Advertisement

Algebra pp 1-7 | Cite as

Einführung

  • Siegfried Bosch
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Der Name “Algebra” ist arabischen Ursprungs (9. Jahrhundert n. Chr.) und bedeutet Rechnen mit Gleichungen, etwa das Zusammenfassen von Termen der Gleichung oder das Verändern der Terme durch gleichartige Manipulationen auf den beiden Seiten der Gleichung. Dabei stellt die Gleichung eine Beziehung dar zwischen bekannten Größen, den sogenannten Koeffizienten, sowie den unbekannten Größen oder Variablen, deren Wert man mit Hilfe der Gleichung ermitteln möchte. Meist interessiert man sich in der Algebra für polynomiale Gleichungen, etwa des Typs
$$2x^3 + 3x^2 + 7x - 10 = 0,$$
wobei x für die unbekannte Größe steht. Eine solche Gleichung wird allgemein als algebraische Gleichung für x bezeichnet. Ihr Grad ist gegeben durch den Exponenten der höchsten wirklich vorkommenden Potenz von x. Algebraische Gleichungen vom Grad 1 nennt man linear. Das Studium linearer Gleichungen oder, allgemeiner, linearer Gleichungssysteme in endlich vielen unbekannten Größen ist ein zentrales Problem der Linearen Algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Siegfried Bosch
    • 1
  1. 1.Mathematisches InstitutWestfälische Wilhelms-UniversitätMünsterDeutschland

Personalised recommendations