Skip to main content

High Pressure NMR Spectroscopy and its Application to the Cold Shock Protein TmCsp Derived from the Hyperthermophilic Bacterium Thermotoga maritima

  • Conference paper

Abstract

High pressure is a powerful tool to study the physico-chemical properties of proteins, especially folding, as well as the dynamics and structure of folding intermediates. Here we combine pressure with multidimensional NMR spectroscopy to characterise the physico-chemical properties of the cold shock protein TmCsp at variable temperatures. This protein is the most thermostable cold shock protein currently known and exhibits an extreme pressure stability. For this purpose we adapted a high pressure capillary system to the high field NMR spectrometers operating at 500 and 600 MHz. Since the signal to noise ratio is a limiting factor for many experiments, we devised a sapphire on-line pressure system which doubles the sample volume compared to previous systems. To understand the effect of pressure on proteins, we need to know the pressure dependence of 1H chemical shifts in random coil model tetrapeptides. The results allow to distinguish structural changes from the pressure dependence of the chemical shifts. In addition, the influence of pressure on the buffer system was investigated. Due to the limited sample volume of the high pressure capillaries it is difficult to identify NOE contacts for structure determination. Alternatively, data of residual dipolar couplings can be used for the solution of a structure under high pressure. The pressure stability of the phospholipid bicelles necessary for measurements of residual dipolar couplings is shown. 1H-15N-HSQC- and 2D- 13 C-HNCO-spectra were acquired to study the effects of pressure and temperature on chemical shifts and signal volumes of the cold shock protein TmCsp. These measurements show the high pressure stability of TmCsp compared to other proteins. In addition we studied the cold denaturation of TmCsp under 200 MPa down to a temperature of 255 K since the freezing point of water is decreased by pressure. By varying the temperature from 255 K to 340 K we observed a significant correlation between the temperature of maximum stability and the secondary structure of the protein backbone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lang & Lüdemann, NMR Basic principles and progress, 1990, 24: 129–187, eds. P. Diehl, E. Fluck, H. Günther, R. Kosfeld, J. Seelig.

    Google Scholar 

  2. Silva, J.L., Foguel, D., & Royer C., Pressure provides new insights into protein folding, dynamics and structure. Trends in Biochem. Sci. 26, 612–618, (2001).

    Article  CAS  Google Scholar 

  3. Akasaka K., Li H., Yamada H., Li R., Thoresen T., Woodward C.K., Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI. Prot. Sci. 8, 1946–1953, (1999).

    Article  CAS  Google Scholar 

  4. Akasaka K., Yamada H., On-Line Cell High-Pressure Nuclear Magnetic Resonance Technique: Application to Protein Studies. Methods in Enzymology 338, 134–158, (2001)

    Article  CAS  Google Scholar 

  5. Jonas, J., Science 216, 1179–1184, (1982).

    Article  CAS  Google Scholar 

  6. Gross M., Jaenicke R., Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. European Journal of Biochemistry/FEBS, Vol. 221, 2, 617–630, (1994).

    Article  Google Scholar 

  7. Bachl, F., NMR-Spektroskopische Untersuchungen zur Dynamik einfacher Kohlenwasserstoffe bis 600 MPa, Dissertation, Universität Regensburg (1988).

    Google Scholar 

  8. Ballard L., Yu A., Reiner C., Jonas J., A High Pressure, High-Resolution NMR Probe for Experiments at 500 MHz, J. Magn. Res 133, 190–193, (1998).

    Article  CAS  Google Scholar 

  9. Yamada H., Pressure-resisting glass cell for high pressure, high-resolution NMR measurements, Rev. Sci. Instr. 45, 540–542, (1974).

    Article  Google Scholar 

  10. Price W.E., Lüdemann H.-D., NMR and Diaphragm Cell Techniques for the Study of Molecular Dynamics in Fluids. In: High Pressure Techniques in Chemistry and Physics: A Practical Approach. Holzapfel W.B., Isaacs N.S, eds. Oxford University Press, Oxford Chapter 5, 225, (1997).

    Google Scholar 

  11. Yamada H., Nishikawa K., Honda M., Shimura T., Aksaka K., Tabayashi K., Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurement at very high magnetic fields, Rev. Sci. Instr. 72, 1463–1471, (2001).

    Article  CAS  Google Scholar 

  12. Prielmeier F.X., Lang E.W., Speedy R.J., Lüdemann H.-D., The Pressure Dependence of Self Diffusion in Supercooled Light and Heavy Water, Ber. Bunsen-Ges. Phys. Chem., 92, (1988), 1111.

    CAS  Google Scholar 

  13. Arnold, M.R., Lüdemann, H.-D., The pressure dependence of self diffusion and spin lattice relaxation in cold and supercooled H2O and D2O, Phys. Chem. Chem. Phys. 4 1581–1586, (2002).

    Article  CAS  Google Scholar 

  14. Arnold M.R., Kalbitzer, H.R., & Kremer W., High-sensitivity sapphire cells for high pressure NMR spectroscopy on proteins, J. Magn. Resonance, in press.

    Google Scholar 

  15. Wishart, D.S., Bigam, C.G., Arne, H., Hodges, R.S., Sykes, B.D. 1H, 13C, 15N random coil NMR shifts of the common amino acids. I. Investigation of nearest neighbour effects. J. Biomol. NMR 5, 67–81, (1995).

    Article  CAS  Google Scholar 

  16. Arnold M.R., Kremer W., Lüdemann H.-D., Kalbitzer H.R., 1H-NMR Parameters of Common Amino Acid Residues Measured in Aqueous Solutions of the Linear Tetrapeptides Gly-Gly-X-Ala at Pressures between 0.1 and 200 MPa. Biophys. Chem, 96, 129–140, (2002)

    Article  CAS  Google Scholar 

  17. Némethy, G., & Printz M.P., The r-turn, a possible folded confromation of the polypeptide chain. Comparison with the ß-turn, Macromolecules 5, 755–758, (1972).

    Article  Google Scholar 

  18. Boguski, M.S., & McCormick, F., Nature 355, 643–654, (1993).

    Article  Google Scholar 

  19. Geyer, M., Schweins, T., Herrmann, C., Prisner, T., Wittinghofer, A., & Kalbitzer, H.R., Conformational transitions in p21ras and its complexes with the effector protein RafRBD and the GTPase activating protein GAP, Biochemistry 35, 10308–10320, (1996).

    Article  CAS  Google Scholar 

  20. Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M., & Kuszewski, J., J. Am. Chem. Soc. 121, 6513–6514, (1999).

    Article  CAS  Google Scholar 

  21. Brunner, E., Arnold, M.R., Kremer, W., & Kalbitzer, H.R., Pressure-stability of phospholipid bicelles: measurement of residual dipolar couplings under extreme conditions, J. Biomol. NMR 21, 173–176, (2001).

    Article  CAS  Google Scholar 

  22. Welker, C., Böhm, G., Schurig, H., & Jaenicke, R., Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima, Protein Sci. 8, 394–403, (1999).

    Article  CAS  Google Scholar 

  23. Kremer, W., Schuler, B., Harrieder, S., Geyer, M., Gronwald, W., Welker, C., Jaenicke, R., & Kalbitzer, H.R., Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima, Eur. J. Biochem. 268, 2527–2539, (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kremer, W., Arnold, M.R., Brunner, E., Schuler, B., Jaenicke, R., Kalbitzer, H.R. (2003). High Pressure NMR Spectroscopy and its Application to the Cold Shock Protein TmCsp Derived from the Hyperthermophilic Bacterium Thermotoga maritima . In: Winter, R. (eds) Advances in High Pressure Bioscience and Biotechnology II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05613-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05613-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05674-1

  • Online ISBN: 978-3-662-05613-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics