Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 273))

Abstract

The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn J-H, Hayward GS (1997) The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71: 4599–4613

    PubMed  CAS  Google Scholar 

  • Ambinder RF (2000) Gammaherpesviruses and hit-and-run oncogenesis. Americ J Pathol 156: 1–3

    Article  CAS  Google Scholar 

  • Anderson CW, Schmitt RC, Smart JE, Lewis JB (1984) Early region 1B of adenovirus 2 encodes two coterminal proteins of 495 and 155 amino acid residues. J Virol 50: 387–396

    PubMed  CAS  Google Scholar 

  • Ankerst J, Jonsson N, Kjellen L, Norrby E, Sjogren HO (1974) Induction of mammary fibroadenomas in rats by adenovirus type 9. Int J Cancer 13: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Ankerst J, Jonsson N (1989) Adenovirus type 9-induced tumorigenesis in the rat mammary gland related to sex hormonal state. J Natl Cancer Inst 81: 294–298

    Article  PubMed  CAS  Google Scholar 

  • Avvakumov N, Wheeler R, D’Halluin JC, Mymryk JS (2002) Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. J Virol 76: 7968–7975

    Article  PubMed  CAS  Google Scholar 

  • Babich A, Nevins JR (1981) The stability of early adenovirus mRNA is controlled by the viral 72 kd DNA-binding protein. Cell 26: 371–379

    Article  PubMed  CAS  Google Scholar 

  • Ben-Israel H, Kleinberger T (2002) Adenovirus and cell cycle control. Front Biosci 7: D1369 - D1395

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Houweling A, Schrier PI, Bos JL, van der Eb AJ (1982) Characterization of cells transformed by Ad5 Ad12 hybrid early region. Virology 120: 422–432

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Schrier PI, Bos JL, Van der Eb AJ (1983) Role of adenovirus types 5 and 12 early region lb tumor antigens in oncogenic transformation. Virology 127: 4553

    Article  Google Scholar 

  • Bernards R, Schrier PI, Houweling A, Bos JL, van der Eb AJ, Zijistra M, Melief CJ (1983) Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 305: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, de Leeuw MG, Vaessen MJ, Houweling A, van der Eb AJ (1984) Oncogenicity by adenovirus is not determined by the transforming region only. J Virol 50: 847–853

    PubMed  CAS  Google Scholar 

  • Bernards R, de Leeuw MG, Houweling A, van der Eb AJ (1986) Role of the adenovirus early region 1B tumor antigens in transformation and lytic infection. Virology 150: 126–139

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21 Blair GE, Hall KT (1998) Human adenoviruses: evading detection by cytotoxic T lymphocytes. Semin Virol 8: 387–397

    Google Scholar 

  • Blair-Zajdel ME, Blair GE (1988) The intracellular distribution of the transformation-associated protein p53 in adenovirus-transformed rodent cells. Oncogene 2: 579–584

    PubMed  CAS  Google Scholar 

  • Blanton RA, Carter TH (1979) Autoregulation of adenovirus type 5 early gene ex-pression. III. Transcription studies in isolated nuclei. J Virol 29: 458–465

    Google Scholar 

  • Bonin LR, McDougall JK (1997) Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J Virol 71: 5861–5870

    PubMed  CAS  Google Scholar 

  • Boulanger PA, Blair GE (1991) Expression and interactions of human adenovirus on-coproteins. Biochem J 275: 281–299

    PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2 5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469478

    Google Scholar 

  • Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D’Sa Eipper C, Chinnadurai G (1994) Adenovirus E1B 19 kDa and Bd-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351

    Article  PubMed  CAS  Google Scholar 

  • Boyer JL, Rohleder K, Ketner G (1999) Adenovirus E4 34 k and E4 11 k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263: 307–312

    Article  PubMed  CAS  Google Scholar 

  • Boyer JL, Ketner G (2000) Genetic analysis of a potential zinc-binding domain of the adenovirus E4 34 k protein. J Biol Chem 275: 14969–14978

    Article  PubMed  CAS  Google Scholar 

  • Brackmann KH, Green M, Wold WS, Cartas M, Matsuo T, Hashimoto S (1980) Identification and peptide mapping of human adenovirus type 2-induced early polypeptides isolated by twodimensional gel electrophoresis and immunoprecipitation. J Biol Chem 255: 6772–6779

    PubMed  CAS  Google Scholar 

  • Branton PE, Bayley ST, Graham FL (1985) Transformation by human adenoviruses. Biochim Biophys Acta 780: 67–94

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63: 631–638

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1990) Interaction of adenoviral E4 and Elb products in late gene expression. Virology 174: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Brusca JS, Jannun R, Chinnadurai G (1984) Efficient transformation of rat 3Y1 cells by human adenovirus type 9. Virology 136: 328–337

    Article  PubMed  CAS  Google Scholar 

  • Byrd P, Brown KW, Gallimore PH (1982) Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. Nature 298: 69–71

    Article  PubMed  CAS  Google Scholar 

  • Carter TH, Blanton RA (1978a) Autoregulation of adenovirus type 5 early gene expression II. Effect of temperature-sensitive early mutations on virus RNA accumulation. J Virol 28: 450–456

    Google Scholar 

  • Carter TH, Blanton RA (1978b) Possible role of the 72,000 dalton DNA-binding pro- tein in regulation of adenovirus type 5 early gene expression. J Virol 25: 664–674

    PubMed  CAS  Google Scholar 

  • Carvalho T, Seeler JS, Öhman K, Jordan P, Pettersson U, Akusjärvi G, Carmo Fonseca M, Dejean A (1995) Targeting of adenovirus E1A and E4–ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Cathomen T, Weitzman MD (2000) A functional complex of the adenovirus proteins E1B-55 kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J Virol 74: 11407–11412

    Article  PubMed  CAS  Google Scholar 

  • Chang LS, Shenk T (1990) The adenovirus DNA-binding protein stimulates the rate of transcription directed by adenovirus and adeno-associated virus promoters. J Virol 64: 2103–2109

    PubMed  CAS  Google Scholar 

  • Chauvin C, Suh M, Remy C, Benabid AL (1990) Failure to detect viral genomic sequences of three viruses (herpes simplex, simian virus 40 and adenovirus) in human and rat brain tumors. Ital J Neurol Sci 11: 347–357

    Article  PubMed  CAS  Google Scholar 

  • Chiou SK, White E (1997) p300 binding by E1A cosegregates with p53 induction but is dispensable for apoptosis. J Virol 71: 3515–3525

    Google Scholar 

  • Chlenski A, Ketels KV, Korovaitseva GI, Talamonti MS, Oyasu R, Scarpelli DG (2000) Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochim Biophys Acta 1493: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, Lewis AM, Jr. (1979) Host response to adenovirus 2-transformed hamster embryo cells. Cancer Res 39: 1455–1461

    PubMed  CAS  Google Scholar 

  • Cook JL, Hibbs JB, Jr., Lewis AM, Jr. (1982) DNA virus-transformed hamster cell-host effector cell interactions: level of resistance to cytolysis correlated with tumorigenicity. Int J Cancer 30: 795–803

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, May DL, Lewis AM, Jr., Walker TA (1987) Adenovirus E1A gene induction of susceptibility to lysis by natural killer cells and activated macrophages in infected rodent cells. J Virol 61: 3510–3520

    PubMed  CAS  Google Scholar 

  • Cotran RS, P SL, Kumar V (1994) Robbins pathology basis of disease, 5th ed.W. B. Sau,der:. Co., Philadelphia, PA

    Google Scholar 

  • Craven SE, Bredt DS (1998) PDZ proteins organize synaptic signaling pathways. Cell 93: 495–498

    Article  PubMed  CAS  Google Scholar 

  • Cress WD, Nevins JR (1996) A role for a bent DNA structure in E2F-mediated transcription activation. Mol Cell Biol 16: 2119–2127

    PubMed  CAS  Google Scholar 

  • Cress WD, Nevins JR (1996) Use of the E2F transcription factor by DNA tumor virus regulatory proteins. Curr Top Microbiol Immunol 208: 63–78

    Article  PubMed  CAS  Google Scholar 

  • Csata S, Kulcsar G, Dan P, Horvath J, Nasz I, Ongradi J, Verebelyi A (1982a) Adenovirus antibodies in tumorous diseases of the urogenital system. Acta Chir Acad Sci Hung 23: 15–22

    PubMed  CAS  Google Scholar 

  • Csata S, Kulcsar G, Horvath J, Nasz I, Ongradi J, Verebelyi A (1982b) Study of antibodies to adenoviruses in patients with tumors of the urogenital system. Int Urol Nephrol 14: 115–119

    Article  PubMed  CAS  Google Scholar 

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442

    Article  PubMed  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by El B. Genes Dev 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  • Dix I, Leppard KN (1993) Regulated splicing of adenovirus type 5 E4 transcripts and regulated cytoplasmic accumulation of E4 mRNA. J Virol 67: 3226–3231

    PubMed  CAS  Google Scholar 

  • Dobner T, Horikoshi N, Rubenwolf S, Shenk T (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272: 1470–1473

    Article  PubMed  CAS  Google Scholar 

  • Dobner T, Kzhyshkowska J (2001) Nuclear export of adenovirus RNA. Curr Top Mi-crobiol Immunol 259: 25–54

    Article  CAS  Google Scholar 

  • Dörfler W (1996) A new concept in adenoviral oncogenesis: integration of foreign DNA and its consequences. Biochim Biophys Acta 1288: F79 - F99

    Google Scholar 

  • Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10: 196–207

    Article  PubMed  CAS  Google Scholar 

  • Douglas JL, Gopalakrishnan S, Quinlan MP (1991) Modulation of transformation of primary epithelial cells by the second exon of the Ad5 E1Al2S gene. Oncogene 6: 2093–2103

    Google Scholar 

  • Douglas JL, Quinlan MP (1995) Efficient nuclear localization and immortalizing ability, two functions dependent on the adenovirus type 5 (Ad5) E1A second exon, are necessary for cotransformation with Ad5 EiB but not with T24ras. J Virol 69: 8061–8065

    PubMed  CAS  Google Scholar 

  • Downey JF, Rowe DT, Bacchetti S, Graham FL, Bayley ST (1983) Mapping of a 14,000-dalton antigen to early region 4 of the human adenovirus 5 genome. J Virol 45: 514–523

    PubMed  CAS  Google Scholar 

  • Durnam DM, Menninger JC, Chandler SH, Smith PP, McDougall JK (1988) A fragile site in the human U2 small nuclear RNA gene cluster is revealed by adenovirus type 12 infection. Mol Cell Biol 8: 1863–1867

    PubMed  CAS  Google Scholar 

  • Eager KB, Williams J, Breiding D, Pan S, Knowles B, Appella E, Ricciardi RP (1985) Expression of histocompatibility antigens H-2 K, -D, and -L is reduced in adenovirus-12-transformed mouse cells and is restored by interferon gamma. Proc Natl Acad Sci USA 82: 5525–5529

    Article  PubMed  CAS  Google Scholar 

  • Edbauer C, Lamberti C, Tong J, Williams J (1988) Adenovirus type 12 E1B 19-kilodalton protein is not required for oncogenic transformation in rats. J Virol 62: 3265–3273

    PubMed  CAS  Google Scholar 

  • Endter C, Kzhyshkowska J, Stauber R, Dobner T (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci USA 98: 11312–11317

    Article  PubMed  CAS  Google Scholar 

  • Esche H, Schilling R, Dörfler W (1979) In vitro translation of adenovirus type 12- specific mRNA isolated from infected and transformed cells. J Virol 30: 21–31

    PubMed  CAS  Google Scholar 

  • Esche H (1982) Viral gene products in adenovirus type 2-transformed hamster cells. J Virol 41: 1076–1082

    PubMed  CAS  Google Scholar 

  • Esche H, Siegman B (1982) Expression of early viral gene products in adenovirus type 12-infected and -transformed cells. J Gen Virol 60: 99–113

    Article  PubMed  CAS  Google Scholar 

  • Ewald D, Li M, Efrat S, Auer G, Wall RJ, Furth PA, Hennighausen L (1996) Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273: 1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC, Van Der Eb AJ (1996) Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 7: 215–222

    Google Scholar 

  • Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J, Auger C, Cramer SJ, van Ormondt H, van der Eb AJ, Valerio D, Hoeben RC (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9: 1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Fanning AS, Anderson JM (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Cin Invest 103: 767–772

    Article  CAS  Google Scholar 

  • Farrow SN, White JH, Martinou I, Raven T, Pun KT, Grinham CJ, Martinou JC, Brown R (1995) Cloning of a bc1–2 homologue by interaction with adenovirus E1B 19 K. Nature 374: 731–733

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Soria V, Bornstein R, Forteza J, Parada C, Sanchez-Prieto R, Ramon y Cajal S (2002) Inconclusive presence of adenovirus sequences in human leukemias and lymphomas. Oncol Rep 9: 897–902

    CAS  Google Scholar 

  • Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG, Jr., Livingston DM, Orkin SH, Greenberg ME (1996) E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Fisher PB, Babiss LE, Weinstein IB, Ginsberg HS (1982) Analysis of type 5 adenovirus transformation with a cloned rat embryo cell line ( CREF ). Proc Natl Acad Sci USA 79: 3527–3531

    Google Scholar 

  • Flint SJ, Gallimore PH, Sharp PA (1975) Comparison of viral RNA sequences in ade-novirus 2-transformed and lytically infected cells. J Mol Biol 96: 47–68

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ, Sambrook J, Williams JF, Sharp PA (1976) Viral nucleic acid sequences in transformed cells. IV. A study of the sequences of adenovirus 5 DNA and RNA in four lines of adenovirus 5-transformed rodent cells using specific fragments of the viral genome. Virology 72: 456–470

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ, Sharp PA (1976) Adenovirus transcription. V. Quantitation of viral RNA se-quences in adenovirus 2-infected and transformed cells. J Mol Biol 106: 749–771

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ (1982) Organization and expression of viral genes in adenovirus-trans-formed cells. Int Rev Cytol 76: 47–65

    Article  PubMed  CAS  Google Scholar 

  • Freyer GA, Katoh Y, Roberts RJ (1984) Characterization of the major mRNAs from adenovirus 2 early region 4 by cDNA cloning and sequencing. Nucl Acids Res 12: 3503–3519

