Skip to main content

E1A-Based Determinants of Oncogenicity in Human Adenovirus Groups A and C

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 273))

Abstract

A broad spectrum of genetic and molecular investigations carried out with group C, Ad2 and Ad5, and with group A, Ad12, have shown that early regionl (El) gene products are sufficient for complete transformation of rodent cells in vitro by these viruses. During the past quarter century, the processes by which E1A proteins, in cooperation with E1B proteins, perturb the cell cycle and induce the transformed phenotype, have become well defined. Somewhat less understood is the basis for the differential oncogenicity of these two groups of viruses, and the processes by which the E1A proteins of Ad12 induce a tumorigenic phenotype in transformants resulting from infection of cells in vivo and in vitro. In this chapter we review previous findings and present new evidence which demonstrates that Ad12 E1A possesses two or more independent functions enabling it to induce tumors. One of these functions lies in its capacity to repress transcription of MHC class I genes, allowing the tumor cells to avoid lysis by cytotoxic T lymphocytes. We have shown that class I repression is mediated through increased binding of repressor COUP-TF and decreased binding of NF-kB to the class I enhancer. In addition to mediating immune escape, DA also determines the susceptibility of transformants to Natural Killer (NK) cell lysis, and in this case, also, Ad12 transformants are not susceptible. By using Ad 12 mutants containing chimeric E1A Ad12-Ad5 genes, point mutations, or a specific deletion, we have shown that the unique spacer region of Ad12 E1A is an oncogenic determinant, but is not required for transformation in vitro. Given that the E1A regions responsible for class I repression are first exon encoded, we have examined a set of cell lines transformed by these altered viruses, and have found that while they display greatly reduced tumorigenicity, they maintain a wild-type capacity to repress class I transcription. Whether the spacer contributes to NK evasion remains unresolved. Lastly, we discuss the properties of the Ad2/Ad5 E1A C-terminal negative modulator of tumorigenicity, and examine the effects on transformation, tumor induction and transformant tumorigenicity, when the Ad5 negative modulator is placed by chimeric construction in Ad12 E1A.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackrill AM, Blair GE (1988) Regulation of major histocompatibility class I gene expression at the level of transcription in highly oncogenic adenovirus transformed rat cells. Oncogene 3: 483–487

    PubMed  CAS  Google Scholar 

  • Bayley ST, Mymryk JS (1994) Adenovirus E1A proteins and transformation (Review). Int J Oncol 5: 425 444

    Google Scholar 

  • Bernards R, Houweling A, Schrier PI, Bos JL, van der Eb AJ (1982) Characterization of cells transformed by Ad5/Ad12 hybrid early region I plasmids. Virology 120: 422–432

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Schrier PI, Houweling A, Bos JL, van der Eb AJ, Zylstra M, Melief CJM (1983) Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature (London) 350: 776–779

    Article  Google Scholar 

  • Bernards R, de Leeuw M, Vaessen MJ, van der Eb AJ (1984) Oncogenicity by adeno-virus is not determined by the transforming region only. J Virol 50: 847–853

    PubMed  CAS  Google Scholar 

  • Boulanger PA, Blair GE (1991) Expression and interactions of human adenovirus oncoproteins. Biochem J 275: 281–299

    PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1A protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469–478

    PubMed  CAS  Google Scholar 

  • Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ, (1999) Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399: 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Byrd PJ, Grand RJA, Breiding D, Williams J, Gallimore PH (1988) Host range mutants of adenovirus type 12 El defective for lytic infection, transformation and oncogenicity. Virology 163: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BS, Sambhara SR, Sasakura Y, Miller RG (1992) Effect of class I MHC binding peptides on recognition by natural killer cells. J Immunol 149: 3150–3156

    PubMed  CAS  Google Scholar 

  • Chan V-L, Smith M (1984) In vitro generation of specific deletions in DNA cloned in M13 vectors using synthetic oligodeoxyribonucleotides: mutants in the 5’-flanking region of the yeast alcohol dehydrogenase II gene. Nucleic Acids Res. 12: 2407–2419.

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, Hibbs Jr JB, Lewis Jr. AM (1982) DNA virus-transformed hamster cell-host effector cell interactions: level of resistance to cytolysis correlated with tumorigenicity. Int J Cancer 30: 795–803

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, May DL Wilson BA Holskin B Chen MJ Shalloway D, Walker TA (1989) Role of tumor necrosis factor-alpha in ETA oncogene-induced susceptibility of neoplastic cells to lysis by natural killer cells and activated macrophages. J Immunol 142: 4527–4534

    CAS  Google Scholar 

  • Douglas JL, Gopalakrishnan S, Quinlan MP (1991) Modulation of transformation of primary epithelial cells by the second exon of the Ad5 E1A 12S gene. Oncogene 6: 2093–2103

    PubMed  CAS  Google Scholar 

  • Eager KB, Williams J, Breiding D, Pan S, Knowles B, Appela E, Ricciardi RP (1985) Expression of histocompatibility antigens H-2 K, D, and L is reduced in adenovirus-12-transformed mouse cells and is restored by interferon y Proc Natl Acad Sci USA 82: 5525–5529

    Article  PubMed  CAS  Google Scholar 

  • Edbauer D, Lamberti C, Tong J, Williams J (1988) Adenovirus type 12 EIB 19-kilodalton protein is not required for oncogenic transformation in rats. J Virol 62: 3265–3273

    PubMed  CAS  Google Scholar 

  • Fischer RS, Quinlan MP (1998) Expression of the Rb binding regions of EIA enables efficient transformation of primary epithelial cells by v-src. J. Virol 72: 2815–2824

    PubMed  CAS  Google Scholar 

  • Fischer RS, Quinlan MP (2000) While E1A can facilitate epithelial cell transformation by several dominant oncogenes, the C-terminus seems only to regulate rac and cdc 42 function, but in both epithelial and fibroblastic cells. (2000) Virology 269: 409–419

    Google Scholar 

  • Friedman DJ, Ricciardi RP (1988) Adenovirus type 12 E1A gene represses accumulation of MHC class I mRNA at the level of transcription. Virology 165: 303–305

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH (1972) Tumor production in immunosuppressed rats with cells transformed in vitro by adenovirus type 2. J Gen Virol 16: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Williams J (1982) An examination of adenovirus type 5 mutants for their ability to induce group C adenovirus tumor-specific antigenicity in rats. Virology 120: 146–156

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Byrd PJ, Grand RJA (1984a) Adenovirus genes involved in transformation. What determines the oncogenic phenotype?, p. 125–172. In Rigby PWJ, Wilkie NM (ed.), Symposium of the Society for General Microbiology. Viruses and Cancer. Cambridge University Press, Cambridge

    Google Scholar 

  • Gallimore P, Byrd P, Grand R, Whittaker J, Breiding D, Williams J (1984b). An examination of the transforming and tumor-inducing capacity of a number of adenovirus type 12 early region 1, host-range mutants and cells transformed by subgenomic fragments of Ad12 El region. Cancer Cells 2: 519–526

    CAS  Google Scholar 

  • Gallimore PH, Williams J, Breiding D, Grand RJA, Rowe M., Byrd P (1986) Studies on adenovirus type-12 El region: gene expression, transformation of human and rodent cells, and malignancy. Cancer Cells 4: 339–348

    CAS  Google Scholar 

  • Ge R, Kralli A, Weinmann R, Ricciardi RP. (1992) Down-regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells is accompanied by an increase in factor binding. J.Virol. 66: 6969–6978

    PubMed  CAS  Google Scholar 

  • Ge R, Liu X, Ricciardi RP (1994) EIA oncogene of adenovirus-12 mediates trans-repression of MHC class I transcription in Ad5/Ad12 somatic hybrid transformed cells. Virology. 203: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Harrison T, Williams J (1978) Defective transforming capacity of adenovirus type 5 host-range mutants. Virology 86: 10–21

    Article  PubMed  CAS  Google Scholar 

  • Graham FL (1984) Transformation by and oncogenicity of human adenoviruses, p 339–398. In Ginsberg HS (ed.), The adenoviruses. Plenum Press, New York

    Chapter  Google Scholar 

  • Haddada H, Lewis Jr AM, Sogn JA, Coligan JE, Cook JL, Walker TA, Levine AS (1986) Tumorigenicity of hamster and mouse cells transformed by adenovirus types 2 and 5 is not influenced by the level of class I major histocompatibility antigens expressed on the cells. J Virol 83: 9684–9688

    CAS  Google Scholar 

  • Haddada H, Sogn JA, Coligan JE, Carbone M, Dixon K, Levine AS, Lewis, Jr, AM (1988) Viral gene inhibition of class I major histocompatibility antigen expression: not a general mechanism governing the tumorigenicity of adenovirus type 2-, adenovirus type 12-, and simian virus 40-transformed Syrian hamster cells. J Virol 2755–2761

    Google Scholar 

  • Hayashi H, Tanaka K, Jay F, Khoury G, Jay G (1985) Modulation of the tumorigenici- ty of human adenovirus-12-transformed cells by interferon. Cell. 43: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Houweling A, Van den Elsen PJ, van der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–550

    Article  PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamsters of human adenovirus types 12 and 18. Proc Natl Acad Sci USA 48: 2051–2058

    Article  PubMed  CAS  Google Scholar 

  • Huvent I, Cousin C, Kiss A, Bernard C, D’Halluin JC (1996) Susceptibility to natural killer cells and down regulation of MHC class I expression in adenovirus 12 transformed cells are regulated by different E1A domains. Virus Res 45: 123–134

    Article  PubMed  CAS  Google Scholar 

  • Javier RT, Raska K Jr, Shenk T (1992) Requirement for the adenovirus type 9 E4 region in production of mammary tumors. Science 257: 1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Javier RT (1994) Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol 68: 3917–3924

    PubMed  CAS  Google Scholar 

  • Jelinek T, Pereira DS, Graham FL (1994) Tumorigenicity of adenovirus-transformed rodent cells is influenced by at least two regions of adenovirus type 12 early region 1A. J Virol 68: 888–896

    PubMed  CAS  Google Scholar 

  • Jones NC (1992) The multifunctional products of the adenovirus E1A gene, p. 87113. In Doerfler W, Böhm P (ed), Malignant transformation by DNA viruses. VCH Publishers, Weinheim, Germany

    Google Scholar 

  • Jonsson N, Ankerst J (1977) Studies on adenovirus type 9-induced mammary fi- broadenomas in rats and their malignant transformation. Cancer 39: 2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Kärre K, Ljunggren HG, Pointek G, Kiessling R (1986) Selective rejection of H-2 deficient lymphoma variants suggests alternative immune defense strategy. Nature 319: 675–678

    Article  PubMed  Google Scholar 

  • Kast WM, Offringa R, Peters PJ, Voordouw AC, Meloen RH, van der Eb AJ, Melief CJM (1989) Eradication of adenovirus El-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Kenyon DJ, Raska K Jr (1986) Region Ela of highly oncogenic adenovirus 12 in transformed cells protects against NK but not LAK cytolysis. Virology. 155: 644–654

    Article  PubMed  CAS  Google Scholar 

  • Kimelmann D, Miller JS, Porter D, Roberts BE (1985) EIA regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53: 399–409

    Google Scholar 

  • Kralli A, Ge R, Graeven U, Ricciardi RP (1992) Weinmann R. Negative regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells via a retinoic acid response element. J.Virol. 66: 6979–6988

    PubMed  CAS  Google Scholar 

  • Krantz CK, Routes BA, Quinlan MP, Cook JL (1996) EIA second exon requirements for induction of target cell susceptibility to lysis by natural killer cells: implications for the mechanism of action. Virology 217: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488–492

    Article  PubMed  CAS  Google Scholar 

  • Kushner DB, Pereira DS, Liu X, Graham FL, Ricciardi RP (1996) The first exon of Ad12 E1A excluding the transactivation domain mediates differential binding of COUP-TF and NF-KB to the MHC class I enhancer in transformed cells. Oncogene 12: 143–151

    PubMed  CAS  Google Scholar 

  • Kushner DB, Ricciardi RP (1999) Reduced phosphorylation of p50 is responsible for diminished NF-KB binding to the major histocompatibility complex class I enhancer in adenovirus 12 transformed cells. Mol Cell Biol 99: 2169–2179

    Google Scholar 

  • Lamberti C, Williams J (1990) Differential requirement for adenovirus type 12 E1A gene products in oncogenic transformation. J Virol 64: 4997–5007

    PubMed  CAS  Google Scholar 

  • Lanier LL (2000) The origin and functions of natural killer cells. Clin Immunol. 95: S14–18.

    Article  PubMed  CAS  Google Scholar 

  • Review Larsen PL, Tibbetts C (1987) Adenovirus DA gene autorepression: revertants of an E1A promoter mutation encode altered E1A proteins. Proc Natl Acad Sci USA 84: 8185–8189

    Article  Google Scholar 

  • Lewis Jr, AM, Cook JL (1982) Spectrum of tumorigenic phenotypes among adenovirus 2, adenovirus 12 and simian virus 40 transformed Syrian hamster cells defined by host cellular immune-tumor cell interactions. Cancer Res 42: 939–944

    PubMed  Google Scholar 

  • Licht JD, Grossel MU, Figge J, Hansen UM (1990) Drosophila Krüppel protein is a transcriptional repressor. Nature (London) 346: 76–79

    Article  CAS  Google Scholar 

  • Liu X, Ge R, Ricciardi RP (1996) Evidence for the involvement of a nuclear NF-KB inhibitor in global down-regulation of the major histocompatibility complex class I enhancer in adenovirus typel2-transformed cells. Mol Cell Biol 16: 398–404

    PubMed  CAS  Google Scholar 

  • Lyons RH, Ferguson BQ, Rosenberg M (1987) pentapeptide nuclear localization signal in adenovirus EIA. Mol Cel Biol 7: 2451–2456

    Google Scholar 

  • Mayo MW, Baldwin AS (2000) The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta1470: 55–62.

    Google Scholar 

  • Review Mautner V, Steinthorsdottir V, Bailey A (1995) Enteric adenoviruses. Curr Top Microbiol Immunol 199/II 229–282

    Google Scholar 

  • McLorie W, McGlade CJ, Takayesu D, Branton PE (1991) Individual adenovirus EIB proteins induce transformation independently but by additive pathways. J Gen Virol 72: 1467–1471

    Article  PubMed  CAS  Google Scholar 

  • Mellow GH, Föhring B, Dougherty J, Gallimore PH, Raska K (1984) Tumorigenicity of adenovirus-transformed rat cells and expression of class I major histocompatibility antigen. Virology 134: 951–961

    Article  Google Scholar 

  • Miller BW, Williams J (1987) Cellular transformation by adenovirus type 5 is influenced by the viral DNA polymerase. J Virol 61, 11: 3630–3634

    PubMed  CAS  Google Scholar 

  • Molloy DP, Milner AE, Yakub IK, Chinnadurai G, Gallimore PH, Grand RJA (1998) Structural determinants present in the C-terminal binding protein binding site of adenovirus early region lA proteins. J Biol Chem 273: 20867–20876

    Article  PubMed  CAS  Google Scholar 

  • Molloy DP, Barral PM, Bremmner KH, Gallimore PH, Grand RJA (2001) Structural determinants outside the PXDLS sequence affect the interaction of adenovirus E1A, C-terminal interacting protein and Drosophila repressors with C-terminal binding protein. Biochim Biophys Acta 1546: 55–70

    Google Scholar 

  • Montell C, Courtois G, Eng C, Berk A (1984) Complete transformation by adenovirus 2 requires both EIA proteins. Cell 36: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B. (1986) Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol 57: 765–775

    PubMed  CAS  Google Scholar 

  • Nibu & Zhang H, Levine M (1998) Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280: 101–104

    Google Scholar 

  • Nielsch U, Zimmer SG, Babiss LE (1991) Changes in NF-kappa B and ISGF3 DNA binding activities are responsible for differences in MHC and beta-IFN gene expression in Ads-versus Ad12-transformed cells. EMBO J 10: 4169–4175

    PubMed  CAS  Google Scholar 

  • Pääbo S, Severinsson L., Andersson M, Martens I, Nilsson T, Peterson PA (1989) Adenovirus proteins and MHC expression. Adv Cancer Res 52: 151–163

    Article  PubMed  Google Scholar 

  • Poortinga G, Watanabe M, Parkhurst SM (1998) Drosophila CtBP: A hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 17: 2067–2078

    Google Scholar 

  • Pointek GE, Tanignchi K, Ljunggren HG, Grönberg A, Kiessling R, Klein G, Kärre K (1985) YAC-1 MHC class I variants reveal an association between decreased NK sensitivity and increased H-2 expression after interferon treatment of in vivo passage. J Immunol 135: 4281–4288

    Google Scholar 

  • Quinlan MP, Douglas JL (1992) Immortalization of primary epithelial cells requires first and second exon functions of adenovirus type 5 12S. J. Virol 66: 2020–2030

    PubMed  CAS  Google Scholar 

  • Raska K Jr, Gallimore PH (1982) An inverse relation of the oncogenic potential of adenovirus-transformed cells and their sensitivity to killing by syngeneic natural killer cells. Virology 123: 8–18

    Article  PubMed  Google Scholar 

  • Raska K Jr (1995) Functional domains of adenovirus E1A oncogenes which control interactions with effectors of cellular immunity. Curr Top Microbiol Immunol 199: 131–148

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi RP. (1999) Adenovirus transformation and tumorigenicity In: Seth P (ed) Adenoviruses: Basic biology to gene therapy. Austin: RG Landes Co. 217–227.

    Google Scholar 

  • Rice SA, Klessig DF, Williams J (1987) Multiple effects of the 72-kDa, adenovirusspecified DNA binding protein on the efficiency of cellular transformation. Virology 156: 366–376

    Article  PubMed  CAS  Google Scholar 

  • Roberts BE, Miller JS, Kimelmann D, Cepko CL, Lemischka IR, Mulligan RC (1985) Individual adenovirus type 5 early region lA gene products elicit distinct alterations of cellular morphology and gene expression. J Virol 56: 404–413

    PubMed  CAS  Google Scholar 

  • Routes JM, Bellgrau D, McGrory WJ, Bautista DS, Graham FL, Cook JL (1991) Antiadenovirus type 5 cytotoxic T lymphocytes: immunodominant epitopes are encoded by the E1A gene. J Virol 65: 1450–1457

    PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region lA enables viral and cellular transforming genes to transform primary cells in culture. Nature (London) 304: 602–606

    Article  CAS  Google Scholar 

  • Rumpf H, Esche H, Kirch H-C (1999) Two domains within the adenovirus type 12 E1A unique spacer have disparate effects on the interaction of E1A with p105Rb and the transformation of primary mouse cells. Virology 257: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Föhring B, Shenk T, Raska K Jr (1985) Tumorigenicity of adenovirus transformed cells: region E1A of adenovirus 12 confers resistance to natural killer cells Virology 147: 413–421

    CAS  Google Scholar 

  • Sawada Y, Urbanelli D, Raskova J, Shenk T, Raska K Jr (1986) Adenovirus tumor-specific transplantation antigen is a function of the E1A early region. J Exp Med 163: 563–572

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Raska K Jr, Shenk T (1988) Adenovirus type 5 and type 12 recombinant viruses containing heterologous El genes are viable, transform rat cells, but are not tumorigenic in rats. Virology 166: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Raskova J, Fujinaga K, Raska K Jr (1994) Identification of functional domains of adenovirus tumor-specific transplantation antigen in types 5 and 12 by viable viruses carrying chimeric E1A genes. Int J. Cancer 57: 598–603

    Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci 92: 10467–10471

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Subramanian T, Lim L, Boyd JM, Chinnadurai G (1998) Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem 273: 8549–8552

    Google Scholar 

  • Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature (London) 305: 771–775

    Article  CAS  Google Scholar 

  • Scott MO, Kimelman D, Norris D, Ricciardi RP (1984) Production of a monospecific antisera against the E1A protein of Ad12 and Ad5 by an Ad12 E1A/ß-galactosidase fusion protein expressed in bacteria. J. Virol. 50: 895–903

    PubMed  CAS  Google Scholar 

  • Shiroki K, Segawa K, Saito I, Shimojo H, Fujinaga K (1979) Products of the adenovirus 12 transforming genes and their functions. Cold Spring Harbor Symp Quant Biol 44: 533–540

    Article  Google Scholar 

  • Shiroki K, Hashimoto S, Saito I, Fukui Y, Fukui Y, Hiroyuki K, Shimojo H (1984) Expression of the E4 gene is required for establishment of soft-agar colony-forming rat cell lines transformed by the adenovirus 12 El gene. J Virol 50, 3: 854–863

    PubMed  CAS  Google Scholar 

  • Sjögren HO, Minowada J, Ankerst J (1968) Specific transplantation antigens of mouse sarcomas induced by adenovirus type 12. J Exp Med 125: 689–701

    Article  Google Scholar 

  • Smirnov DA, Hou S, Ricciardi RP. (2000) Association of histone deacetylase with COUP-TF in tumorigenic Ad12 transformed cells and its potential role in shut-off of MHC class I transcription. Virology 268: 319–328

    Article  PubMed  CAS  Google Scholar 

  • Smirnov DA, Hou S, Liu X, Claudio E, Siebenlist UK, Ricciardi RP (2001). COUPTFII is up-regulated in adenovirus type 12 tumorigenic cells and is a repressor of MHC class I transcription. Virology 284: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Soddu S, Lewis Jr AM (1992) Driving adenovirus type 12-transformed BALB/c mouse cells to express high levels of class I major histocompatibility complex proteins enhances, rather than abrogates, their tumorigenicity. J Virol 66: 2875–2884

    PubMed  CAS  Google Scholar 

  • Sollerbrant K, Chinnadurai G, Svensson K (1996) The CtBP binding domain in the adenovirus MA protein controls CR1-dependent transactivation. Nucleic Acids Res 24: 2578–2584

    Google Scholar 

  • Storkus WJ, Salter RD, Cresswell P, Dawson JR (1992) Peptide-induced modulation of target cell sensitivity to natural killing. J Immunol 149: 1185–1190

    PubMed  CAS  Google Scholar 

  • Subramanian T, Malstrom SE, Chinnadurai G (1991) Requirement of the C-terminal region of adenovirus E1A for cell transformation in cooperation with El B. Oncogene 6: 1171–1173

    PubMed  CAS  Google Scholar 

  • Subramanian T, La Regina M, Chinnadurai G (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1A protein. Oncogene 4: 415–420

    PubMed  CAS  Google Scholar 

  • Tanaka K, Isselbacher KJ, Khoury G, Jay G (1985) Reversal of oncogenesis by the expression of a histocompatibility complex class I gene. Science 228: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Telling GC, Williams J (1994) Constructing chimeric type 12/type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12. J Virol 68, 2: 877–887

    PubMed  CAS  Google Scholar 

  • Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137: 835–841

    Article  PubMed  CAS  Google Scholar 

  • Trentin JJ, Bryan E (1966) Virus induced transplantation immunity to human adenovirus type 12 tumors of the hamster and mouse. Proc Soc Exp Biol Med 121: 1216–1219

    PubMed  CAS  Google Scholar 

  • Urbanelli D, Sawada Y, Raskova J, Jones NC, Shenk T, Raska K (1989) C-terminal domain of the adenovirus E1A oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation immunity. Virology 173: 607–614

    Article  PubMed  CAS  Google Scholar 

  • van der Eb AJ, Mulder C, Graham FL, Houweling A (1977) Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2: 115–132

    Google Scholar 

  • van der Eb AJ, Zantema A (1992) Adenovirus oncogenesis. p 115–140. In Doerlfer W, Böhm P. (ed.) Malignant transformation by DNA viruses. VCH Publishers, Weinheim, Germany

    Google Scholar 

  • van den Elsen PJ, de Pater S, Houweling A, van der Veer J, van der Eb AJ (1982) The relationship between region E1A and E1B of human adenoviruses in cell transformation. Gene 18: 175–185

    Article  PubMed  Google Scholar 

  • van Ormondt H, Galibert F (1984) Nucleotide sequences of adenovirus DNAs. Curr Top Microbiol Immunol 110: 73–142

    Google Scholar 

  • Vasavada R, Eager KB, Barbanti-Brodano G, Caputo A, Ricciardi RP. (1986) Adenovirus type 12 early region lA proteins repress class I HLA expression in transformed human cells. Proc. Natl. Acad. Sci. USA 83: 5257–61.

    Google Scholar 

  • Williams JF, Young CSH, Austin PE (1974) Genetic analysis of human adenovirus type 5 in permissive and nonpermissive cells. Cold Spring Harbor Symp Quant Biol 39: 427–437

    Article  Google Scholar 

  • Williams J (1986) Adenovirus genetics, p. 247–309. In Doerfler W (ed.), Adenovirus DNA: the viral genome and its expression. Martinus Nijhoff, The Hague, the Netherlands.

    Chapter  Google Scholar 

  • Williams J (1973) Oncogenic transformation of hamster embryo cells in vitro by adenovirus type 5. Nature 243: 162–163

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Williams M, Liu C, Telling G (1995) Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 199/II 149–175

    Google Scholar 

  • Winberg G, Shenk T (1984) Dissection of overlapping functions within the adenovirus type 5 E1A gene. EMBO J 3: 1907–1912

    PubMed  CAS  Google Scholar 

  • Wold WS, Tollefson AE (1999) Adenovirus-host interactions to subvert host immune system. In: Seth P (ed) Adenoviruses: Basic biology to gene therapy. Austin: RG Landes Co. 245–252

    Google Scholar 

  • Yewdell JW, Bennink JR, Eager KB, Ricciardi RP. (1988) CTL recognition of adenovirus-transformed cells infected with influenza virus: lysis by anti-influenza CTL parallels adenovirus-12-induced suppression of class I MHC molecules. Virol. 162: 236–238

    Article  CAS  Google Scholar 

  • Zhou C, Tsai SY, Tsai M. (2000) >From apoptosis to angiogenesis: new insights into the roles of nuclear orphan receptors, chicken ovalbumin upstream promoter-transcription factors, during development. Biochim Biophys Acta 1470:M63–68. Review

    Google Scholar 

  • Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function and responsiveness. Adv Immunol 27: 51–177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, J.F., Zhang, Y., Williams, M.A., Hou, S., Kushner, D., Ricciardi, R.P. (2004). E1A-Based Determinants of Oncogenicity in Human Adenovirus Groups A and C. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05599-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05599-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05715-1

  • Online ISBN: 978-3-662-05599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics