Skip to main content
  • 49 Accesses

Zusammenfassung

In jedem menschlichen Auge finden sich mit dem Alter vielfältige Veränderungen im Bereich der äußeren Netzhautschichten, der Bruch-Membran und der Aderhaut. Allerdings entwickeln sich nicht immer — zumindest bei der heutigen Lebenserwartung — Befunde, die über normale Alterungsprozesse hinaus als altersabhängige Makuladegeneration mit z.T. gravierenden funktionellen Einbußen zu klassifizieren wären. Daher sind neben solchen unspezifischen Alterungsprozessen auf molekularer und zellulärer Ebene offensichtlich noch andere, individuelle Faktoren einschließlich endogener und exogener Faktoren von Bedeutung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Age-Related Eye Disease Study Research Group, The AREDS Study Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119: 1417–1436

    Google Scholar 

  • Beatty S, Koh HH, Henson D, Boulton M (2002) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Survey Ophthalmol 45: 115–121

    Article  Google Scholar 

  • Bellmann C, Holz FG, Otto TP, Völcker HE (1996) Topographie der Fundus-Autofluoreszenz mit einem konfokalen Laser-Scanning-Ophthalmoskop.Ophthalmologe 93: K191

    Google Scholar 

  • Boulton M, Marshall J (1986) Effects of increasing numbers of phagocytic inclusions on human retinal pigment epithelial cells in culture: a model for aging. Br J Opthalmol 70: 808–815

    Article  CAS  Google Scholar 

  • Boulton ME (1991) Ageing of the retinal pigment epithlium. In: Osborn NN, Chader GJ (eds) Retinal research. Perga-mon Press, Oxford, pp 126–147

    Google Scholar 

  • Boulton ME, McKechnie NM, Breda J, Bayly M, Marshall J (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthlamol Vis Sci 30: 82–89

    CAS  Google Scholar 

  • Brunk U, Collins VP (1981) Lysosomes and age pigments in cultured ells. In: Sohal RS (ed) Age pigments. Elsevier, Amsterdam, pp 243–265

    Google Scholar 

  • Burns RP, Feeney Burns L (1980) Clinicomorphologic correlations of drusen of Bruch’s membrane.Trans Am Ophthalmol Soc 78: 206–225

    CAS  Google Scholar 

  • Casswell AG, Kohen D, Bird AC (1985) Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol 69: 397–403

    Article  PubMed  CAS  Google Scholar 

  • Crabb JW, Miyagi M, Gu X et al. (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99: 14682–14687

    Article  PubMed  CAS  Google Scholar 

  • Delori CD, Dorey CK, Staurenghi G, Arend O, Goger DG,Weiter JJ (1995a) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin charactersitstics.lnvest Ophthalmol Vis Sci 36: 718–729

    Google Scholar 

  • Delori CD, Staurenghi G, Arend O, Dorey CK, Goger DG,Weiter JJ (1995b) In vivo measurement of lipofuscin in Stargardt’s disease–fundus flavimaculatur. Invest Ophthalmol Vis Sci 36: 2327–2331

    CAS  Google Scholar 

  • Dorey CK, Staurenghi G, Delori FC (1993) Lipofuscin in aged and ARMD eyes. ln: Hollyfield JG Retinal degeneration. Plenum Press, New York, pp 3–14

    Google Scholar 

  • Dorey CK, Wu G, Ebenstein D,Garsd A,Weiter JJ (1989) Cell loss in the aging retina: relationship of lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30: 1691–1699

    CAS  Google Scholar 

  • Eagle RC jr (1984) Mechanisms of maculopathy.Ophthalmology 91: 613–625

    Google Scholar 

  • Eldred GE, Laskey MR (1993) Retinal age pigments generated by self-absorbing lysosomotropic detergents. Nature 361: 724–726

    Article  PubMed  CAS  Google Scholar 

  • Feeney L (1978) Lipofuscin and melanin of human retinal pigment eipthelium. Invest Ophthalmol Vis Sci 17: 583–600

    PubMed  CAS  Google Scholar 

  • Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithlium. Am J Ophthalmol 90: 783–791

    PubMed  CAS  Google Scholar 

  • Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial and peripheral cells. Invest Ophthalmol Vis Sci 25: 195–200

    PubMed  CAS  Google Scholar 

  • Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane.Am J Ophthalmol 100: 686–697

    CAS  Google Scholar 

  • Fisher RF (1987) The influence of age on some ocular basement membranes. Eye 1: 184–189

    Article  PubMed  Google Scholar 

  • Flood M, Gouras P, Kjeldbye H (1980) Growth characteristics and unitrastructure of human retinal pigment epithelium in vitro, invest Ophthalmol Vis Sci 19: 1309–1320

    CAS  Google Scholar 

  • Frank RN,Amin RH, Eliott D, Puklin JE,Abrams GW (1996) Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 122: 393–403

    Google Scholar 

  • Hageman GS, Luthert PJ,Victor Chong NH,Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20: 705–732

    CAS  Google Scholar 

  • Hangai M,MurataT,Miyawaki N,SpeeC,LimJI,He S,Hinton DR, Ryan SJ (2001) Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells, invest Ophthalmol Vis Sci 42: 1617–1625

    Google Scholar 

  • Hayes KC (1974) Retinal degeneration in monkeys induced by deficeincies of vitamin E or A. Invest Ophthalmol 13: 499–510

    CAS  Google Scholar 

  • Hayreh SS (1974) Submacular choroidal vascular pattern. Experimental fluorescein fundus angiographic studies. Graefes Arch Clin Exp Ophthalmol 192: 181–196

    Article  CAS  Google Scholar 

  • Hewitt AT, Nakazawa K, Newsome DA (1989) Analysis of newly synthesized Bruch’s membrane proteoglycans. Invest Ophthalmol Vis Sci 30: 478–486

    PubMed  CAS  Google Scholar 

  • Hinsull SM, Bellamy D (1981) Tissue homeostasis and cell death.ln: Bowen ID, Lockshin RA (eds) Cell biology in biology and pathology. Chapman & Hall, London, pp 123–144

    Chapter  Google Scholar 

  • Holekamp (2001) Deficiency of anti-angiogenic pigment epithelial-derived factor in the vitreous of patients with wet age-related macular degeneration. Retina Society Annual Meeting, Chicago

    Google Scholar 

  • Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994a) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 112: 402–406

    Article  PubMed  CAS  Google Scholar 

  • Holz FG, Dorey CK, Sheraidah G, Bird AC (1994b) Lipofuscin fluorescence, Bruch’s membrane fluorescence and lipid deposits in aging donor eyes. Invest Ophthalmol Vis Sci 35: 1501

    Google Scholar 

  • Holz FG, Schutt F, Kopitz 1, Eldred GE, Kruse FE, Volcker HE, Cantz M (1999) Inhibition of lysosomal degradative functions by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40: 737–743

    PubMed  CAS  Google Scholar 

  • Holz FG, Bellmann C, Staudt S, Schutt F,Volcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42: 1051–1056

    CAS  Google Scholar 

  • Hopkins J, v Rückmann A, Fitzke FW, Bird AC (1996) Fundus autofluorescence in age-related macular disease. Invest Ophthalmol Vic Sci 37: 5114

    Google Scholar 

  • IshibashiT,Sorgente N, Patterson R, Ryan SJ (1986) Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci 27: 184–193

    Google Scholar 

  • Kamizuru H, Kimura H,Yasukawa T,Tabata Y, Honda Y, Ogura Y (2001) Monoclonal antibody-mediated drug targeting to choroidal neovascularization in the rat. Invest Ophthalmol Vis Sci 42: 2664–2672

    CAS  Google Scholar 

  • Kliffen M, de Jong PTVM, Luider TM (1995) Protein analysis of human maculae in relationship to age-related maculopathy. Lab Invest 73: 267–272

    PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO (1974) Lipofuscin pigments: their relationship to ageing in the human nervous system. I. the lipofuscin content of nerve cells. Brain 97: 481–488

    Google Scholar 

  • Mann DM, Yates PO, Stamp JE (1978) The relationship between lipofuscin pigment and ageing in the human nervous system.J Neurol Sci 37: 83–93

    CAS  Google Scholar 

  • Marmor MF, Wolfensberger (eds) (1998) The retinal pigment epithelium. Function and disease. Oxford University Press, New York, Oxford

    Google Scholar 

  • Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36: 1290–1297

    PubMed  CAS  Google Scholar 

  • OlverJ,Pauleikhoff D, Bird AC (1990) Morphometric analysis of age changes in the chorioicapillaris. Invest Ophthalmol Vis Sci 31 [suppl]: 47

    Google Scholar 

  • Organisciak DT, Wang H, Li ZY,Tso MOM (1985) The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci 26: 1580–1588

    CAS  Google Scholar 

  • Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane.A histochemical and morphologic study. Ophthalmology 97: 171–178

    PubMed  CAS  Google Scholar 

  • Pauleikhoff D, Zuels S, Sheraidah G, Bird AC (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548–1553

    PubMed  CAS  Google Scholar 

  • Pauleikhoff D, van Kuijk H, Bird AC (2001) Macular pigment and age-related macular degeneration. Ophthalmologe 98: 511–519

    Article  PubMed  CAS  Google Scholar 

  • Pauleikhoff D, Loffert D, Spital G, Radermacher M, Dohrmann J, Lommatzsch A, Bird AC (2002) Pigment epithelial detachment in the elderly. Clinical differentiations, natural course and pathogenetic implications. Graefes Arch Clin Exp Ophthalmol 240: 533–538

    Google Scholar 

  • Penfold PL, Killingsworth M, Sarks S (1985) Senile macular degeneration:the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Ramratten RS, van der Schaft TL Mooy CM, Bruijn WC, Mulder PGH, de Jong PTVM (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    Google Scholar 

  • Schmitz-Valckenberg S, Jorzik 1, Unnebrink K, Holz FG (2002) Analysis of digital scanning laser ophthalmoscopy fun-dus autofluorescence images of geographic atrophy in advanced age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 240: 73–78

    Article  PubMed  Google Scholar 

  • Schütt F, Davies S, Kopitz J, Holz FG, Boulton ME (2000) Photo-damage to human RPE cells by A2-E, e retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41: 2303–2308

    PubMed  Google Scholar 

  • Schütt F, Ueberle B,Schnolzer M, Holf FG, Kopitz J (2002a) Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Letters 528: 217–221

    Google Scholar 

  • Schütt F, Bergmann M, Holz FG,KopitzJ (2002b) Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol 240: 983–988

    Google Scholar 

  • Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100: 47–51

    PubMed  CAS  Google Scholar 

  • Sunness JS (1999) Evaluating macular function. Int Ophthalmol Clin 39: 19–31

    Article  PubMed  CAS  Google Scholar 

  • Sunness JS,Gonzalez-Baron J,Applegate CA, Bressler NM,Tian Y, Hawkins B, Barron Y, Bergman A (1999) Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related maculardegeneration.Ophthalmology 106: 1768–1779

    Google Scholar 

  • Von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79: 407–412

    Article  Google Scholar 

  • Wing GL, Gordon CB,WeiterJJ (1978)The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 17: 601–607

    Google Scholar 

  • Yasukawa T, Kimura H,Tabata Y, Miyamoto H, Honda Y, Ikada Y Ogura Y (2000). Active drug targeting with immunoconjugates to choroidal neovascularization. Curr Eye Res 2: 952–961

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holz, F.G., Schütt, F., Pauleikhoff, D., Bird, A.C. (2004). Pathophysiologie. In: Altersabhängige Makuladegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05681-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05681-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05682-0

  • Online ISBN: 978-3-662-05681-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics