On the Influence of High Pressure on Edible Oils

  • S. V. Kapranov
  • M. Pehl
  • Chr. Hartmann
  • A. Baars
  • A. Delgado
Conference paper

Abstract

The contribution deals with the influence of high pressure on viscosity and phase transition of edible oils. For both cases the effect of pressure is reverse to that of temperature. A kinetic relation which demands a pressure dependent activation energy and prognoses an exponential increase of viscosity in absolute agreement with experiments has been deduced from this peculiarity. A new optical technique based on visual determination of abrupt viscosity increase in a pressurized chamber as well as on change of refractive index has been adopted for ascertaining facts of phase transitions.

Keywords

Sugar Crystallization Triglyceride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Buchheim W, Frede E, Wolf M, Baldenegger P (1999) Solidification and melting of some edible fats and model lipid system under pressure. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer-Verlag, Heidelberg, pp 153–156.CrossRefGoogle Scholar
  2. [2]
    Cheftel JC (1992) Effects of High Hydrostatic Pressure on Food Constituents: an overview. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. John Libbey/INSERM, Montrouge, pp 195–209.Google Scholar
  3. [3]
    Först P (2001) In-situ Untersuchungen der Viskosität fluider, komprimierter Lebensmittel-Modellsysteme (in German). Ph.D. thesis, Technische Universität München.Google Scholar
  4. [4]
    Först P, Werner F, Delgado A (2000) Rheological behaviour of mono-and disaccharide solutions at ambient and elevated pressures. In: Proc Int Symposium Food Rheology and Structure, Zürich, pp 131–135.Google Scholar
  5. [5]
    Först P, Werner F, Delgado A (2000) The viscosity of water at high pressures–especially at subzero degrees centigrade. Rheol Acta 39: 566–573.CrossRefGoogle Scholar
  6. [6]
    Först P, Werner F, Delgado A (2002) On the pressure dependence of the viscosity of aqueous sugar solutions. Rheol Acta 41: 369–374.CrossRefGoogle Scholar
  7. [7]
    Frisch D, Eyring H, Kincaid JF (1940) Pressure and temperature effects on the viscosity of liquids. J Appl Phys 11: 75–80.CrossRefGoogle Scholar
  8. [8]
    Hartmann C, Delgado A (2002) Numerical simulation of thermofluiddynamics and enzymes inactivation in a fluid food system under hydrostatic pressure. In: Hayashi R (ed) Trends in high pressure bioscience and biotechnology. Elsevier Science BV, Amsterdam, pp 533–540.CrossRefGoogle Scholar
  9. [9]
    Pehl M, Werner F, Delgado A (2000) First visualization of temperature fields in liquids at high pressure using thermochromic liquid crystals. Experiments in Fluids 29 /3: 302–304.CrossRefGoogle Scholar
  10. [10]
    Van Wijk WR, Seeder WA (1937) The influence of the temperature and the specific volume on the viscosity of liquids. Physica IV 11: 1073–1088.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. V. Kapranov
  • M. Pehl
    • 1
  • Chr. Hartmann
    • 1
  • A. Baars
    • 1
  • A. Delgado
    • 1
  1. 1.Chair for Fluid Mechanics and Process AutomationTechnische Universität MünchenFreisingGermany

Personalised recommendations