Advertisement

Controllability and Asymptotic Problems in Distributed Systems

  • Józef Joachim Telega
Chapter
  • 378 Downloads
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 1)

Abstract

In our previous comprehensive papers [53, 54] the results pertaining to controllability of wave equations, linear and nonlinear vibrating solids and structures as well as heat equations were synthesized. However, asymptotic problems involving a small parameter E intended to tend to zero were out of scope of these papers.

Keywords

Wave Equation Heat Equation Exact Controllability Approximate Controllability Singular Perturbation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albano P (2000) Carleman estimates for the Euler-Bernoulli plate operator. Electronic J. Diff. Eqs. 2000 (53): 1–13Google Scholar
  2. 2.
    Albano P, Tataru D (2000) Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system. Electronic J. Diff. Eqs. 2000 (22): 1–15Google Scholar
  3. 3.
    Banks HT, Smith RC, Wang Y (1996) Smart materials structures: modeling, estimation and control. Wiley, ChichesterGoogle Scholar
  4. 4.
    Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New YorkzbMATHGoogle Scholar
  5. 5.
    Castro C (1999) Boundary controllability of the one-dimensional wave equation with rapidly oscillating density. Asymptotic Anal. 20: 317–350Google Scholar
  6. 6.
    Castro C, Zuazua E (2000) Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math. 60: 1205–1233Google Scholar
  7. 7.
    Castro C, Zuazua E (2000) High frequency asymptotic analysis of a string with rapidly oscillating density. Euro. J. Appl. Math. 11: 595–622Google Scholar
  8. 8.
    Castro C, Zuazua E (2003) Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal. 164: 39–72Google Scholar
  9. 9.
    Castro C, Zuazua E Some topics on the control and homogenisation of parabolic partial differential equations. in pressGoogle Scholar
  10. 10.
    Castro C, Zuazua E Unique continuation and control for the heat equation from an oscillating lower dimensional manifold. in pressGoogle Scholar
  11. 11.
    Ciarlet PG (1997) Mathematical elasticity, vol. II: Theory of plates. North-Holland, AmsterdamzbMATHGoogle Scholar
  12. 12.
    Cioranescu D, Donato P (1989) Exact internal controllability in perforated domains. J. Math. Pures. Appl. 68: 185–213Google Scholar
  13. 13.
    Cioranescu D, Murat F (1982) Un terme étrange venu d’ailleurs. In: Brezis H, Lions J-L, Cioranescu D (eds) Nonlinear partial differential equations and their applications. Collége de France Seminar vol. 2(6):98–138, vol.3:154–178, Research Notes in Mathematics, Pitman, London, also in: Cherkaev A, Kohn R (eds) Topics in the Mathematical Modelling of Composite Materials, pp. 45–93, Birkhäuser, Boston (1997)Google Scholar
  14. 14.
    Cioranescu D, Donato P (1989) Contrôlabilité exacte frontiére de l’équation des ondes dans des domaines avec des petits trous. C.R. Acad. Sci. Paris, Série I 309: 473–478Google Scholar
  15. 15.
    Cioranescu D, Donato P, Zuazua E (1991) Strong convergence on the exact boundary controllability of the wave equation in the perforated domains. In: Desch W, Kappel F, Kunisch K (eds) Proc. Int. Conf. on Control and Estimation of Distributed Parameter Systems, Vorau (Styria), ISNM Series, vol. 100: 99–113, Birkhäuser Verlag, BaselGoogle Scholar
  16. 16.
    Cioranescu D, Donato P, Zuazua E (1992) Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures Appl. 71: 343377Google Scholar
  17. 17.
    Cioranescu D, Donato P, Zuazua E (1994) Approximate boundary controllability for the wave equation in perforated domains. SIAM J. Control Optim. 32: 35–50Google Scholar
  18. 18.
    Cioranescu D, Donato P, Murat F, Zuazua E (1991) Homogenization and correctors for the wave equation in domains with small holes. Ann. Scuola Norm. Sup. Pisa 18: 251–293Google Scholar
  19. 19.
    de Teresa L, Zuazua E (2000) Null controllability of linear and semilinear heat equations in thin domains. Asymptotic Anal. 24: 295–317zbMATHGoogle Scholar
  20. 20.
    Fabre C (1990) Comportement au voisinage du bord des solutions de quelques équations d’évolutions linéaires. Application â certains problémes de contrôlabilité exacte et de perturbations singuliéres. Thése de doctorat, Université Paris V IGoogle Scholar
  21. 21.
    Figueiredo I, Zuazua E (1995) Exact controllability, asymptotic methods and plates. In: Ciarlet PG, Trabucho, Viano (eds) Asumptotic methods for elastic structures, pp. 69–74, Walter de GruyterandCo., Berlin-New YorkGoogle Scholar
  22. 22.
    Figueiredo I, Zuazua (1996) Exact controllability and asymptotic limit for thin plates. Asymptotic Anal. 12: 213–252MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fursikov AV, Imanuvilov D Yu (1996) Controllability of evolution equations. Research Institute of mathematics, Global Analysis Research Center, Seoul National University, SeoulGoogle Scholar
  24. 24.
    Hoffmann K-H Botkin ND (1998) Oscillation of nonlinear thin plates excited by piezoelectric patches. Z. Angew. Math. Mech. 78: 495–503zbMATHCrossRefGoogle Scholar
  25. 25.
    Hoffmann K-H Botkin ND (1999) A fully coupled model of a nonlinear thin plate excited by piezoelectric actuator. In: Hoffmann K-H (ed) Proceedings of the first caesarium, Springer, available via the preprint server: http://www.zib.de/dfg-echtzeit/Publikationen/index.html Google Scholar
  26. 26.
    Hoffmann K-H Botkin ND (2000) Homogenization of von Kdrmân plates excited by piezoelectric patches. Z. Angew. Math. Mech. 80: 579–590CrossRefGoogle Scholar
  27. 27.
    Jikov VV, Kozlov SM, Oleinik OA (1994) Homogenization of differential operators and integral functionals, Springer-Verlag, BerlinCrossRefGoogle Scholar
  28. 28.
    Komornik V (1994) Controllability and stabilization: the multiplier method. RAM36, John WileyandSons, Chichester; Masson, ParisGoogle Scholar
  29. 29.
    Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximate theories, I. Abstract parabolic systems, I I. Abstract hyperbolic-like systems over a finite time horizon. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Lebeau G (2000) The wave equation with oscillating density: observability at low frequency. ESAIM, COCV, 5: 219–258MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lewiríski T, Telega JJ (2000) Plates, laminates and shells: asymptotic analysis and homogenisation. World Scientific Publishers, SingaporeGoogle Scholar
  32. 32.
    Lions JL (1985) Asymptotic problems in distributed systems. IMA Preprint Series No 147, May 1985, Univeristy of MinnesotaGoogle Scholar
  33. 33.
    Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systérnes distribués. Vol. 1, Contrôlabilité Exacte, RMA8, Masson, ParisGoogle Scholar
  34. 34.
    Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systérnes distribués. Vol. 2, Perturbations, RMA9, Masson, ParisGoogle Scholar
  35. 35.
    Litvinov WG, Kröplin B Modeling and optimal control of coupled structural acoustic systems with piezoelectric elements. Math. Meth. Appl. Math. in pressGoogle Scholar
  36. 36.
    Lopez A, Zuazua E Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density. in pressGoogle Scholar
  37. 37.
    López A, Zhang X, Zuazua E (2000) Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures. Appl. 79: 741–808Google Scholar
  38. 38.
    Micu.IS, Zuazua E (2004) An introduction to the controllability of partial differential equations. in pressGoogle Scholar
  39. 39.
    Rodriguez-Bernal A, Zuazua E (1995) Parabolic singular limit of a wave equation with localized boundary damping. Discrete Cont. Dyn. Systems 1: 303–346Google Scholar
  40. 40.
    Rodriguez-Bernal A, Zuazua E (2001) Parabolic singular limit of a wave equation with localized interior damping. Commun. Contemporary Math. 3: 215–257Google Scholar
  41. 41.
    Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Review 20: 639739Google Scholar
  42. 42.
    Saint Jean Paulin J, Tcheugoué Tébou LR (1997) Contrôlabilité exacte interne dans des domaines perforés avec une condition aux limite de Fourier sur le bord des trous. Asymptotic Anal. 14: 193–221zbMATHGoogle Scholar
  43. 43.
    Saint Jean Paulin J, Vanninathan M (1996) Contrôlabilité exacte de vibrations de corps élastiques minces. C.R. Acad. Sci. Paris, Série I 322: 889–894Google Scholar
  44. 44.
    Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in physics 127, Springer-Verlag, BerlinGoogle Scholar
  45. 45.
    Slawianowska A, Telega JJ (2001) A dynamic asymptotic model of linear elastic orthotropic plates: first and second-order terms. Arch. Mech. 53: 541–564Google Scholar
  46. 46.
    Tataru D (1994) A priori estimates of Carleman’s type in domains with boundary. J. Math. Pures Appl. 73: 355–387MathSciNetzbMATHGoogle Scholar
  47. 47.
    Tataru D (1996) Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75: 367–408MathSciNetzbMATHGoogle Scholar
  48. 48.
    Tcheugoué Tébou LR (1996) Internal stabilization and exact controllability in thin cellular structures. Ric. Mat. 45: 457–490zbMATHGoogle Scholar
  49. 49.
    Tcheugoué Tébou LR (1997) Contrôle distribué de l’equation des ondes dans des domaines minces. Math. Modelling Numer. Anal. 31: 871–890zbMATHGoogle Scholar
  50. 50.
    Tcheugoué Tébou LR (1998) Sur quelques résultats d’observabilité liés â l’équation des ondes perturbée. C.R. Acad. Sci. Paris, Série I 327: 277 281Google Scholar
  51. 51.
    Telega JJ, Bielski W (1996) Exact controllability of anisotropic elastic bodies. In: Malanowski K, Nahorski Z, Peszynska M (eds) Modelling and optimization of distributed parameter systems. pp. 254–262, Chapman Hall, LondonGoogle Scholar
  52. 52.
    Telega JJ, Bielski W (1999) On two problems of exact controllability for anisotropic elastic solids. In: Holnicki-Szulc J, Rodellar J (eds) Smart Structures. pp. 345–354, Kluwer Academic Publishers, DordrechtGoogle Scholar
  53. 53.
    Telega JJ, Bielski W (2000) Controllability and stabilization in elasticity, heat conduction and thermoelasticity: review of recent developments. J. Global Op-tim. 17: 353–386MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Telega JJ (2001) Topics on deterministic and stochastic controllability and stabilization of parameter distributed systems: theory and numerical approximations. In: Holnicki-Szulc J (ed) Structural control and health monitoring. pp. 213–340, AMAS Lecture Notes, vol. 1, IFTR WarsawGoogle Scholar
  55. 55.
    Yan J (1992) Contrôlabilité exacte pour des domaines minces. Asymptotic Anal. 5: 461–471MathSciNetzbMATHGoogle Scholar
  56. 56.
    Zuazua E (2002) Propagation, observation, control and numerical approximation of waves. preprint, Departmendo de Matemâticas, Universidad Autonoma, Madrid, SpainGoogle Scholar
  57. 57.
    Zuazua E Controllability of partial differential equations and its semi-discrete approximations. in pressGoogle Scholar
  58. 58.
    Zuazua E (1994) Approximate controllability for linear parabolic equations with rapidly oscillating coefficients. Control and Cybernetics 23: 793–808MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Józef Joachim Telega
    • 1
  1. 1.Institute of Fundamental Technological Research PASWarsawPoland

Personalised recommendations