Skip to main content

High Pressure NMR Spectroscopy Characterizes Higher Energy Conformers of Proteins

  • Conference paper
Advances in High Pressure Bioscience and Biotechnology II
  • 431 Accesses

Abstract

Combination of hetero-nuclear two-dimensional NMR spectroscopy with pressure in the range 1~4 kbar enables one to detect and analyze structures of higher energy conformers of proteins existing between the fully folded and the fully unfolded. The idea is based on the recognition that partial molar volume of a protein decreases in parallel with the loss of its conformational order. Available information suggests that the structure determined at high pressure is generally related to the structure at 1 bar by linear compression. The method opens a new area of structural biology that will lead to better understanding of protein function, folding and conformational disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Heremans, High pressure effects on proteins and other biomolecules, Annu. Rev. Biophys. Bioeng. 11, 1–21 (1982).

    Article  CAS  Google Scholar 

  2. C. A. Royer, Application of pressure to biochemicval equilibriua: the other thermodynamic variable. Methods Enzymol. 259, 395–427 (1995).

    Article  Google Scholar 

  3. J. S. Silva and G. Weber, Pressure stability of proteins, Annu. Rev. Phys. Chem. 44, 89–113 (1993).

    Article  CAS  Google Scholar 

  4. J. Jonas and A. Jonas, High-pressure NMR spectroscopy of proteins and membranes. Ann. Rev. Biophys. Biochem. 23, 287–318 (1994).

    CAS  Google Scholar 

  5. I. Morishima, Current perspectives of high pressure biology. Academic Press, New York, pp. 325–333 (1987).

    Google Scholar 

  6. K. Akasaka and H. Yamada, On-Line Cell High Pressure Nuclear Magnetic Resonance Technique: Application to Protein Studies. in Methods in Enzymology 338: Nuclear Magnetic Resonance of Biological Macromolecules Part A (T. L. James et al., eds.), Academic Press, 134–158 (2001).

    Google Scholar 

  7. H. Li, H. Yamada and K. Akasaka, Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor. Biochemistry 37, 1167–1173 (1998).

    Article  CAS  Google Scholar 

  8. M. Iwadate, T. Asakura, P. V. Dubovskii, H. Yamada, K. Akasaka and M. P. Williamson, Pressure-dependent changes in the structure of the melittin a-helix determined by NMR, J. Biomol. NMR 19 (2): 115–124 (2001).

    Article  CAS  Google Scholar 

  9. H. Yamada, K. Nishikawa, M. Honda, T. Shikmura, K. Akasaka and K. Tabayashi, Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields. Rev. Sci. Inst. 72, 1463–1471 (2001).

    Article  CAS  Google Scholar 

  10. R. Kitahara, H. Yamada, K. Akasaka and P. E. Wright, High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded. J. Mol. Biol. 320, 311–319 (2002).

    Article  CAS  Google Scholar 

  11. C. Redfield, B. A. Schulman, M. A. Milhollen, P. S. Kim and C. M. Dobson, alactalbumin forms a compact molten globule in the absence of disulfide bonds. Nat. Struct. Biol. 6, 948–952 (1999).

    Article  CAS  Google Scholar 

  12. K. Inoue, H. Yamada, K. Akasaka, C. Herrmann, W. Kremer, T. Maurer, R. Doeker and H. R. Kalbitzer, Pressure-induced local unfolding of the Ras-binding domain of RalGEF, Nature Structural Biology, 7, 547–550 (2000).

    Article  CAS  Google Scholar 

  13. K. Kuwata, H. Li, H. Yamada, C. A. Batt, Y. Goto and K. Akasaka, High pressure NMR reveals a variety of fluctuating conformers in ß-lactoglobulin. J. Mol. Biol. 305, 1073–1083 (2001).

    Article  CAS  Google Scholar 

  14. R. Kitahara, S. Sareth, H. Yamada, E. Ohmae, K. Gekko, K. and K. Akasaka, High Pressure NMR reveals active—site hinge motion of folate—bound Escherichia coli dihydrofolate reductase. Biochemistry 39, 12789–12795 (2000).

    Article  CAS  Google Scholar 

  15. R. Kitahara, H. Yamada and K. Akasaka, Two folded conformers of ubiquitin revealed by high pressure NMR. Biochemistry 40, 13556–13563 (2001).

    Article  CAS  Google Scholar 

  16. R. Kitahara, C. Royer, H. Yamada, M. Boyer, J. L. Saldana, K. Akasaka and C. Roumestand, Equilibrium and pressurejump relaxation studies of the conformational transitions of P13MTCP1. J. Mol. Biol. 329, 609–628 (2002).

    Article  Google Scholar 

  17. K. Kuwata, H. Li, H. Yamada, G.Legname, S. B. Prusiner, K. Akasaka and T. L. James, Locally disordered conformer of Hamster prion: A crucial intermediate to PrPSC ? Biochemistry 41, 12277–12283 (2002).

    Article  CAS  Google Scholar 

  18. K. Akasaka and H. Li, Low-lying excited states of proteins from nonlinear pressure shifts in 1H and 15N NMR. Biochemistry 40, 8665–8671 (2001).

    Article  CAS  Google Scholar 

  19. K. J. Frye and C. A. Royer, Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Protein Sci. 7, 2217–2222 (1998).

    Article  CAS  Google Scholar 

  20. M. W. Lassalle, H. Yamada, H. Morii, K. Ogata, A. Sarai and K. Akasaka, Filling a cavity dramatically increases pressure stability of the c-Myb R2 domain. Proteins: Structure, Function and Genetics 45, 96–101 (2001).

    Article  CAS  Google Scholar 

  21. T. V. Chalikian, K. J. Breslauer, On volume changes accompanying conformational transitions of biopolymers. Biopolymers 39, 619–626 (1996).

    Article  CAS  Google Scholar 

  22. C. Royer, Revisiting volume changes in pressure-induced protein unfolding. Bioochim. Biophys. Acta 1595, 201–209 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akasaka, K. (2003). High Pressure NMR Spectroscopy Characterizes Higher Energy Conformers of Proteins. In: Winter, R. (eds) Advances in High Pressure Bioscience and Biotechnology II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05613-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05613-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05674-1

  • Online ISBN: 978-3-662-05613-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics