Advertisement

Spatial Filtering with Discrete Array Sensors and Distributed PVDF Films

  • A. Preumont
  • P. De Man
  • A. François
  • N. Loix
  • K. Henrioulle
Chapter
  • 383 Downloads
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 1)

Abstract

There are two broad ways to achieve spatial filtering: (i) arrays of discrete sensors and (ii) continuous distributed sensors. Discrete sensor arrays may include accelerometers, strain gages, piezoelectric patches, etc..., while continuous distributed sensors may consist of piezoelectric films or optical fibers (the latter will not be considered in this study). The output of a piezoelectric sensor is a weighted average of the surface strains in the region covered by the electrodes on the film.

Keywords

Piezoelectric Property Array Sensor Spatial Filter Porous Electrode Sensor Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meirovitch L, Baruh H (1985) The implementation of modal filters for control of structures. AIAA Journal of Guidance, 8 (6): 707–716zbMATHCrossRefGoogle Scholar
  2. 2.
    Zhang Q, Allemang RJ, Brown DL (1990) Modal filter: Concept and applications. pp.487–496 International Modal Analysis ConferenceGoogle Scholar
  3. 3.
    Shelley SJ, Lee KL, Aksel T, Aktan AE (1995) Active control and forced-vibration studies on highway bridge. J. Struct. Eng., pp.1306–1312, SeptemberGoogle Scholar
  4. 4.
    Tanaka N Kikushima Y (1999) Active modal control and its robustness using point sensors and point actuators. JSME Int. Journal, series C 42 (1): 54–61CrossRefGoogle Scholar
  5. 5.
    Sumali H, Meissner K, Cudney HH (2001) A piezoelectric array for sensing vibration modal coordinates. Sensors and actuators A 93: 123–131CrossRefGoogle Scholar
  6. 6.
    François A, De Man P, Preurnont A (2001) Piezoelectric array sensing of volume displacement: A hardware demonstration. J. Sound Vibration, 244(3):395–405Google Scholar
  7. 7.
    Collins SA, Miller DW, Von Flotow AH (1994) Distributed sensors as spatial filters in active structural control. J. Sound Vibration, 173 (4): 471–501zbMATHCrossRefGoogle Scholar
  8. 8.
    Min DK (1993) Mechatronics: Electromechanics and Contromechanics. Springer-Verlag, New-YorkGoogle Scholar
  9. 9.
    Burke SE, Hubbard JE (1987) Active vibration control of a simply supported beam using a spatially distributed actuator. IEEE Control Systems Magazine, pp. 25–30Google Scholar
  10. 10.
    Lee CK (1990) Theory of laminated piezoelectric plates for the disign of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. J. Acoust. Soc. Am. 87 (3): 1141–1158CrossRefGoogle Scholar
  11. 11.
    Lee CK, Moon FC (1990) Modal sensors/actuators. ASME J. Appl. Mech., 57: 434–441CrossRefGoogle Scholar
  12. 12.
    Gu Y, Clark RL, Fuller CR, Zander AC (1994) Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene fluoride (pvdf) modal sensor. J. Vibration and Acoustics, 116: 303–308CrossRefGoogle Scholar
  13. 13.
    Clark RL, Burke SE (1996) Practical limitations in achieving shaped modal sensors with induced strain materials. J. Vibration and Acoustics, 118:668–675, OctoberGoogle Scholar
  14. 14.
    Charette F, Berry A, Guigou C (1998) Active control of sound radiation from a plate using a polyvinylidene floride volume displacement sensor. J. Acoust. Soc. Am., 103 (3): 1493–1503CrossRefGoogle Scholar
  15. 15.
    Tanaka N, Snyder SD, Hansen CH (1996) Distributed parameter modal filtering using smart sensors. Journal of Vibration and Acoustics, 118: 630–640CrossRefGoogle Scholar
  16. 16.
    Rex J, Elliott SJ (1992) The QWSIS–a new sensor for structural radiation control. In: MOVIC, Yokohama, pp. 339–343Google Scholar
  17. 17.
    Kim J, Hwang J-S, Kim S-J (2001) Design of modal transducers by optimizing spatial distribution of discrete gain weights. AIAA Journal, 39 (10): 1969–1976CrossRefGoogle Scholar
  18. 18.
    Miller SE, Oshman Y, Abramovich H (1996) Modal control of piezolaminated anisotropic rectangular plates, part 1: Modal transducer theory. AIAA Journal, 34 (9): 1868–1875zbMATHCrossRefGoogle Scholar
  19. 19.
    Preumont A, François A, De Man P, Piefort V (2003) Spatial filters in structural control. J. Sound and Vibration, 256 (1): 61–79CrossRefGoogle Scholar
  20. 20.
    Preumont A, François A, De Man P, Loix N (2002) A novel electrode concept for spatial filtering with piezoelectric films: Experimental validation. In: Photonics Fabrication Europe SPIE Conference, 28 October - 1 November 2002, Brugge, BelgiumGoogle Scholar
  21. 21.
    Preumont A, François A, De Man P, Loix N (2003) Spatial filtering for active vibration control of plates and shells. In: 5th European Conference on Noise Control, 19–21 May 2003, Naples, ItalyGoogle Scholar
  22. 22.
    Preumont A, François A, De Man P, Loix N, Henrioulle K. Spatial filters in structural control part II: Distributed sensors with piezoelectric films. Submitted to the J. Sound VibrationGoogle Scholar
  23. 23.
    Gawronski WK (1998) Dynamics and Control of Structures, a Modal Approach. SpringerGoogle Scholar
  24. 24.
    Strang G. (1988) Linear Algebra and its Applications, 3rd Ed. Harcourt Brace JovanovichGoogle Scholar
  25. 25.
    Martin GD (1978) On the Control of Flexible Mechanical Systems. PhD thesis, Stanford UniversityGoogle Scholar
  26. 26.
    Piefort V (2001) Finite Element Modeling of Piezoelectric Active Structures. PhD thesis, Université Libre de Bruxelles, The software is currently part of SAMCEFTM of SAMTECH S.A. Liège - BelgiumGoogle Scholar
  27. 27.
    Johnson ME, Elliott SJ (1995) Active control of sound radiation using volume velocity cancellation. J. Acoust. Soc. Am., 98 (4): 2174–2186CrossRefGoogle Scholar
  28. 28.
    Preumont A (2002) Vibration Control of Active Structures, An Introduction. Kluwer Academic Publishers, Dordrecht, second editionzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Preumont
    • 1
  • P. De Man
    • 1
  • A. François
    • 1
  • N. Loix
    • 2
  • K. Henrioulle
    • 2
  1. 1.Active Structures LaboratoryUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Micromega Dynamics saParc Scientifique du Sart TilmanAngleurBelgium

Personalised recommendations