Quantum Logic and Quantum Probability

  • Enrico G. Beltrametti


By events, or yes-no experiments, pertaining to some physical system we understand the physical quantities, or observables, that admit only two outcomes. Since the 1936 seminal work of G. Birkhoff and J. Neumann [4] it is recognized that, in the framework of physical systems exhibiting a quantum behaviour, the algebraic structure associated to the events is not an algebraic model of classical logic, it is the algebraic model of a new logic, to be called quantum logic. This fact outlines a deep departure from the realm of classical physics where the events pertaining to a physical system carry the structure of a Boolean algebra, hence an algebraic model of classical logic. In Sect. 2 we shall review the structure of the events of classical and of quantum events and we will recall the main branching point.


Probability Measure Boolean Algebra Classical Logic Quantum Logic Algebraic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Accardi, A. Fedullo: ‘On the Statistical Meaning of Complex Numbers in Quantum Mechanics’. Lett. Nuovo Cimento 34 (1982) pp. 161–172MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Aspect: ‘Experimental Tests of Bell’s Inequalities With Correlated Photons’. In: Waves, Information and Foundations of Physics ed. by R. Pratesi, L. Ronchi ( Societ Italiana di Fisica, Bologna 1998 )Google Scholar
  3. 3.
    J.S. Bell: `On the Einstein-Podolsky-Rosen Paradox’. Physics 1 (1964) pp. 195–200Google Scholar
  4. 4.
    G. Birkhoff, J. von Neumann: ‘The Logic of Quantum Mechanics’. Ann. Math 37 (1936) p. 823CrossRefGoogle Scholar
  5. 5.
    E.G. Beltrametti, S. Bugajski: ‘The Bell Phenomenon in Classical Frameworks’. J. Phys. A: Math. Gen. 29 (1996) pp. 247–261MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    E.G. Beltrametti, S. Bugajski: ‘A Classical Extension of Quantum Mechanics’. J. Phys. A: Math. Gen. 28 (1995) pp. 3329–3343MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    E.G. Beltrametti, S. Bugajski: ‘Effect Algebras and Statistical Physical Theories’. J. Math. Phys. 38 (1997) pp. 3020–3030MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    E.G. Beltrametti, G. Cassinelli: The Logic of Quantum Logics ( Addison Wesley, Reading 1981 )Google Scholar
  9. 9.
    E.G. Beltrametti, B.C. van Fraassen (eds.): Current Issues in Quantum Logic (Plenum,• New York 1981 )Google Scholar
  10. 10.
    E.G. Beltrametti, M.J. Maczynski: ‘On a Characterization of Classical and Nonclassical Probabilities’. J. Math. Phys. 32 (1991) pp. 1280–1286MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    E.G. Beltrametti, M.J. Maczynski: ‘On the Characterization of Probabilities: A Generalization of Bell Inequalities’. J. Math. Phys. 34 (1993) pp. 4919–4929MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    E.G. Beltrametti, M.J. Maczynski: `On the Intrinsic Characterization of Classical and Quantum Probabilities’. In: Symposium on the Foundations of Quantum Physics ed. by P. Busch, P. Lahti, P. Mittelstaedt (World Scientific, Singapore 1993 )Google Scholar
  13. 13.
    G. Boole: `On the Theory of Probability’. In: Phil. Trans. Royal Soc. London, 152 (1862) pp. 225–252Google Scholar
  14. 14.
    S. Bugajski: ‘Fundamentals of Fuzzy Probability Theory’. Int. J. Theor. Phys. 35 (1996) pp. 2229–2244MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    E.B. Davies, J.T. Lewis: ‘An Operational Approach to Quantum Probability’. Comm Math. Phys. 17 (1970) pp. 239–260MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    A. Einstein, B. Podolsky, N. Rosen: ‘Can Quantum-mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47 (1935) pp. 777–780MATHGoogle Scholar
  17. 17.
    S. Gudder: ‘Fuzzy Probability Theory’. Demonstratio Mathematica 31 (1998) pp. 235–354MathSciNetMATHGoogle Scholar
  18. 18.
    M. Jammer The Philosophy of Quantum Mechanics ( Wiley, New York 1974 )Google Scholar
  19. 19.
    P. Mittelstaedt: Quantum Logic ( Reidel, Dordrecht 1978 )MATHCrossRefGoogle Scholar
  20. 20.
    I. Pitowsky: ‘Quantum-Probability Logic’. In: Lecture Notes in Physics Vol. 321 ( Springer, Berlin 1989 )Google Scholar
  21. 21.
    P. Ptak, S. Pulmannova: Orthomodular Structures as Quantum Logics ( Kluwer Academic, Dordrecht 1991 )MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Enrico G. Beltrametti

There are no affiliations available

Personalised recommendations