    Google Scholar 

  • Gabler S, Schutt H, Groitl P, Wolf H, Shenk T, Dobner T (1998) E1B 55-kilodaltonassociated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72: 79607971

    Google Scholar 

  • Gallimore PH (1972) Tumour production in immunosuppressed rats with cells transformed in vitro by adenovirus type 2. J Gen Virol 16: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Byrd P, Grand RJ, Whittaker JL, Breiding D, Williams J (1984) An examination of the transforming and tumor-inducing capacity of a number of adenovirus type 12 early region 1, hostrange mutants and cells transformed by subgenomic fragments of Ad12 El region. Cancer Cells 2: 519–526

    CAS  Google Scholar 

  • Gallimore PH, Grand RJ, Byrd PJ (1986) Transformation of human embryo retinoblasts with simian virus 40, adenovirus and ras oncogenes. Anticancer Res 6: 499508

    Google Scholar 

  • Gallimore PH, Lecane PS, Roberts S, Rookes SM, Grand RJA, Parkhill J (1997) Adenovirus type 12 early region 1B 54 K protein significantly extends the life span of normal mammalian cells in culture. J Virol 71: 6629–6640

    PubMed  CAS  Google Scholar 

  • Gallimore PH, Turnell AS (2001) Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20: 7824–7835

    Article  PubMed  CAS  Google Scholar 

  • Galloway DA, McDougall JK (1983) The oncogenic potential of herpes simplex viruses: evidence for a `hit-and-run’ mechanism. Nature 302: 21–24

    Article  PubMed  CAS  Google Scholar 

  • Gardiol D, Kuhne C, Glaunsinger BA, Lee SS, Javier RT, Banks L (1999) Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18: 5487–5496

    Article  PubMed  CAS  Google Scholar 

  • Gelb L, Dohner D (1984) Varicella-zoster virus-induced transformation of mammalian cells in vitro. J Invest Dermatol 83:77s-81 s

    Google Scholar 

  • Gilead Z, Arens MQ, Bhaduri S, Shanmugam G, Green M (1975) Tumour antigen specificity of a DNA-binding protein from cells infected with adenovirus 2. Nature 254: 533–536

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HS, Ensinger MJ, Kauffman RS, Mayer AJ, Lundholm U (1975) Cell transformation: a study of regulation with types 5 and 12 adenovirus temperature-sensitive mutants. Cold Spring Harb Symp Quant Biol: 419–426

    Google Scholar 

  • Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier RT (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4–ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19: 5270–5280

    Article  PubMed  CAS  Google Scholar 

  • Glaunsinger BA, Weiss RS, Lee SS, Javier RT (2001) Link of the unique oncogenic properties of adenovirus type 9 E4–ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 20: 5578–5586

    Google Scholar 

  • Goodrum FD, Shenk T, Ornelles DA (1996) Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 70: 6323–6335

    PubMed  CAS  Google Scholar 

  • Goodrum FD, Ornelles DA (1997) The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol 71: 548–561

    PubMed  CAS  Google Scholar 

  • Goodrum FD, Ornelles DA (1998) p53 status does not determine outcome of E1B 55Kilodalton mutant adenovirus lytic infection. J Virol 72: 9479–9490

    Google Scholar 

  • Goodrum FD, Ornelles DA (1999) Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 73: 7474–7488

    PubMed  CAS  Google Scholar 

  • Graham FL, Smiley J, Russel WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Graham FL (1984) Transformation by and oncogenicity of human adenoviruses. In:Ginsberg HS (ed) The adenoviruses. Plenum Press, New York, pp 339–398

    Google Scholar 

  • Grand RJ, Grant ML, Gallimore PH (1994) Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 203: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Grand RJ, Parkhill J, Szestak T, Rookes SM, Roberts S, Gallimore PH (1999) Definition of a major p53 binding site on Ad2E1B58 K protein and a possible nuclear localization signal on the Ad12E1B54 K protein. Oncogene 18: 955–965

    Google Scholar 

  • Green M, Wold WSM, Mackey JK, Ridgen P (1979) Analysis of human tonsils and cancer DNAs and RNAs for DNA sequences of group C (serotypes 1,2,5, and 6) human adenoviruses. Proc Natl Acad Sci USA 76: 6606–6610

    Google Scholar 

  • Green M, Wold WSM, Brackmann KH (1980) Human adenoviruses transforming genes: group relationships, integration, expression in transformed cells and analysis of human cancers and tonsils. In: Essex M, Toardo G, zur Hausen H (eds) 7th Cold Spring Harbor conference on cell proliferation viruses in naturally occuring tumors. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 373–397

    Google Scholar 

  • Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao Z-X, Kumar S, Howley PM, Livingston DM (1998) p300 MDM 2 complexes participate in MDM 2-mediated p53 degradation. Mol Cell 2: 405–415

    Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400: 464–468

    Article  PubMed  CAS  Google Scholar 

  • Halbert DN, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 56: 250–257

    PubMed  CAS  Google Scholar 

  • Haley KP, Overhauser J, Babiss LE, Ginsberg HS, Jones NC (1984) Transformation properties of type 5 adenovirus mutants that differentially express the E1A gene products. Proc Natl Acad Sci USA 81: 5734–5738

    Article  PubMed  CAS  Google Scholar 

  • Han J, Sabbatini P, Perez L, Modha D, White E (1996) The E1B 19 K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev: 461–477

    Google Scholar 

  • Harada JN, Shevchenko A, Pallas DC, Berk AJ (2002) Analysis of the adenovirus E1B–55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76: 9194–9206

    Article  PubMed  CAS  Google Scholar 

  • Hardy S, Engel DA, Shenk T (1989) An adenovirus early region 4 gene product is required for induction of the infection-specific form of cellular E2F activity. Genes Dev 3: 1062–1074

    Article  PubMed  CAS  Google Scholar 

  • Hardy S, Shenk T (1989) E2F from adenovirus-infected cells binds cooperatively to DNA containing two properly oriented and spaced recognition sites. Mol Cell Biol 9: 4495–4506

    PubMed  CAS  Google Scholar 

  • Hateboer G, Hijmans EM, Nooij JB, Schlenker S, Jentsch S, Bernards R (1996) mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect. J Biol Chem 271: 25906–25011

    Google Scholar 

  • Henry H, Thomas A, Shen Y, White E (2002) Regulation of the mitochondrial checkpoint in p53-mediated apoptosis confers resistance to cell death. Oncogene 21: 748–760

    Article  PubMed  CAS  Google Scholar 

  • Herisse J, Rigolet M, de Dinechin SD, Galibert F (1981) Nucleotide sequence of adenovirus 2 DNA fragment encoding for the carboxylic region of the fiber protein and the entire E4 region. Nucl Acids Res 9: 4023–4042

    Article  PubMed  CAS  Google Scholar 

  • Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22–27

    Google Scholar 

  • Hopfner KP, Putnam CD, Tainer JA (2002) DNA double-strand break repair from head to tail. Curr Opin Struct Biol 12: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi N, Usheva A, Chen J, Levine AJ, Weinmann R, Shenk T (1995) Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol Cell Biol 15: 227–234

    PubMed  CAS  Google Scholar 

  • Huang MM, Hearing P (1989) Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 63: 2605–2615

    PubMed  CAS  Google Scholar 

  • Huang MM, Hearing P (1989) The adenovirus early region 4 open reading frame 6 7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev 3: 1699–1710

    Google Scholar 

  • Hutton FG, Turnell AS, Gallimore PH, Grand RJ (2000) Consequences of disruption of the interaction between p53 and the larger adenovirus early region 1B protein in adenovirus El transformed human cells. Oncogene 19: 452–462

    Article  PubMed  CAS  Google Scholar 

  • Huvent I, Cousin C, Kiss A, Bernard C, D’Halluin JC (1996) Susceptibility to natural killer cells and down regulation of MHC class I expression in adenovirus 12 transformed cells are regulated by different E1A domains. Virus Res 45: 123–134

    Article  PubMed  CAS  Google Scholar 

  • Hwang CB, Shilitoe EJ (1990) DNA sequence of mutations induced in cells by herpes simplex virus type-1. Virology 178: 180–188

    Article  PubMed  CAS  Google Scholar 

  • Ibelgaufts H (1982) Are human DNA tumour viruses involved in the pathogenesis of human neurogenic tumours? Neurosurg Rev 5: 3–24

    Google Scholar 

  • Ibelgaufts H, Jones KW, Maitland N, Shaw JF (1982) Adenovirus-related RNA sequences in human neurogenic tumours. Acta Neuropathol Berl 56: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Ishidate T, Matsumine A, Toyoshima K, Akiyama T (2000) The APC-hDLG complex negatively regulates cell cycle progression from the GO G1 to S phase. Oncogene 19: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Iwasaka T, Hayashi Y, Yokoyama M, Hara K, Matsuo N, Sugimori H (1992) `Hit and run’ oncogenesis by human papillomavirus type 18 DNA. Acta Obstet Gynecol Scand 71:219–223

    Google Scholar 

  • Javier RT, Raska K, Jr., Macdonald GJ, Shenk T (1991) Human adenovirus type 9-induced rat mammary tumors. J Virol 65: 3192–3202

    PubMed  CAS  Google Scholar 

  • Javier RT, Raska K, Jr., Shenk T (1992) Requirement for the adenovirus type 9 E4 region in production of mammary tumors. Science 257: 1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Javier RT (1994) Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol 68: 39173924

    Google Scholar 

  • Jelinek T, Pereira DS, Graham FL (1994) Tumorigenicity of adenovirus-transformed rodent cells is influenced by at least two regions of adenovirus type 12 early region 1A. J Virol 68: 888–896

    PubMed  CAS  Google Scholar 

  • Jeng YH, Wold WS, Green M (1978) Evidence for an adenovirus type 2-coded early glycoprotein. J Virol 28: 314–323

    PubMed  CAS  Google Scholar 

  • Jochemsen AG, Bernards R, van Kranen HJ, Houweling A, Bos JL, van der Eb AJ (1986) Different activities of the adenovirus types 5 and 12 E1A regions in transformation with the EJ Ha-ras oncogene. J Virol 59: 684–691

    PubMed  CAS  Google Scholar 

  • Johnson DG, Cress WD, Jakoi L, Nevins JR (1994) Oncogenic capacity of the E2F1 gene. Proc Natl Acad Sci USA 91: 12823–12827

    Article  PubMed  CAS  Google Scholar 

  • Jones C (1995) Cervical cancer: is herpes simplex virus type II a cofactor? Clin Microbiol Rev 8: 549–556

    Google Scholar 

  • Jones PA (1999) The DNA methylation paradox. Trends in Genetics 15: 34–37

    Article  PubMed  CAS  Google Scholar 

  • Jonsson N, Ankerst J (1977) Studies on adenovirus type 9-induced mammary fi-broadenomas in rats and their malignant transformation. Cancer 39: 2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Jox A, Rohen C, Belge G, Bartnitzke S, Pawlita M, Diehl V, Bullerdiek J, Wolf J (1997)

    Google Scholar 

  • Integration of Epstein-Barr virus in Burkitt’s lymphoma cells leads to a region of enhanced chromosome instability. Ann Oncol 8:131–135

    Google Scholar 

  • Karran L, Teo CG, King D, Hitt MM, Gao YN, Wedderburn N, Griffin BE (1990) Establishment of immortalized primate epithelial cells with sub-genomic EBV DNA. Int J Cancer 45: 763–772

    Article  PubMed  CAS  Google Scholar 

  • Kast WM, Offringa R, Peters PJ, Voordouw AC, Meloen RH, van der Eb AJ, Melief CJ (1989) Eradication of adenovirus El-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Kimelman D (1986) A novel general approach to eucaryotic mutagenesis functionally identifies conserved regions within the adenovirus 13S E1A polypeptide. Mol Cell Biol 6: 1487–1496

    PubMed  CAS  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 11612–11616

    Article  PubMed  CAS  Google Scholar 

  • König C, Roth J, Dobbelstein M (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J Virol 73: 2253–2262

    PubMed  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1986a) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1986b) E1A transcription induction: enhanced binding of a factor to upstream promoter sequences. Science 231: 719–722

    Article  PubMed  CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1987) Role of an adenovirus E2 promoter binding factor in ElAmediated coordinate gene control. Proc Natl Acad Sci USA 84: 21802184

    Google Scholar 

  • Krätzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J, Stauber RH (2000) The adenovirus type 5 E1B-55 k oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19: 850857

    Google Scholar 

  • Kuhlmann I, Achten S, Rudolph R, Dörfler W (1982) Tumor induction by human adenovirus type 12 in hamsters: loss of the viral genome from adenovirus type 12-induced tumor cells is compatible with tumor formation. EMBO J 1: 79–86

    Google Scholar 

  • Kuwano K, Kawasaki M, Kunitake R, Hagimoto N, Nomoto Y, Matsuba T, Nakanishi Y, Hara N (1997a) Detection of group C adenovirus DNA in small-cell lung cancer with the nested polymerase chain reaction. J Cancer Res Clin Oncol 123: 377–382

    PubMed  CAS  Google Scholar 

  • Kuwano K, Nomoto Y, Kunitake R, Hagimoto N, Matsuba T, Nakanishi Y, Hara N (1997b) Detection of adenovirus E1A DNA in pulmonary fibrosis using nested polymerase chain reaction. Eur Respir J 10: 1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Kzhyshkowska J, Schutt H, Liss M, Kremmer E, Stauber R, Wolf H, Dobner T (2001) Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its RGG-box and interacts with human arginine methyltransferase HRMT1L1. Biochem J 358: 305–314

    Article  PubMed  CAS  Google Scholar 

  • Lawler M, Humphries P, O’Farrelly C, Hoey H, Sheils O, Jeffers M, O’Briain DS, Kelleher D (1994) Adenovirus 12 E1A gene detection by polymerase chain reaction in both the normal and coeliac duodenum. Gut 35: 1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Weiss RS, Javier RT (1997) Binding of human virus oncoproteins to hDlg SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 6670–6675

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Glaunsinger BA, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4–ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74: 9680–9693

    Article  PubMed  CAS  Google Scholar 

  • Legrand A, Mayer EP, Dalvi SS, Nachtigal M (1997) Transformation of rabbit vascular smooth muscle cells by human cytomegalovirus morphological transforming region I. Am J Pathol 151: 1387–1395

    PubMed  CAS  Google Scholar 

  • Leppard KN, Everett RD (1999) The adenovirus type 5 Elb 55 K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80: 9971008

    Google Scholar 

  • Lethbridge KJ, Scott GE, Leppard KN (2003) Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 Elb 55 K protein are controlled by E4 Orf6 protein. J Gen Virol 84: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Levinson A, Levine AJ, Anderson S, Osborn M, Rosenwirth B, Weber K (1976) The relationship between group C adenovirus tumor antigen and the adenovirus single-strand DNA-binding protein. Cell 7: 575–584

    Article  PubMed  CAS  Google Scholar 

  • Lewis AM, Jr., Cook JL (1982) Spectrum of tumorigenic phenotypes among adenovirus 2-, adenovirus 12-, and simian virus 40-transformed Syrian hamster cells defined by host cellular immune-tumor cell interactions. Cancer Res 42: 939–944

    PubMed  Google Scholar 

  • Li Z, Yu A, Weiner AM (1998) Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function. J Virol 72: 4183–4191

    PubMed  CAS  Google Scholar 

  • Liao D, Yu A, Weiner AM (1999) Coexpression of the adenovirus 12 E1B 55 kDa oncoprotein and cellular tumor suppressor p53 is sufficient to induce metaphase fragility of the human RNU2 locus. Virology 254: 11–23

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Colosimo AL, Yang XJ, Liao D (2000) Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol Cell Biol 20: 5540–5553

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Nicolas JC, Topp WC, Girard M, Shenk T, Levine AJ (1981) Transformation by adenovirus early region 2A temperature-sensitive mutants and their revertants. Virology 115: 419–422

    Article  PubMed  CAS  Google Scholar 

  • Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Mackey JK, Rigden PM, Green M (1976) Do highly oncogenic group A human adenoviruses cause human cancer? Analysis of human tumors for adenovirus 12 transforming DNA sequences. Proc Natl Acad Sci USA 73: 4657–4661

    Article  PubMed  CAS  Google Scholar 

  • Mackey JK, Green M, Wold WSM, Ridgen P (1979) Analysis of human cancer DNA for DNA sequences of human adenovirus type 4. J Natl Cancer Inst 62: 23–26

    PubMed  CAS  Google Scholar 

  • Maheswaran S, Englert C, Lee SB, Ezzel RM, Settleman J, Haber DA (1998) E1B 55 K sequesters WT1 along with p53 within a cytoplasmic body in adenovirus-transformed kidney cells. Oncogene 16: 2041–2050

    Article  PubMed  CAS  Google Scholar 

  • Maitland NJ, Kinross JH, Busuttil A, Ludgate SM, Smart GE, Jones KW (1981) The detection of DNA tumour virus-specific RNA sequences in abnormal human cervical biopsies by in situ hybridization. J Gen Virol 55: 123–137

    Article  PubMed  CAS  Google Scholar 

  • Marengo C, Mbikay M, Weber J, Thirion JP (1981) Adenovirus-induced mutations at the hypoxanthine phosphoribosyltransferase locus of Chinese hamster cells. J Virol 38: 184–190

    PubMed  CAS  Google Scholar 

  • Martin ME, Berk AJ (1999) Corepressor required for adenovirus E1B 55,000-molecu- lar-weight protein repression of basal transcription. Mol Cell Biol 19: 3403–3414

    PubMed  CAS  Google Scholar 

  • Marton MJ, Bairn SB, Ornelles DA, Shenk T (1990) The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA. J Virol 64: 2345–2359

    PubMed  CAS  Google Scholar 

  • McLorie W, McGlade CJ, Takayesu D, Branton PE (1991) Individual adenovirus E1B proteins induce transformation independently but by additive pathways. J Gen Virol 72: 1467–1471

    Article  PubMed  CAS  Google Scholar 

  • Meijer I, Jochemsen AG, de Wit CM, Bos JL, Morello D, van der Eb AJ (1989) Adenovirus type 12 E1A down regulates expression of a transgene under control of a major histocompatibility complex class I promoter: evidence for transcriptional control. J Virol 63: 4039–4042

    PubMed  CAS  Google Scholar 

  • Miller BW, Williams J (1987) Cellular transformation by adenovirus type 5 is influenced by the viral DNA polymerase. J Virol 61: 3630–3634

    PubMed  CAS  Google Scholar 

  • Moore M, Horikoshi N, Shenk T (1996) Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA 93: 11295–11301

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B (1986) Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol 57: 765–775

    PubMed  CAS  Google Scholar 

  • Moran E (1994) Mammalian cell growth controls reflected through protein interac-tions with the adenovirus E1A gene products. Semin Virol 5: 327–340

    Article  CAS  Google Scholar 

  • Mukai N, Murao T (1975) Retinal tumor induction by ocular inoculation of human adenovirus in 3 day old rats. J Neuropathol Exp Neurol 34: 28–35

    Article  PubMed  CAS  Google Scholar 

  • Mukai N, Kalter SS, Cummins LB, Matthews VA, Nishida T, Nakajima T (1980) Retinal tumor induced in the baboon by human adenovirus 12. Science 210: 10231025

    Google Scholar 

  • Mushinski JF, Potter M, Bauer SR, Reddy EP (1983) DNA rearrangement and altered RNA expression of the c-myb oncogene in mouse plasmacytoid lymphosarcomas. Science 220: 795–798

    Article  PubMed  CAS  Google Scholar 

  • Nakao M (2001) Epigenetics: interaction of DNA methylation and chromatin. Gene 278: 25–31

    Article  PubMed  CAS  Google Scholar 

  • Neill SD, Hemstrom C, Virtanen A, Nevins JR (1990) An adenovirus E4 gene product transactivates E2 transcription and stimulates stable E2F binding through a direct association with E2F. Proc Natl Acad Sci USA 87: 2008–2012

    Article  PubMed  CAS  Google Scholar 

  • Neill SD, Nevins JR (1991) Genetic analysis of the adenovirus E4 6 7 trans activator: interaction with E2F and induction of a stable DNA-protein complex are critical for activity. J Virol 65: 5364–5373

    PubMed  CAS  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (1997) The adenovirus E4orf6 protein can promote E1A E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc Natl Acad Sci USA 94: 1206–1211

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Täuber B, Kremmer E, Spruss T, Wolf H, Dobner T (1999a) Transforming potential of the adenovirus type 5 E4orf3 protein. J Virol 73: 1591–1600

    PubMed  CAS  Google Scholar 

  • Nevels M, Spruss T, Wolf H, Dobner T (1999b) The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 18: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (2000) Two distinct activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein. J Virol 74: 5168–5181

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Täuber B, Spruss T, Wolf H, Dobner T (2001) “Hit-and-run” transformation by adenovirus oncogenes. J Virol 75:3089–3094

    Google Scholar 

  • Nicolas AL, Munz PL, Falck-Pedersen E, Young CSH (2000) Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cerevisiae HO endonuclease. Virology 266: 211–224

    Article  PubMed  CAS  Google Scholar 

  • O’Connor RJ, Hearing P (1991) The C-terminal 70 amino acids of the adenovirus E4–ORF6 7 protein are essential and sufficient for E2F complex formation. Nucl Acids Res 19: 6579–6586

    Article  PubMed  Google Scholar 

  • O’Connor RJ, Hearing P (2000) The E4–6 7 protein functionally compensates for the loss of E1A expression in adenovirus infection. J Virol 74: 5819–5824

    Article  PubMed  Google Scholar 

  • Obert S, O’Connor RJ, Schmid S, Hearing P (1994) The adenovirus E4–6 7 protein transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex. Mol Cell Biol 14: 1333–1346

    PubMed  CAS  Google Scholar 

  • Öhman K, Nordquist K, Linder S, Akusjärvi G (1995) Effect of adenovirus-2 early region 4 products on El transformation. Int J Oncol 6: 663–668

    PubMed  Google Scholar 

  • Ornelles DA, Shenk T (1991) Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 65: 424–429

    PubMed  CAS  Google Scholar 

  • Pääbo S, Severinsson L, Andersson M, Martens I, Nilsson T, Peterson PA (1989) Adenovirus proteins and MHC expression. Adv Cancer Res 52: 151–163

    Article  PubMed  Google Scholar 

  • Paraskeva C, Gallimore PH (1980) Tumorigenicity and in vitro characteristics of rat liver epithelial cells and their adenovirus-transformed derivatives. Int J Cancer 25: 631–639

    Article  PubMed  CAS  Google Scholar 

  • Paraskeva C, Brown KW, Dunn AR, Gallimore PH (1982) Adenovirus type 12-transformed rat embryo brain and rat liver epithelial cell lines: adenovirus type 12 genome content and viral protein expression. J Virol 44: 759–764

    PubMed  CAS  Google Scholar 

  • Paraskeva C, Roberts C, Biggs P, Gallimore PH (1983) Human adenovirus type 2 but not adenovirus type 12 is mutagenic at the hypoxanthine phosphoribosyltransferase locus of cloned rat liver epithelial cells. J Virol 46: 131–136

    PubMed  CAS  Google Scholar 

  • Pereira DS, Rosenthal KL, Graham FL (1995) Identification of adenovirus E1A regions which affect MHC class I expression and susceptibility to cytotoxic T lymphocytes. Virology 211: 268–277

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Kvist S, Ostberg L, Peterson PA, Philipson L (1979) The early adenovirus glycoprotein E3–19 K and its association with transplantation antigens. Cold Spring Harb Symp Quant Biol 44: 509–514

    Article  Google Scholar 

  • Pfeffer A, Schubbert R, Orend G, Hilger-Eversheim K, Doerfler W (1999) Integrated viral genomes can be lost from adenovirus type 12-induced hamster tumor cells in a clone-specific, multistep process with retention of the oncogenic phenotype. Virus Res 59: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Punga T, Akusjärvi G (2000) The adenovirus-2 E1B-55 K protein interacts with a mSin3A histone deacetylase 1 complex. FEBS Lett 476: 248–252

    Article  PubMed  CAS  Google Scholar 

  • Querido E, Marcellus RC, Lai A, Rachel C, Teodoro JG, Ketner G, Branton PE (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71: 3788–3798

    PubMed  CAS  Google Scholar 

  • Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE (2001) Degradation of p53 by adenovirus E4orf6 and E1B55 K proteins occurs via a novel mechanism involving a Cullincontaining complex. Genes Dev 15: 3104–3017

    Article  PubMed  CAS  Google Scholar 

  • Querido E, Morisson MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE (2001) Identification of three functions of the adenovirus E4orf6 protein that mediate p53 degradation by the E4orf6-E1B55 K complex. J Virol 75: 699–709

    Article  PubMed  CAS  Google Scholar 

  • Quinlan MP, Douglas JL (1992) Immortalization of primary epithelial cells requires first-and second-exon functions of adenovirus type 5 12S. J Virol 66: 2020–2030

    PubMed  CAS  Google Scholar 

  • Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E (1992) The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bc1–2 proteins. Proc Natl Acad Sci USA 89: 7742–7746

    Article  PubMed  CAS  Google Scholar 

  • Raska K, Jr., Gallimore PH (1982) An inverse relation of the oncogenic potential of adenovirus-transformed cells and their sensitivity to killing by syngeneic natural killer cells. Virology 123: 8–18

    Article  PubMed  Google Scholar 

  • Raychaudhuri P, Bagchi S, Nevins JR (1989) DNA-binding activity of the adenovirusinduced E4F transcription factor is regulated by phosphorylation. Genes Dev 3: 620–627

    Article  PubMed  CAS  Google Scholar 

  • Reichel R, Neill SD, Kovesdi I, Simon MC, Raychaudhuri P, Nevins JR (1989) The adenovirus E4 gene, in addition to the E1A gene, is important for trans-activation of E2 transcription and for E2F activation. J Virol 63: 3643–3650

    PubMed  CAS  Google Scholar 

  • Ricciardi RP (1995) Transformation and tumorigenesis mediated by the adenovirus E1A and E1B oncogenes. In: Barbanti-Brodano G (ed) DNA Tumor Viruses: Oncogenic Mechanisms. Plenum Press, New York, pp 195–210

    Google Scholar 

  • Ricciardi RP (1999) Adenovirus transformation and tumorigenicity. In: Seth P (ed) Adenoviruses: Basic biology to gene therapy. RG Landes Co, Austin, pp 217–227

    Google Scholar 

  • Rice SA, Klessig DF, Williams J (1987) Multiple effects of the 72-kDa, adenovirusspecified DNA binding protein on the efficiency of cellular transformation. Virology 156: 366–376

    Article  PubMed  CAS  Google Scholar 

  • Ross D, Ziff E (1992) Defective synthesis of early region 4 mRNAs during abortive adenovirus infections in monkey cells. J Virol 66: 3110–3117

    Google Scholar 

  • Roth J, König C, Wienzek S, Weigel S, Ristea S, Dobbelstein M (1998) Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-Kilodalton and E4 34-Kilodalton oncoproteins. J Virol 72: 8510–8516

    PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606

    Article  PubMed  CAS  Google Scholar 

  • Sabbatini P, Chiou SK, Rao L, White E (1995) Modulation of p53-mediated transcriptional repression and apoptosis by the adenovirus E1B 19 K protein. Mol Cell Biol 15: 1060–1070

    PubMed  CAS  Google Scholar 

  • Sabbatini P, Lin J, Levine AJ, White E (1995) Essential role for p53-mediated transcription in ElAinduced apoptosis. Genes Dev 9: 2184–2192

    Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Reich N, Levine AJ (1982) Identification and characterization of an immunologically conserved adenovirus early region 11,000 Mr protein and its association with the nuclear matrix. J Mol Biol 162: 565–583

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Ho YS, Williams J, Levine AJ (1982) Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Fohring B, Shenk TE, Raska K, Jr. (1985) Tumorigenicity of adenovirustransformed cells: region E1A of adenovirus 12 confers resistance to natural killer cells. Virology 147: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Raska K, Jr., Shenk T (1988) Adenovirus type 5 and adenovirus type 12 recombinant viruses containing heterologous El genes are viable, transform rat cells, but are not tumorigenic in rats. Virology 166: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 1046710471

    Google Scholar 

  • Schaley J, O’Connor RJ, Taylor LJ, Bar-Sagi D, Hearing P (2000) Induction of the cel- lular E2F-1 promoter by the adenovirus E4–6 7 protein. J Virol 74: 2084–2093

    Article  PubMed  CAS  Google Scholar 

  • Schiedner G, Hertel S, Kochanek S (2000) Efficient transformation of primary human amniocytes by El functions of ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 11: 2105–2116

    Article  PubMed  CAS  Google Scholar 

  • Schlehofer J, zur Hausen H (1982) Induction of mutations within the host cell genome by partially inactivated Herpes Simplex Virus type 1. Virology 122: 471–475

    Article  PubMed  CAS  Google Scholar 

  • Schramayr S, Caporossi D, Mak I, Jelinek T, Bacchetti S (1990) Chromosomal damage induced by human adenovirus type 12 requires expression of the E1B 55-kilodalton viral protein. J Virol 64: 2090–2095

    PubMed  CAS  Google Scholar 

  • Schrier PI, Bernards R, Vaessen RT, Houweling A, van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–775

    Article  PubMed  CAS  Google Scholar 

  • Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J 16: 869–871

    PubMed  CAS  Google Scholar 

  • Shen Y, Shenk T (1994) Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bd-2 protein. Proc Natl Acad Sci USA 91: 8940–8944

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Zhu H, Shenk T (1997) Human cytomegalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA 94: 3341–3345

    Article  PubMed  CAS  Google Scholar 

  • Shenk T (1996) Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Virology, Third ed, vol. 2. Lippincott-Raven, New York, pp 2111–2148

    Google Scholar 

  • Shepherd SE, Howe JA, Mymryk JS, Bayley ST (1993) Induction of the cell cycle in baby rat kidney cells by adenovirus type 5 E1A in the absence of E1B and a possible influence of p53. J Virol 67: 2944–2949

    PubMed  CAS  Google Scholar 

  • Shiroki K, Hashimoto S, Saito I, Fukui Y, Kato H, Shimojo H (1984) Expression of the E4 gene is required for establishment of soft-agar colony-forming rat cell lines transformed by the adenovirus 12 El gene. J Virol 50: 854–863

    PubMed  CAS  Google Scholar 

  • Singh P, Wong SH, Hong W (1994) Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation. EMBO J 13: 3329–3338

    Google Scholar 

  • Skinner GR (1976) Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a “hit and run” mechanism. Br J Exp Pathol 57: 361376

    Google Scholar 

  • Smirnov DA, Hou S, Liu X, Claudio E, Siebenlist UK, Ricciardi RP (2001) COUP-TFII is upregulated in adenovirus typel2 tumorigenic cells and is a repressor of MHC class I transcription. Virology 284: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Smith GCM, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13: 916–934

    Article  PubMed  CAS  Google Scholar 

  • Sprengel J, Schmitz B, Heuss Neitzel D, Doerfler W (1995) The complete nucleotide sequence of the DNA of human adenovirus type 12. Curr Top Microbiol Immunol 199: 189–274

    Article  PubMed  CAS  Google Scholar 

  • Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Sternsdorf T, Grotzinger T, Jensen K, Will H (1997) Nuclear dots: actors on many stages. Immunobiology 198: 307–331

    Article  PubMed  CAS  Google Scholar 

  • Stevens JL, Cantin GT, Wang G, Shevchenko A, Berk AJ (2002) Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296: 755–758

    Article  PubMed  CAS  Google Scholar 

  • Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mrel 1 Rad50 NBS1 DNA repair complex. Nature 418: 348–352

    Article  PubMed  CAS  Google Scholar 

  • Subramanian T, La Regina M, Chinnadurai G (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of Ela protein. Oncogene 4: 415–420

    PubMed  CAS  Google Scholar 

  • Subramanian T, Malstrom SE, Chinnadurai G (1991) Requirement of the C-terminal region of adenovirus Ela for cell transformation in cooperation with Elb. Oncogene 6: 1171–1173

    PubMed  CAS  Google Scholar 

  • Takayesu D, Teodoro JG, Whalen SG, Branton PE (1994) Characterization of the 55 Kadenovirus type 5 E1B product and related proteins. J Gen Virol 75: 789–798

    Article  PubMed  CAS  Google Scholar 

  • Tuber B, Dobner T (2001) Molecular regulation and biological function of adenovi-rus early genes: the E4 ORFs. Gene 278: 1–23

    Google Scholar 

  • Täuber B, Dobner T (2001) Adenovirus early E4 genes in viral oncogenesis. Oncogene 20: 7847–7854

    Article  PubMed  Google Scholar 

  • Telling GC, Williams J (1993) The EiB 19-kilodalton protein is not essential for transformation of rodent cells in vitro by adenovirus type 5. J Virol 67: 1600–1611

    PubMed  CAS  Google Scholar 

  • Telling GC, Williams J (1994) Constructing chimeric type 12 type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12. J Virol 68: 877–887

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Halliday T, Whalen SG, Takayesu D, Graham FL, Branton PE (1994) Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J Virol 68: 776–786

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Shore GC, Branton PE (1995) Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 11: 467–474

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Branton PE (1997) Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71: 3620–3627

    PubMed  CAS  Google Scholar 

  • Terris B, Baldin V, Dubois S, Degott C, Flejou J-F, Hénin D, Dejean A (1995) PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res 55: 1590–1597

    PubMed  CAS  Google Scholar 

  • Thomas A, White E (1998) Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. Genes Dev 12: 1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Thomas DL, Shin S, Jiang BH, Vogel H, Ross MA, Kaplitt M, Shenk TE, Javier RT (1999) Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. J Virol 73: 3071–3079

    PubMed  CAS  Google Scholar 

  • Thomas DL, Schaack J, Vogel H, Javier RT (2001) Several E4 region functions influ-ence mammary tumorigenesis by human adenovirus type 9. J Virol 75: 557–568

    Article  PubMed  CAS  Google Scholar 

  • Tigges MA, Raskas HJ (1984) Splice junctions in adenovirus 2 early region 4 mRNAs:multiple splice sites produce 18 to 24 RNAs. J Virol 50: 106–117

    Google Scholar 

  • Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses: a new approach to an old problem reveals cancer induction in hamster by human adenoviruses. Science 137: 835–849

    Article  PubMed  CAS  Google Scholar 

  • Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk JS, Gallimore PH (2000) Regulation of the 26S proteasome by adenovirus E1A. EMBO J 19: 47594773

    Google Scholar 

  • van den Heuvel SJL, van Laar T, Kast WM, Melief CJM, Zantema A, van der Eb AJ (1990)Association between the cellular p53 and the adenovirus 5 E1B-55kd proteins reduces the oncogenicity of Ad-transformed cells. EMBO J 9: 2621–2629

    Google Scholar 

  • van den Heuvel SJL, The SI, Klein B, Jochemsen AG, Zantema A, van der Eb AJ (1992) p53 shares an antigenic determinant with proteins of 92 and 150 kilodaltons that maybe involved in senescence of human cells. J Virol 66: 591–595

    Google Scholar 

  • van den Heuvel SJL, van Laar T, The I, van der Eb AJ (1993) Large E1B proteins of adenovirus types 5 and 12 have different effects on p53 and distinct roles in cell transformation. J Virol 67: 5226–5234

    Google Scholar 

  • van der Eb AJ, Zantema A (1992) Adenovirus oncogenesis. In: Dörfler W, Böhm P (eds) Malignant transformation by DNA viruses. VCH, Weinheim, pp 115–140

    Google Scholar 

  • Virtanen A, Gilardi P, Naslund A, LeMoullec JM, Pettersson U, Perricaudet M (1984) mRNAs from human adenovirus 2 early region 4. J Virol 51: 822–831

    Google Scholar 

  • Virtanen A, Pettersson U (1985) Organization of early region IB of human adenovirus type 2: identification of four differentially spliced mRNAs. J Virol 54: 383–391

    Google Scholar 

  • Wang G, Berk AJ (2002) In vivo association of adenovirus large E1A protein with the human mediator complex in adenovirus-infected and -transformed cells. J Virol 76: 9186–9193

    Article  PubMed  CAS  Google Scholar 

  • Waubke R, zur Hausen H, Henle W (1968) Chromosomal and autoradiographic studies of cells infected with herpes simplex virus. J Virol 2: 1047–1054

    PubMed  CAS  Google Scholar 

  • Weiden MD, Ginsberg HS (1994) Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91: 153–157

    Article  PubMed  CAS  Google Scholar 

  • Weiss RS, McArthur MJ, Javier RT (1996) Human adenovirus type 9 E4 open reading frame 1 encodes a cytoplasmic transforming protein capable of increasing the oncogenicity of CREF cells. J Virol 70: 862–872

    PubMed  CAS  Google Scholar 

  • Weiss RS, Lee SS, Prasad BV, Javier RT (1997a) Human adenovirus early region 4 open reading frame 1 genes encode growth-transforming proteins that may be distantly related to dUTP pyrophosphatase enzymes. J Virol 71: 1857–1870

    PubMed  CAS  Google Scholar 

  • Weiss RS, Gold MO, Vogel H, Javier RT (1997b) Mutant adenovirus type 9 E4 ORF1 genes define three protein regions required for transformation of CREF cells. J Virol 71: 4385–4394

    PubMed  CAS  Google Scholar 

  • Weiss RS, Javier RT (1997) A carboxy-terminal region required by the adenovirus type 9 E4 ORF1 oncoprotein for transformation mediates direct binding to cellular polypeptides. J Virol 71: 7873–7880

    PubMed  CAS  Google Scholar 

  • White E, Cipriani R (1990) Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 10: 120–130

    PubMed  CAS  Google Scholar 

  • White E (2001) Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 20: 7836–7846

    Article  PubMed  CAS  Google Scholar 

  • Whittaker JL, Byrd PJ, Grand RJ, Gallimore PH (1984) Isolation and characterization of four adenovirus type 12-transformed human embryo kidney cell lines. Mol Cell Biol 4: 110–116

    PubMed  CAS  Google Scholar 

  • Wienzek S, Roth J, Dobbelstein M (2000) E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol 74: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Williams M, Liu C, Telling G (1995) Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 199: 149–175

    Article  PubMed  CAS  Google Scholar 

  • Williams JF, Young CSH, Austin PE (1974) Genetic analysis of human adenovirus type 5 in permissive and nonpermissive cells. Cold Spring Harbor Symp Quant B 39: 427–437

    Article  Google Scholar 

  • Williams JF, Galos RS, Binger MH, Flint SJ (1979) Location of additional early regios within the left quarter of the adenovirus genome. Cold Spring Harbor Symp Quant Biol 44: 353–366

    Article  Google Scholar 

  • Wold WSM, Tollefson AE (1998) Adenovirus E3 proteins: 14.7 K, RID, and gp19 K inhibit immuneinduced cell death; adenovirus death protein promotes cell death. Semin Virol 8: 515–523

    Article  CAS  Google Scholar 

  • Xu G, Livingston DM, Krek W (1995) Multiple members of the E2F transcription fac- tor family are the products of oncogenes. Proc Natl Acad Sci USA 92: 1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Yamano S, Tokino T, Yasuda M, Kaneuchi M, Takahashi M, Niitsu Y, Fujinaga K, Yamashita T (1999) Induction of transformation and p53-dependent apoptosis by adenovirus type 5 E4orf6 7 cDNA. J Virol 73: 10095–10103

    PubMed  CAS  Google Scholar 

  • Yew PR, Kao CC, Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55 K polypeptide by suppressor-linker insertional mutagenesis. Virology 179: 795–805

    Article  PubMed  CAS  Google Scholar 

  • Yew PR, Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357: 82–85

    Article  PubMed  CAS  Google Scholar 

  • Yew PR, Liu X, Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8: 190–202

    Article  PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR, Eager KB, Ricciardi RP (1988) CTL recognition of adenovirus-transformed cells infected with influenza virus: lysis by anti-influenza CTL parallels adenovirus-12-induced suppression of class I MHC molecules. Virology 162: 236–238

    Article  PubMed  CAS  Google Scholar 

  • Yu A, Fan HY, Liao D, Bailey AD, Weiner AM (2000) Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human Ul, U2, and 5S genes. Mol Cell 5: 801–810

    Article  PubMed  CAS  Google Scholar 

  • Zalmanzon ES (1987) Transforming and oncogenic properties of the adenovirus genome. Eksp Onkol 9: 3–8

    PubMed  CAS  Google Scholar 

  • Zantema A, Fransen JA, Davis OA, Ramaekers FC, Vooijs GP, DeLeys B, van der Eb AJ (1985a) Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142: 44–58

    Article  PubMed  CAS  Google Scholar 

  • Zantema A, Schrier PI, Davis OA, van Laar T, Vaessen RT, van der Eb AJ (1985b) Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol Cell Biol 5: 3084–3091

    PubMed  CAS  Google Scholar 

  • Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T, Ruley HE (1986) Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol 6: 887–899

    PubMed  CAS  Google Scholar 

  • Zhang S, Mak S, Branton PE (1992) Overexpression of the E1B 55-kilodalton (482R) protein of human adenovirus type 12 appears to permit efficient transformation of primary baby rat kidney cells in the absence of the E1B 19-kilodalton protein. J Virol 66: 2302–2309

    PubMed  CAS  Google Scholar 

  • Zheng P, Guo Y, Niu Q, Levy DE, Dyck JA, Lu S, Sheiman LA, Liu Y (1998) Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 396: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18: 7941–7947

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H (1967) Induction of specific chromosomal aberrations by adenovirus type 12 in human embryonic kidney cells. J Virol 1: 1174–1185

    PubMed  Google Scholar 

  • zur Hausen H (1996) Papillomavirus infections—a major cause of human cancers. Biochim Biophys Acta 1288: F55 - F78

    PubMed  Google Scholar 

  • zur Hausen H (1996) Viruses in human tumors—reminiscences and perspectives. Adv Cancer Res 68: 1–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Endter, C., Dobner, T. (2004). Cell Transformation by Human Adenoviruses. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05599-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05599-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05715-1

  • Online ISBN: 978-3-662-05599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics