Skip to main content

Controllability and Asymptotic Problems in Distributed Systems

  • Chapter
Advances in Smart Technologies in Structural Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 1))

  • 448 Accesses

Abstract

In our previous comprehensive papers [53, 54] the results pertaining to controllability of wave equations, linear and nonlinear vibrating solids and structures as well as heat equations were synthesized. However, asymptotic problems involving a small parameter E intended to tend to zero were out of scope of these papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albano P (2000) Carleman estimates for the Euler-Bernoulli plate operator. Electronic J. Diff. Eqs. 2000 (53): 1–13

    Google Scholar 

  2. Albano P, Tataru D (2000) Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system. Electronic J. Diff. Eqs. 2000 (22): 1–15

    Google Scholar 

  3. Banks HT, Smith RC, Wang Y (1996) Smart materials structures: modeling, estimation and control. Wiley, Chichester

    Google Scholar 

  4. Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York

    MATH  Google Scholar 

  5. Castro C (1999) Boundary controllability of the one-dimensional wave equation with rapidly oscillating density. Asymptotic Anal. 20: 317–350

    Google Scholar 

  6. Castro C, Zuazua E (2000) Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math. 60: 1205–1233

    Google Scholar 

  7. Castro C, Zuazua E (2000) High frequency asymptotic analysis of a string with rapidly oscillating density. Euro. J. Appl. Math. 11: 595–622

    Google Scholar 

  8. Castro C, Zuazua E (2003) Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal. 164: 39–72

    Google Scholar 

  9. Castro C, Zuazua E Some topics on the control and homogenisation of parabolic partial differential equations. in press

    Google Scholar 

  10. Castro C, Zuazua E Unique continuation and control for the heat equation from an oscillating lower dimensional manifold. in press

    Google Scholar 

  11. Ciarlet PG (1997) Mathematical elasticity, vol. II: Theory of plates. North-Holland, Amsterdam

    MATH  Google Scholar 

  12. Cioranescu D, Donato P (1989) Exact internal controllability in perforated domains. J. Math. Pures. Appl. 68: 185–213

    Google Scholar 

  13. Cioranescu D, Murat F (1982) Un terme étrange venu d’ailleurs. In: Brezis H, Lions J-L, Cioranescu D (eds) Nonlinear partial differential equations and their applications. Collége de France Seminar vol. 2(6):98–138, vol.3:154–178, Research Notes in Mathematics, Pitman, London, also in: Cherkaev A, Kohn R (eds) Topics in the Mathematical Modelling of Composite Materials, pp. 45–93, Birkhäuser, Boston (1997)

    Google Scholar 

  14. Cioranescu D, Donato P (1989) Contrôlabilité exacte frontiére de l’équation des ondes dans des domaines avec des petits trous. C.R. Acad. Sci. Paris, Série I 309: 473–478

    Google Scholar 

  15. Cioranescu D, Donato P, Zuazua E (1991) Strong convergence on the exact boundary controllability of the wave equation in the perforated domains. In: Desch W, Kappel F, Kunisch K (eds) Proc. Int. Conf. on Control and Estimation of Distributed Parameter Systems, Vorau (Styria), ISNM Series, vol. 100: 99–113, Birkhäuser Verlag, Basel

    Google Scholar 

  16. Cioranescu D, Donato P, Zuazua E (1992) Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures Appl. 71: 343377

    Google Scholar 

  17. Cioranescu D, Donato P, Zuazua E (1994) Approximate boundary controllability for the wave equation in perforated domains. SIAM J. Control Optim. 32: 35–50

    Google Scholar 

  18. Cioranescu D, Donato P, Murat F, Zuazua E (1991) Homogenization and correctors for the wave equation in domains with small holes. Ann. Scuola Norm. Sup. Pisa 18: 251–293

    Google Scholar 

  19. de Teresa L, Zuazua E (2000) Null controllability of linear and semilinear heat equations in thin domains. Asymptotic Anal. 24: 295–317

    MATH  Google Scholar 

  20. Fabre C (1990) Comportement au voisinage du bord des solutions de quelques équations d’évolutions linéaires. Application â certains problémes de contrôlabilité exacte et de perturbations singuliéres. Thése de doctorat, Université Paris V I

    Google Scholar 

  21. Figueiredo I, Zuazua E (1995) Exact controllability, asymptotic methods and plates. In: Ciarlet PG, Trabucho, Viano (eds) Asumptotic methods for elastic structures, pp. 69–74, Walter de GruyterandCo., Berlin-New York

    Google Scholar 

  22. Figueiredo I, Zuazua (1996) Exact controllability and asymptotic limit for thin plates. Asymptotic Anal. 12: 213–252

    MathSciNet  MATH  Google Scholar 

  23. Fursikov AV, Imanuvilov D Yu (1996) Controllability of evolution equations. Research Institute of mathematics, Global Analysis Research Center, Seoul National University, Seoul

    Google Scholar 

  24. Hoffmann K-H Botkin ND (1998) Oscillation of nonlinear thin plates excited by piezoelectric patches. Z. Angew. Math. Mech. 78: 495–503

    Article  MATH  Google Scholar 

  25. Hoffmann K-H Botkin ND (1999) A fully coupled model of a nonlinear thin plate excited by piezoelectric actuator. In: Hoffmann K-H (ed) Proceedings of the first caesarium, Springer, available via the preprint server: http://www.zib.de/dfg-echtzeit/Publikationen/index.html

    Google Scholar 

  26. Hoffmann K-H Botkin ND (2000) Homogenization of von Kdrmân plates excited by piezoelectric patches. Z. Angew. Math. Mech. 80: 579–590

    Article  Google Scholar 

  27. Jikov VV, Kozlov SM, Oleinik OA (1994) Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin

    Book  Google Scholar 

  28. Komornik V (1994) Controllability and stabilization: the multiplier method. RAM36, John WileyandSons, Chichester; Masson, Paris

    Google Scholar 

  29. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximate theories, I. Abstract parabolic systems, I I. Abstract hyperbolic-like systems over a finite time horizon. Cambridge University Press, Cambridge

    Google Scholar 

  30. Lebeau G (2000) The wave equation with oscillating density: observability at low frequency. ESAIM, COCV, 5: 219–258

    Article  MathSciNet  MATH  Google Scholar 

  31. Lewiríski T, Telega JJ (2000) Plates, laminates and shells: asymptotic analysis and homogenisation. World Scientific Publishers, Singapore

    Google Scholar 

  32. Lions JL (1985) Asymptotic problems in distributed systems. IMA Preprint Series No 147, May 1985, Univeristy of Minnesota

    Google Scholar 

  33. Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systérnes distribués. Vol. 1, Contrôlabilité Exacte, RMA8, Masson, Paris

    Google Scholar 

  34. Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systérnes distribués. Vol. 2, Perturbations, RMA9, Masson, Paris

    Google Scholar 

  35. Litvinov WG, Kröplin B Modeling and optimal control of coupled structural acoustic systems with piezoelectric elements. Math. Meth. Appl. Math. in press

    Google Scholar 

  36. Lopez A, Zuazua E Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density. in press

    Google Scholar 

  37. López A, Zhang X, Zuazua E (2000) Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures. Appl. 79: 741–808

    Google Scholar 

  38. Micu.IS, Zuazua E (2004) An introduction to the controllability of partial differential equations. in press

    Google Scholar 

  39. Rodriguez-Bernal A, Zuazua E (1995) Parabolic singular limit of a wave equation with localized boundary damping. Discrete Cont. Dyn. Systems 1: 303–346

    Google Scholar 

  40. Rodriguez-Bernal A, Zuazua E (2001) Parabolic singular limit of a wave equation with localized interior damping. Commun. Contemporary Math. 3: 215–257

    Google Scholar 

  41. Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Review 20: 639739

    Google Scholar 

  42. Saint Jean Paulin J, Tcheugoué Tébou LR (1997) Contrôlabilité exacte interne dans des domaines perforés avec une condition aux limite de Fourier sur le bord des trous. Asymptotic Anal. 14: 193–221

    MATH  Google Scholar 

  43. Saint Jean Paulin J, Vanninathan M (1996) Contrôlabilité exacte de vibrations de corps élastiques minces. C.R. Acad. Sci. Paris, Série I 322: 889–894

    Google Scholar 

  44. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in physics 127, Springer-Verlag, Berlin

    Google Scholar 

  45. Slawianowska A, Telega JJ (2001) A dynamic asymptotic model of linear elastic orthotropic plates: first and second-order terms. Arch. Mech. 53: 541–564

    Google Scholar 

  46. Tataru D (1994) A priori estimates of Carleman’s type in domains with boundary. J. Math. Pures Appl. 73: 355–387

    MathSciNet  MATH  Google Scholar 

  47. Tataru D (1996) Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75: 367–408

    MathSciNet  MATH  Google Scholar 

  48. Tcheugoué Tébou LR (1996) Internal stabilization and exact controllability in thin cellular structures. Ric. Mat. 45: 457–490

    MATH  Google Scholar 

  49. Tcheugoué Tébou LR (1997) Contrôle distribué de l’equation des ondes dans des domaines minces. Math. Modelling Numer. Anal. 31: 871–890

    MATH  Google Scholar 

  50. Tcheugoué Tébou LR (1998) Sur quelques résultats d’observabilité liés â l’équation des ondes perturbée. C.R. Acad. Sci. Paris, Série I 327: 277 281

    Google Scholar 

  51. Telega JJ, Bielski W (1996) Exact controllability of anisotropic elastic bodies. In: Malanowski K, Nahorski Z, Peszynska M (eds) Modelling and optimization of distributed parameter systems. pp. 254–262, Chapman Hall, London

    Google Scholar 

  52. Telega JJ, Bielski W (1999) On two problems of exact controllability for anisotropic elastic solids. In: Holnicki-Szulc J, Rodellar J (eds) Smart Structures. pp. 345–354, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  53. Telega JJ, Bielski W (2000) Controllability and stabilization in elasticity, heat conduction and thermoelasticity: review of recent developments. J. Global Op-tim. 17: 353–386

    Article  MathSciNet  MATH  Google Scholar 

  54. Telega JJ (2001) Topics on deterministic and stochastic controllability and stabilization of parameter distributed systems: theory and numerical approximations. In: Holnicki-Szulc J (ed) Structural control and health monitoring. pp. 213–340, AMAS Lecture Notes, vol. 1, IFTR Warsaw

    Google Scholar 

  55. Yan J (1992) Contrôlabilité exacte pour des domaines minces. Asymptotic Anal. 5: 461–471

    MathSciNet  MATH  Google Scholar 

  56. Zuazua E (2002) Propagation, observation, control and numerical approximation of waves. preprint, Departmendo de Matemâticas, Universidad Autonoma, Madrid, Spain

    Google Scholar 

  57. Zuazua E Controllability of partial differential equations and its semi-discrete approximations. in press

    Google Scholar 

  58. Zuazua E (1994) Approximate controllability for linear parabolic equations with rapidly oscillating coefficients. Control and Cybernetics 23: 793–808

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Telega, J.J. (2004). Controllability and Asymptotic Problems in Distributed Systems. In: Holnicki-Szulc, J., Soares, C.M. (eds) Advances in Smart Technologies in Structural Engineering. Computational Methods in Applied Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05615-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05615-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06104-2

  • Online ISBN: 978-3-662-05615-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics