Advertisement

Genetic Programming and Its Application in Machining Technology

  • Wolfgang Banzhaf
  • Markus Brameier
  • Marc Stautner
  • Klaus Weinert
Part of the Natural Computing Series book series (NCS)

Summary

Genetic programming (GP) denotes a variant of evolutionary algorithms that breeds solutions to problems in the form of computer programs. In recent years genetic programming has become increasingly important for real-world applications, including engineering tasks in particular. This contribution integrates both further development of the GP paradigm and its applications to challenging problems in machining technology. Different variants of program representations are investigated. While problem-independent methods are introduced for a linear representation, problem-specific adaptations are conducted with the traditional tree structure.

Keywords

Genetic Programming Sink Node Effective Distance Symbolic Regression Variation Step Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bähre, M. Müller, and G. Warnecke. Basic characteristics on cutting effects in correlation to dynamic effects. In Technical Papers of the 25th North American Manufacturing Research Conference, pages 21–26. Lincoln, VT, May 20–23, 1997.Google Scholar
  2. 2.
    W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming - An Introduction. On the Automatic Evolution of Computer Programs and its Application. dpunkt/Morgan Kaufmann, Heidelberg/San Francisco, CA, 1998.Google Scholar
  3. 3.
    C. L. Blake and C. J. Merz. UCI Repository of Machine Learning Databases [http://www.ics.uci.edu/,mlearn/MLRepository.html].Google Scholar
  4. 4.
    M. Brameier and W. Banzhaf. A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation, 5 (1): 17–26, 2001.CrossRefGoogle Scholar
  5. 5.
    M. Brameier and W. Banzhaf. Effective linear program induction. Technical Report CI-108/01, Collaborative Research Center 531, University of Dortmund, 2001.Google Scholar
  6. 6.
    M. Brameier and W. Banzhaf. Evolving teams of predictors with linear genetic programming. Genetic Programming and Evolvable Machines, 2 (4): 381–407, 2001.MATHCrossRefGoogle Scholar
  7. 7.
    M. Brameier and W. Banzhaf. Explicit control of diversity and effective variation distance in linear genetic programming. Technical Report CI-123/01, Collaborative Research Center 531, University of Dortmund, 2001.Google Scholar
  8. 8.
    M. Brameier and W. Banzhaf. Explicit control of diversity and effective variation distance in linear genetic programming. In Proceedings of the Fifth European Conference on Genetic Programming (EuroGP-2002),Kinsale, Ireland, April 3–5, 2002. (Accepted).Google Scholar
  9. 9.
    E. Cantu-Paz. Migration policies and takeover times in genetic algorithms. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), volume 1, page 775. Morgan Kaufmann, San Francisco, CA, July 13–17, 1999.Google Scholar
  10. 10.
    K. Chellapilla. Evolving computer programs without subtree crossover. IEEE Transactions on Evolutionary Computation, 1 (3): 209–216, 1997.CrossRefGoogle Scholar
  11. 11.
    P. Dittrich, F. Liljeros, A. Soulier, and W. Banzhaf. Spontaneous group formation in the seceder model. Physical Review Letters, 84: 3205–3208, 2000.CrossRefGoogle Scholar
  12. 12.
    D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, New York, 1997.MATHCrossRefGoogle Scholar
  13. 13.
    C. Igel and K. Chellapilla. Investigating the influence of depth and degree of genotypic change on fitness in genetic programming. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), volume 1, pages 1061–1068. Morgan Kaufmann, San Francisco, CA, July 13–17, 1999.Google Scholar
  14. 14.
    T. Inamura. Brittle/ductile phenomena observed in computer simulations of machining defect-free monocrystalline silicon. Annals of the CIRP, 46: 31–34, 1997.CrossRefGoogle Scholar
  15. 15.
    R. E. Keller, J. Mehnen, W. Banzhaf, and K. Weinert. Surface Reconstruction from 3D Point Data with a Genetic Programming/Evolution Strategy Hybrid, chapter 2, pages 41–65. Advances in Genetic Programming 3. MIT Press, Cambridge, MA, 1999.Google Scholar
  16. 16.
    J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.MATHGoogle Scholar
  17. 17.
    W. B. Langdon. Quadratic bloat in genetic programming. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 451–458. Morgan Kaufmann, San Francisco, CA, July 10–12, 2000.Google Scholar
  18. 18.
    W. B. Langdon, T. Soule, R. Poli, and James A. Foster. The evolution of size and shape. In L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, editors, Advances in Genetic Programming 3, chapter 8, pages 163–190. MIT Press, Cambridge, MA, 1999.Google Scholar
  19. 19.
    J. Mehnen. Evolutionäre Flächenrekonstruktion. PhD thesis, University of Dortmund, 2000.Google Scholar
  20. 20.
    M. Müller. Prozeßidentifikation beim Drehen mit Hilfe künstlicher neuronaler Netze. FBK - Produktionstechnische Berichte, 22, 1996.Google Scholar
  21. 21.
    P. Nordin. A compiling genetic programming system that directly manipulates the machine-code. In K.E. Kinnear, editor, Advances in Genetic Programming, pages 311–331. MIT Press, Cambridge, MA, 1994.Google Scholar
  22. 22.
    P. Nordin and W. Banzhaf. Complexity compression and evolution. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages 310–317. Morgan Kaufmann, San Francisco, CA, 1995.Google Scholar
  23. 23.
    H. Schulz and K. Bimschas. Optimisation of precision machining by simulation of the cutting process. Annals of the CIRP, 1993.Google Scholar
  24. 24.
    H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.Google Scholar
  25. 25.
    S. Shimada, N. Ikawa, H. Tanaka, and J. Uchikoshi. Structure of micromachined surface simulated by molecular dynamics analysis. Annals of the CIRP, 1994.Google Scholar
  26. 26.
    T. Soule, J. A. Foster, and J. Dickinson. Code growth in genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Proceedings of the Genetic Programming Conference (GP’96), pages 215–223. MIT Press, Cambridge, MA, 1996.Google Scholar
  27. 27.
    J. Sprave. Ein einheitliches Modell für Populationsstrukturen in evolutionären Algorithmen. PhD thesis, University of Dortmund, 1999.Google Scholar
  28. 28.
    B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1998.Google Scholar
  29. 29.
    G. Warnecke. Spanbildung bei metallischen Werkstoffen. Technischer Verlag Resch, Gräfelfing, 1974.Google Scholar
  30. 30.
    K. Weinert, J. Mehnen, and G. Rudolph. Dynamic neighborhood structures in parallel evolution strategies. Technical Report CI-114/01, Collaborative Research Center 531, University of Dortmund, 2001.Google Scholar
  31. 31.
    K. Weinert and M. Stautner. Reconstruction of particle flow mechanisms with symbolic regression via genetic programming. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 1439–1443. Morgan Kaufmann, San Francisco, CA, July 7–11, 2001.Google Scholar
  32. 32.
    K. Weinert and M. Stautner. Reconstruction of physical correlations using symbolic regressions. Technical Report CI-11601, Collaborative Research Center 531, University of Dortmund, 2001.Google Scholar
  33. 33.
    K. Weinert and M. Stautner. A new view on symbolic regression. In Proceedings of the Fifth European Conference on Genetic Programming (EuroGP-2002). Kinsale, Ireland, April 3–5, 2002. (Accepted).Google Scholar
  34. 34.
    K. Weinert, T. Surmann, and J. Mehnen. Evolutionary surface reconstruction using CSG-NURBS-hybrids. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), page 1456. Morgan Kaufmann, San Francisco, CA, July 7–11, 2001.Google Scholar
  35. 35.
    K. Weinert, T. Surmann, and J. Mehnen. Parallel surface reconstruction. In Proceedings of the Fifth European Conference on Genetic Programming (EuroGP-2002). Kinsale, Ireland, April 3–5, 2002. (Accepted).Google Scholar
  36. 36.
    K. Weinert and A. Zabel. Modelling chip-building in orthogonal cutting by using a cellular automata/genetic programming approach. In C. Fye, editor, Proceedings of the Second ICSC Symposium on Engineering of Intelligent Systems–EIS 2000. ICSC International Computer Science Conference, University of Paisley, Scotland, June 27–30, 2000.Google Scholar
  37. 37.
    J. Q. Xie, A. E. Bayoumi, and H. M. Zbib. Fea modeling and simulation of shear localized chip formation in metal cutting. International Journal of Machine Tools and Manufacture, 38: 1057–1087, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Banzhaf
    • 1
  • Markus Brameier
    • 1
  • Marc Stautner
    • 2
  • Klaus Weinert
    • 2
  1. 1.Department of Computer Science, Informatik XIUniversity of DortmundDortmundGermany
  2. 2.Faculty of Mechanical Engineering, Institute of Machining TechnologyUniversity of DortmundDortmundGermany

Personalised recommendations