Advertisement

Pharmakologische Therapie

  • D. Miller
  • M. Stur
  • F. G. Holz

Zusammenfassung

Für die Mehrzahl der Patienten mit AMD bestehen heute noch keine Therapiemöglichkeiten. Der Nachteil existierender Therapieformen wie der Laserkoagulation oder der Chirurgie liegt u. a. darin, dass sie teils destruktiv bzw. traumatisch sind. Auf die photodynamische Therapie spricht ein Teil der Patienten mit neovaskulärer AMD nicht an, und auch bei gegebenen Indikationen kann ein Sehverlust in der Regel nicht aufgehalten werden. Hinzu kommt, dass bestehende Ansätze fast ausschließlich auf die neovaskuäre AMD zielen, während beispielsweise für die geographische Atrophie noch keine wirksame Therapie existiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Age-related Eye Disease Study Research Group, The AREDS Study Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119: 1417–1436Google Scholar
  2. Ahuja P, Caffe A.R, Holmqvist I, Soderpalm AK, Singh DP, Shinohara T, van Veen T (2001) Lens epithelium-derived growth factor ( LEDGF) delays photoreceptor degeneration in ex-plants of rd/rd mouse retina. Neuroreport 12: 2951–2955PubMedCrossRefGoogle Scholar
  3. Amin R, Puklin JE, Frank RN (1994) Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 35: 317–388Google Scholar
  4. Baird A, Walicke PA (1989) Fibroblast growth factors. Br Med Bull 45: 438–452PubMedGoogle Scholar
  5. Baun O, Vinding T, Krogh E (1993) Natural course in fellow eyes of patients with unilateral age-related exudative maculopathy. A fluorescein angiographic 4-year follow-up of 45 patients. Acta Ophthalmol 71: 398–401Google Scholar
  6. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42: 439–446PubMedGoogle Scholar
  7. Ben Ezra D, Griffin BW, Maftzir G, Sharif NA, Clark AF (1997) Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci 38: 1954–1962Google Scholar
  8. Berendschot TT, Goldbohm RA, Klopping WA, van de Kraats J, van Norel J, van Norren D (2000) Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Invest Ophthalmol Vis Sci 41: 3322–3326PubMedGoogle Scholar
  9. Blodi BA, AG3340 Study Group (2001) Effects of prinomastat (AG3340), an angiogenesis inhibitor, in patients with subfoveal choroidal neovascularization associated with age-related macular degeneration. Invest Opthalmol Vis Sci 42:4, ARVO [suppl]: S311Google Scholar
  10. Brouta-Boyé D, Zetter BR (1980) Inhibition of cell motility by interferon. Science 208: 516–518CrossRefGoogle Scholar
  11. Ciulla TA, Criswell MH, Danis RP, Hill TE (2001) Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in a laser-treated rat model. Arch Ophthalmol 119: 399–404PubMedGoogle Scholar
  12. Clark AF, Mellon J, Li XY, Ma D, Leher H, Apte R, Alizadeh H, Heg-de S, McLenaghan A, Mayhew E, D’Orazio TI, Niederkorn JY (1999) Inhibition of intraocular tumor growth by topical application of the angiostatic steroid anecortave acetate. Invest Ophthalmol Vis Sci 40: 2158–2162PubMedGoogle Scholar
  13. Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375–1378PubMedCrossRefGoogle Scholar
  14. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082–4085PubMedCrossRefGoogle Scholar
  15. Engler CB, Sander B, Koefoed P, Larsen M, Vinding R, Lund-Anderson H (1993) Interferon alpha-2a treatment of patients with subfoveal neovascular macular degeneration. A pilot investigation. Acta Ophthalmol 71: 27–31Google Scholar
  16. Ezekowitz RAB, Mulliken JB, Folkman I (1992) Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. NEJM 326: 1456–1463PubMedCrossRefGoogle Scholar
  17. Ferris F, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102: 1640–1642PubMedCrossRefGoogle Scholar
  18. Fett JW, Bethune JL, Vallee BL (1987) Induction of angiogenesis by mixtures of two angiogenic proteins, angiogenin and acidic fibroblast growth factor, in the chick chorioallantoic membrane. Biochem Biophys Res Commun 146: 1122–1131PubMedCrossRefGoogle Scholar
  19. Fischer D, Pavlidis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 41: 3943–3954PubMedGoogle Scholar
  20. Flamm P (1987) ZurTherapie der degenerativen Makulopathie mit Cosaldon A+E. Klin Monatsbl Augenheilkd 190: 59–66PubMedCrossRefGoogle Scholar
  21. Fung WE (1991) Interferon alpha 2a for treatment of age-related macular degeneration. Am J Ophthalmol 112: 349–350PubMedGoogle Scholar
  22. Garrett KL, Shen WY, Rakoczy PE (2001) In vivo use of oligonucleotides to inhibit choroidal neovascularisation in the eye. J Gene Med 3: 373–383PubMedCrossRefGoogle Scholar
  23. Gasparini G (2001) Metronomic scheduling:the future of chemotherapy? Lancet Oncol 2: 733–740PubMedCrossRefGoogle Scholar
  24. Gillies MC, Chua W, Mitchell P, Billson F, Hunyour A, Penfold P, Simpson J (2002) Photographic and fluorescein angiographic outcomes from the intravitreal triamcinolone study for neovascular ARMD. Abstract presented at the annual ARVO meetingGoogle Scholar
  25. Hammond BR jr, Caruso-Avery M (2000) Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci 41: 1492–1497PubMedGoogle Scholar
  26. Heier IS, Sy JP, McCuskey ER (2002) ruhFab V2 (anti-VEGF antibody) for treatment of exsudative AMD. Annual Retina Congress PresentationGoogle Scholar
  27. Holekamp (2001) Deficiency of anti-angiogenic pigment epithelial-derived factor in the vitreous of patients with wet age-related macular degeneration. Retina Society Annual Meeting, ChicagoGoogle Scholar
  28. Holz FG, Miller D (2003) Pharmakologische Therapie der altersabhängigen Makuladegeneration. Ophthalmologe 100: 97–103PubMedCrossRefGoogle Scholar
  29. Holz FG, Wolfensberger TJ, Piguet B, Gross-Jendroska M, Arden GB, Bird AC (1993) Oral zinc-therapy in age-related macular degeneration: a double blind study. Germ J Ophthalmol 2 [suppl]: 391Google Scholar
  30. Holz FG, Wolfensberger TI, Piguet B, Gross-Jendroska M, Wells JA, Minassian DC, Chisholm IH, Bird AC (1994) Bilateral macular drusen in age-related macular degeneration. Prognosis and risk factors. Ophthalmology 101: 1522–1528PubMedGoogle Scholar
  31. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40: 737–743PubMedGoogle Scholar
  32. Hruby K (1977) Aussichten and Grenzen der Behandlung seniler Makulopathien mit Phosphatiden. Wien Klin Wochenschr 89: 439–442PubMedGoogle Scholar
  33. Hruby K, Wiesflecker J (1983) Trockene senile Makulopathie. Prophylaxe and Therapie in Risikofallen. Klin Monatsbl Augenheilkd 182: 570–575PubMedCrossRefGoogle Scholar
  34. Jonas JB, Kreissig I, Hugger P, Sauder G, Panda-Jones S, Degenring R (2002) Intravitreal triamcinolone acetonide for exudative age-related macular degeneration. Br 1 Ophtalmol, in pressGoogle Scholar
  35. Kadonosono K, Yazama F, Itoh N, Sawada H, Ohno S (1999) Expression of matrix metalloproteinase-7 in choroidal neo-vascular membranes in age-related macular degeneration. Am J Ophthalmol 128: 382–384PubMedCrossRefGoogle Scholar
  36. Kaminski MS, Yolton DP, Jordan WT, Yolton RL (1993) Evaluation of dietary antioxidant levels and supplementation with ICAPS-plus and ocuvite.J Am Optom Assoc 64: 862–870PubMedGoogle Scholar
  37. Karciouglu ZA (1982) Zinc in the eye.Sury Ophthalmol 27: 114CrossRefGoogle Scholar
  38. Kaven C, Spraul CW, Zavazava N, Lang GK, Lang GE (2001)Thalidomide and prednisolone inhibit growth factor-induced human retinal pigment epithelium cell proliferation in vitro. Ophthalmologica 215: 284–289Google Scholar
  39. Klein R, Klein BE, Linton KL, De Mets DL (1993)The Beaver Dam Eye Study: the relation of age-related maculopathy to smoking. Am J Epidemiol 137: 190–200Google Scholar
  40. Knighton DR, Phillips GD, Fiegel VD (1990) Wound healing angiogenesis: indirect stimulation by basic fibroblast growth factor. J Trauma 30 [suppl]: 134–144CrossRefGoogle Scholar
  41. Krzystolik MG, Afshari MA, Adamis AP, Gaudreault J, Gragoudas ES, Michaud NA, Li W, Connolly E, O’Neill CA, Miller JW (2002) Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 120: 338–346PubMedCrossRefGoogle Scholar
  42. Lambert V, Munaut C, Noel A, Frankenne F, Bajou K, Gerard R, Carmeliet P, Defresne MP, Foidart JM, Rakic JM (2001) Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. Faseb 115: 1021–1027CrossRefGoogle Scholar
  43. Lebuisson DA, Leroy L, Rigal G (1986) Treatment of senile macular degeneration with ginkgo biloba extract.A preliminary double-blind drug vs. placebo study. Presse Med 15: 1556–1558PubMedGoogle Scholar
  44. Loughnan MS, Heriot WJ, O’Day J (1992) Treatment of subfoveal choroidal neovascular membranes with systemic interferon-alpha 2a. Aust N Z J Ophthalmol 20: 173–175PubMedCrossRefGoogle Scholar
  45. Maguire MG, Fine SL, Maguire AM, D’Amato RJ, Singerman U (2001) AMDATS Research Group: results of the age-related macular degeneration and thalidomide study (AMDATS). Invest Ophthalmol Vis Sci 42: 233Google Scholar
  46. McNatt LG, Lane D, Clark AF (1992) Angiostatic activity and metabolism of cortisol in the chorioallantoic membrane ( CAM) of the chick embryo. J Steroid Biochem Mol Biol 42: 687–693PubMedCrossRefGoogle Scholar
  47. McNatt LG, Weimer L, Yanni J, Clark AF (1999) Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization.J Ocul Pharmacol Ther 15: 413–423PubMedCrossRefGoogle Scholar
  48. Melrose MA, Magargal LE, Goldberg RE, Annesley WJ (1987) Subretinal neovascular membranes associated with choroidal nonperfusion and retinal ischemia. Ann Ophthalmol 19: 396–399PubMedGoogle Scholar
  49. Miller JW, Stinson WG, Folkman I (1993) Regression of experimental iris neovascularization with systemic alpha-interferon. Ophthalmology 100: 9–14PubMedGoogle Scholar
  50. Miller JW, Shima DT, Tolentino M, Gragoudas ES, Ferrara N, Connolly EJ, Folkman I, D’Amore PA, Adamis AP (1995) Inhibition of VEGF prevents ocular neovascularization in a monkey model. Invest Ophthalmol Vis Sci 36: 401Google Scholar
  51. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83: 7297–7301PubMedCrossRefGoogle Scholar
  52. Moon SJ, Mieler WF, Holz ER (2002) Pilot study of intravitreal injection of triamcinolone acetonide in exsudative age-related macular degenertation. Abstract presented at the annual ARVO meetingGoogle Scholar
  53. Mori K, Duh E, Gehlbach Pet al. (2001) Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 188: 253–263PubMedCrossRefGoogle Scholar
  54. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA (2002a) Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 43: 2428–2434PubMedGoogle Scholar
  55. Mori K, Gehlbach P, Yamamoto S et al. (2002b) AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 43: 1994–2000PubMedGoogle Scholar
  56. Newsome DA, Swartz M, Leone NC, Elston RC, Miller E (1988) Oral zinc in macular degeneration. Arch Ophthalmol 106: 192–198PubMedCrossRefGoogle Scholar
  57. Oikawa T, Hiragun A, Yoshida Y, Ashino-Fuse H, Tominaga T, Iwaguchi T (1988) Angiogenic activity of rat mammary carcinomas induced by 7,12-dimethylbenz[a]anthracene and its inhibition by medroxyprogesterone acetate: possible involvement of antiangiogenic action of medroxyprogesterone acetate in its tumor growth inhibition.Cancer Lett 43: 85–92PubMedCrossRefGoogle Scholar
  58. Pauleikhoff D, Chen IC, Chisholm IH, Bird AC (1990) Choroidal perfusion abnormality with age-related Bruch’s membrane change. Am J Ophthalmol 109: 211–217PubMedGoogle Scholar
  59. Pauleikhoff D, van Kuijk FJ, Bird AC (2001) Makulapigment and altersabhängige Makuladegeneration. Ophthalmologe 98: 511–519PubMedCrossRefGoogle Scholar
  60. Penn IS, Rajaratnam VS, Collier RJ, Clark AF (2001)The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 42: 283–290Google Scholar
  61. Pharmacological Therapy for Macular Degeneration Study Group (1997) Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration:results of a prospective randomized clinical trial. Arch Ophthalmol 115: 865–872CrossRefGoogle Scholar
  62. Poliner LS, Tornambe PE, Michelson PE, Heitzmann GJ (1993). Interferon alpha-2a for subfoveal neovascularization in age-related macular degeneration. Ophthalmology 100: 1417–1424PubMedGoogle Scholar
  63. Proia AD, Hirakata A, McInnes JS, Scroggs MW, Parikh I (1993) The effect of angiostatic steroids and beta-cyclodextrin tetradecasulfate on corneal neovascularization in the rat. Exp Eye Res 57: 693–698PubMedCrossRefGoogle Scholar
  64. Rasmussen H, Chu KW, Campochiaro P, Gehlbach PL, Haller JA, Handa JT, Nguyen QD, Sung JU (2001) Clinical protocol,an open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11 D (ADPEDF) in neovascular age-related macular degeneration ( AMD ). Hum Gene Ther 12: 2029–2032PubMedGoogle Scholar
  65. Remulla IF, Gaudio AR, Miller S, Sandberg MA (1995) Foveal electroretinograms and choroidal perfusion characteristics in fellow eyes of patients with unilateral neovascular age-related macular degeneration. Br J Ophthalmol 79: 558–561PubMedCrossRefGoogle Scholar
  66. Renno RZ, Youssri AI, Michaud N, Gragoudas ES, Miller JW (2002) Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43: 1574–1580PubMedGoogle Scholar
  67. Rieger G (1975) Heilanzeigen für Jodkurbehandlungen der Augen in Bad Hall. Wien Med Wochenschr 125: 438–439PubMedGoogle Scholar
  68. Rieger G (1988) Der Einfluss von kombinierten Jodkurbehandlungen in Bad Hall auf die Farbwahrnehmung von Patienten. Klin Monatsbl Augenheilkd 193: 416–419PubMedCrossRefGoogle Scholar
  69. Rieger G (1992) Veränderungen der Kontrastempfindlichkeit nach kombinierten Jodkurbehandlungen in Bad Hall bei Patienten mit altersbedingter Makulopathie. Ophthalmologica 205: 100–104PubMedCrossRefGoogle Scholar
  70. Risau W (1990) Angiogenic growth factors. Prog Growth Factor Res 2: 71–79PubMedCrossRefGoogle Scholar
  71. Robinson MR, Baffi J, Yuan P, Sung C, Byrnes G, Cox TA, Csaky KG (2002) Safety and pharmacokinetics of intravitreal 2-methoxyestradiol implants in normal rabbit and pharmacodynamics in a rat model of choroidal neovascularization. Exp Eye Res 74: 309–317PubMedCrossRefGoogle Scholar
  72. Roth DB, Spirn M, Yarian DL, Green SN, Leff SR, Friedman ES, Keyser BJ, Wheatly MH (2002) Intravitreal triamcinolone injection for the treatment of occult choriodal neovascularization associated with age-related macular degeneration. Abstract presented at the annual ARVO meetingGoogle Scholar
  73. Scheider A, Neuhauser L (1992) Fluorescence characteristics of drusen during indocyanine-green angiography and their possible correlation with choroidal perfusion. Ger J Ophthalmol 1: 328–334PubMedGoogle Scholar
  74. Schütt F, Davies S, Kopitz J, Holz FG, Boulton ME (2000) Photo-damage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41: 2303–2308PubMedGoogle Scholar
  75. Schütt F, Pauleikhoff D, Holz FG (2002) Vitamine and Spurenelemente bei der altersabhängigen Makuladegeneration. Ophtha lmologe: 99: 301–303CrossRefGoogle Scholar
  76. Schweigerer L (1988) Basic fibroblast growth factor and its relation to angiogenesis in normal and neoplastic tissue. Klin Wochenschr 66: 340–345PubMedCrossRefGoogle Scholar
  77. Seddon JM, Ajani UA, Sperduto RD et al. (1994) Dietary carotenoids,vitamins A,C,and E,and advanced age-related macular degeneration. Eye Disease Case-Control Study Group.JAMA 272: 1413–1420Google Scholar
  78. Seigel D (2002) AREDS investigators distort findings. Arch Ophthalmol 120: 100–101PubMedCrossRefGoogle Scholar
  79. Shalinsky DR, Brekken J, Zou H et al. (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 878: 236–270PubMedCrossRefGoogle Scholar
  80. Sidky YA, Borden EC (1987) Inhibition aof angiogenesis by interferon: effects on tumor-and lymphocyte-induced vascular responses. Cancer Res 47: 5155–5161PubMedGoogle Scholar
  81. Slater JS, Singerman U, Russell SR, Hudson HL, D’Amico DJ, Jerdan J, Zillox P, Robertson SM, Anecortave Study Group (2002) Anecortave acetate administered as a posterior juxtascleral injection for subfoveal CNV in age-related macular degeneration (AMD) - clinical results. Annual Retina Congress PresentationGoogle Scholar
  82. Spandau UM, Sauder G, Jonas JB, Hammes HP (2002) Angiostatic effect of crystalline traimcinolone acetonide on ocular neovascularization in vivo. Abstract presented at the annual ARVO meetingGoogle Scholar
  83. Spencer B, Agarwala S, Gentry L, Brandt CR (2001) HSV-1 vector-delivered FGF2 to the retina is neuroprotective but does not preserve functional responses. Mol Ther 3: 746–756PubMedCrossRefGoogle Scholar
  84. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor ( VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157: 135–144PubMedCrossRefGoogle Scholar
  85. Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A (1998) Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest Ophthalmol Vis Sci 39: 2194–2200PubMedGoogle Scholar
  86. Stellmach V, Crawford SE, Zhou W, Bouck N (2001) Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci U S A 98: 2593–2597PubMedCrossRefGoogle Scholar
  87. Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA (1990) Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest 63: 657–668PubMedGoogle Scholar
  88. Stur M, Tittl M, Reitner A, Meisinger V (1996) Oral zinc and the second eye in age-related macular degeneration. Invest Ophthalmol Vis Sci 37: 1225–1235PubMedGoogle Scholar
  89. The Eyetech Study Group (2002a) Anti-VEGF therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase IB results. Annual ARVO meeting presentationGoogle Scholar
  90. The Eyetech Study Group (2002b) Preclinical and phase IA clinical evaluation of an anti-VEGF pegylated aptamer (EYE 001) for the treatment of exudative age-related macular degeneration. Retina 22: 143–152Google Scholar
  91. Varga M, Gabriel I, Follmann P (1986) Behandlung der senilen Makulopathie mit Etaretin. Klin Monatsbl Augenheilkd 188: 622–624PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • D. Miller
  • M. Stur
  • F. G. Holz

There are no affiliations available

Personalised recommendations