoogle Scholar
  9. Hahn, G.J. (1984): Experimental design in the complex world. Technometrics 26, 19–31 [vgl. auch D. E. Coleman and D.C. Montgomery, Technometrics 35 (1993), 1–27 sowie 37 (1995), 82–93]Google Scholar
  10. Kirk, R.E. (1982): Experimental Design: Procedures for the Behavioral Sciences. 2nd ed. (Wadsworth; pp. 911 ) Belmont, Calif.Google Scholar
  11. Lentner, M., and Bishop, T. (1986): Experimental Design and Analysis. (Valley Book Company; pp. 565 ) Blacksburg, VAGoogle Scholar
  12. Lorenzen, T.J. (1984): Randomization and blocking in the design of experiments. Communications in Statistics-Theory and Methods 13, 2601–2623CrossRefGoogle Scholar
  13. Mason, R.L., Gunst, R.F., and Hess, J.L. (1989): Statistical Design and Analysis of Experiments. With Applications to Engineering and Science. (Wiley; pp. 692) Chichester and New YorkGoogle Scholar
  14. Maxwell, S.E., and Delaney, H.D. (1990): Designing Experiments and Analyzing Data: A Model Comparison Perspective. (Wadsworth; pp. 902 ) Belmont, Calif.zbMATHGoogle Scholar
  15. Mead, R. (1988): The Design of Experiments. Statistical Principles for Practical Applications. (Cambridge Univ. Press; pp. 620) Cambridge [siehe auch Journal of the Royal Statistical Society Series A 153 (1990), 151–201]Google Scholar
  16. Ott, L. (1988): An Introduction to Statistical Methods and Data Analysis. 3rd. ed. (Duxbury Press; pp. 945) Boston, Mass. (4th ed., 1993, pp. 1183) [vgl. auch P.R. Nelson, Technometrics 35 (1993), 61–71 sowie Biometrical Journal 35 (1993), 371–378]Google Scholar
  17. Pearce, S.C., Clarke, G.M., Dyke, G.V., and Kempson, R.E. (1988): A Manual of Crop Experimentation. (Ch. Griffin; pp. 358) LondonzbMATHGoogle Scholar
  18. Petersen, R.G. (1985): Design and Analysis of Experiments. (Statistics, Vol. 66) (M. Dekker; pp. 429) New York and BaselGoogle Scholar
  19. Rasch, D. (Hrsg., 1988 ): Biometrisches Wörterbuch. 3. erw. Aufl. (Bd.) Erläuterungen (und Bd.) Register. (H. Deutsch; [insges.] 965 S.) Frankfurt am MainGoogle Scholar
  20. Smith, T.M.F., and Sugden, R. A. (1988): Sampling and assignment mechanisms in experiments, surveys and obserrvational studies. International Statistical Review 56, 165–180zbMATHCrossRefGoogle Scholar
  21. Steinberg, D.M., and Hunter, W.G. (1984): Experimental design: review and comment. With discussion. Technometrics 26, 71–130MathSciNetzbMATHCrossRefGoogle Scholar
  22. Moen, R.D., Nolan, T.W., and Provost, L.P. (1991): Improving Quality through Planned Experimentation. (McGraw-Hill; pp. 414) New YorkGoogle Scholar
  23. Ross, P.J. (1988): Taguchi Techniques for Quality Engineering. Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. (McGraw-Hill; pp. 279) New York, Hamburg, London [vgl. auch Applied Statistics 41 (1992), 579–593]Google Scholar
  24. Spenhoff, E. (1991): Prozeßsicherheit. Durch statistische Versuchsplanung in Forschung, Entwicklung und Produktion. Grundlagen und Fallbeispiele der klassischen Versuchsplanung. (gfmt, Gesellschaft für Management und Technologie; 226 S.) München 2Google Scholar
  25. Hahn, G.J. (1984): Experimental design in the complex world. Technometrics 26, 19–31 [vgl. auch D. E. Coleman and D.C. Montgomery, Technometrics 35 (1993), 1–27 sowie 37 (1995), 82–93]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Lothar Sachs
    • 1
  1. 1.KlausdorfDeutschland

Personalised recommendations