Modulation of Oncogenic Transformation by the Human Adenovirus E1A C-Terminal Region

  • G. Chinnadurai
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 273)


The E1A oncogene of human adenoviruses cooperates with other viral and cellular oncogenes in oncogenic transformation of primary and established cells. The N-terminal half of E1A proteins that form specific protein complexes with pRb family and p300/CBP transcriptional regulators is essential for the transforming activities of E1A. Although the C-terminal half of E1A is dispensable for the transforming activities, it negatively modulates the oncogenic activities of the N-terminal region. Mutants of EIA lacking the C-terminal half or a short C-terminal region exhibit a hyper-transforming phenotype in cooperative transformation assays with the activated ras oncogene. The E1A C-terminal region implicated in the oncogenesis-restraining activity interacts with a 48-kDa cellular phosphoprotein, CtBP, that functions as a transcriptional corepressor. It appears that the C-terminal region of E1A may suppress E1A-mediated oncogenic transformation by a dual mechanism of relieving repression cellular genes by CtBP, and also by antagonizing the oncogenic activities of the N-terminal half of E1A.


Adenomatous Polyposis Coli Oncogenic Transformation Human Adenovirus Breast Cancer Linkage Consortium Scriptional Repression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balasubramiam P, Zhao L-J, Chinnadurai G (2003) Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 537: 157–160Google Scholar
  2. Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643PubMedCrossRefGoogle Scholar
  3. Berg A, Westphal AH, Bosma HJ, de Kok A (1998) Kinetics and specificity of reductive acylation of wild-type and mutated lipoyl domains of 2-oxo-acid dehydrogenase complexes from Azotobacter vinelandii. Eur J Biochem 252: 45–50PubMedCrossRefGoogle Scholar
  4. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79: 243–252PubMedCrossRefGoogle Scholar
  5. Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2 5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24 ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469478Google Scholar
  6. Bondesson M, Svensson C, Linder S, Akusjarvi G. (1992) The carboxy-terminal exon of the adenovirus E1A protein is required for E4F-dependent transcription activation. EMBO J 11: 3347–3354Google Scholar
  7. Brannon M, Brown JD, Bates R, Kimelman D, Moon RT (1999) XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development 126: 31593170Google Scholar
  8. Brent R, Finley RL Jr (1997) Understanding gene and allele function with two-hybrid methods. Annu Rev Genet 31: 663–704PubMedCrossRefGoogle Scholar
  9. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB (2001) Acetylation control of the retinoblastoma tumor-suppressor protein. Nature Cell Biol 3: 667–674PubMedCrossRefGoogle Scholar
  10. Chakravarti D, Ogryzko V, Kao, HY, Nash A, Chen H, Nakatani Y, Evans RM (1999) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96: 393–403PubMedCrossRefGoogle Scholar
  11. Criqui-Filipe P, Ducret C, Maira SM, Wasylyk B (1999) Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 18: 3392–3403Google Scholar
  12. Deconinck AE, Mead PE, Tevosian SG, Crispino JD, Katz SG, Zon LI, Orkin SH (2000) FOG acts as a repressor of red blood cell development in xenopus. Development 127: 2031–2040PubMedGoogle Scholar
  13. Douglas JL, Gopalakrishnan S, Quinlan MP (1991) Modulation of transformation of primary epithelial cells by the second exon of the E1Al2S gene. Oncogene 6: 2093–2103Google Scholar
  14. Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R (2000) The human T-cell transcription factor-4 gene: structure, extensive characterization of alterna-tive splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 60: 3872–3879PubMedGoogle Scholar
  15. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12: 22452262Google Scholar
  16. Easton DF, Bishop DT, Ford D, Crockford GP (1993) Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Amer J Hum Genet 52: 678–701Google Scholar
  17. Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCAl-mutation carriers. Breast Cancer Linkage Consortium. Amer J Hum Genet 56: 265–271Google Scholar
  18. Frisch SM (1994) Ela induces the expression of epithelial characteristics. J Cell Biol 127: 1085–1096PubMedCrossRefGoogle Scholar
  19. Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V, Lane WS, Nakatani Y, Livingston DM (2001) The p400 complex is an essential E1A transformation target. Cell 106: 297–307PubMedCrossRefGoogle Scholar
  20. Furusawa T, Moribe H, Kondoh H, Higashi Y (1999) Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEFl. Mol Cell Biol 19: 8581–8590Google Scholar
  21. Fusco C, Reymond A, Zervos AS (1998) Molecular cloning and characterization of a novel retinoblastoma-binding protein. Genomics 51: 351–358.PubMedCrossRefGoogle Scholar
  22. Gayther SA, Warren W, Mazoyer S, Russell PA, Harrington, PA, Chiano M, Seal S, Hamoudi R, van Rensburg EJ, Dunning AM, et al. (1995) Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genetics 11: 428–433.PubMedCrossRefGoogle Scholar
  23. Grooteclaes ML, Frisch SM (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828Google Scholar
  24. Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y, Kedes L (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96: 405–413PubMedCrossRefGoogle Scholar
  25. Hecht A, and Kemler R (2000) Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep 1, 24–28PubMedCrossRefGoogle Scholar
  26. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H (2001) The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97: 2815–2822Google Scholar
  27. Katsanis N, Fisher EM, (1998) A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics 47: 294–299PubMedCrossRefGoogle Scholar
  28. Kieff E (1996) Epstein-Barr virus and its replication. In BN Fields, DM Knipe and PM How (ed) Fields Virology. Lippincott-Raven, Philadelphia, PAGoogle Scholar
  29. Keller SA, Mao Y, Struffi P, Margulies C, Yurk CE, Anderson AR, Amey RL, Moore S, Ebels JM, Foley K, Corado M, Arnosti DN (2000) dCtBP-dependent and -independent repression activities of the Drosophila Knirps protein. Mol Cell Biol 20: 7247–7258Google Scholar
  30. Koipally J, Georgopoulos K (2000) Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 275: 19594–19602Google Scholar
  31. Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG Aggarwal AK (2002) Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 10: 857–869Google Scholar
  32. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H (1998) The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394: 92–96PubMedCrossRefGoogle Scholar
  33. Li S, Chen P-L, Subramanian T, Chinnadurai G, Tomlinson G, Osborne CK, Sharp ZD, Lee W-H (1999) Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274: 11334–11338Google Scholar
  34. Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406: 210–215PubMedCrossRefGoogle Scholar
  35. Linder S, Popowicz P, Svensson C, Marshall H, Bondesson M, Akusjarvi G (1992) Involvement of the carboxyl-terminal exon of the adenovirus-2 E1A gene in repression of metalloprotease gene expression. Oncogene 7: 439–443PubMedGoogle Scholar
  36. Mannervik M, Levine M (1999) The Rpd3 histone deacetylase is required for seg-mentation of the Drosophila embryo. Proc Natl Acad Sci USA 96: 6797–6801PubMedCrossRefGoogle Scholar
  37. Mannervik M, Nibu Y, Zhang H, Levine M (1999) Transcriptional coregulators in de-velopment. Science 284: 606–609PubMedCrossRefGoogle Scholar
  38. Melhuish TA, Wotton D. (2000) The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J Biol Chem 275: 39762–39766PubMedCrossRefGoogle Scholar
  39. Meloni AR, Smith EJ, Nevins JR (1999) A mechanism for Rb p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 96: 9574–9579Google Scholar
  40. Moran E (1993) DNA tumor virus transforming proteins and the cell cycle. Curr Op Gen Dev 3: 63–70CrossRefGoogle Scholar
  41. Morel V, Lecourtois M, Massiani O, Maier D, Preiss A, Schweisguth F (2001) Transcriptional repression by suppressor of hairless involves the binding of a hairlessdCtBP complex in Drosophila. Curr Biol 11: 789–792Google Scholar
  42. Molloy DP, Milner AE, Yakub IK, Chinnadurai G, Gallimore PH, Grand RJ (1998) Structural determinants present in the C-terminal binding protein binding site of adenovirus early region lA proteins. J Biol Chem 273: 20867–20876PubMedCrossRefGoogle Scholar
  43. Molloy DP, Barral PM, Bremner KH, Gallimore PH, Grand RJ (2001) Structural determinants outside the PXDLS sequence affect the interaction of adenovirus ETA, C-terminal interacting protein and Drosophila repressors with C-terminal binding protein. Biochim Biophys Acta 1546: 55–70Google Scholar
  44. Moazed D (2001) Enzymatic activities of Sir2 and chromatin silencing. Curr Opin Cell Biol 13: 232–238PubMedCrossRefGoogle Scholar
  45. Mymryk JS, Bayley ST (1993) Induction of gene expression by exon 2 of the major E1A proteins of adenovirus type 5. J Virol 67: 6922–6928PubMedGoogle Scholar
  46. Nevins JR, Leone G, DeGregori J, Jakoi L (1997) Role of the Rb E2F pathway in cell growth control. J Cell Physiol 173: 233–236PubMedCrossRefGoogle Scholar
  47. Nibu Y, Zhang H, Levine M (1998) Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280: 101–104Google Scholar
  48. Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M (1998b) dCtBP mediates transcriptional repression by Knirps, Krüppel and Snail in the Drosophila embryo. EMBO J 17: 7009–7020Google Scholar
  49. Parker GA, Crook T, Bain M, Sara EA, Farrell PJ, Allday MJ (1996) Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13: 2541–2549PubMedGoogle Scholar
  50. Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, Crossley M, Bartholomew C (2001) Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 276: 25834–25840Google Scholar
  51. Phippen TM, Sweigart AL, Moniwa M, Krumm A, Davie JR, Parkhurst SM (2000) Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression. J Biol Chem 275: 37628–37637PubMedCrossRefGoogle Scholar
  52. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14: 1837–1851PubMedGoogle Scholar
  53. Poortinga G, Watanabe M, Parkhurst SM (1998) Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 17: 2067–2078Google Scholar
  54. Postigo AA, Dean DC (1999) ZEB zfh-1 represses transcription through interaction with the co-repressor CtBP. Proc Natl Acad Sci USA 96: 6683–668Google Scholar
  55. Quinlan MP, Douglas JL (1992) Immortalization of primary epithelial cells requires first-and second-exon functions of adenovirus type 5 12S. J Virol 66: 2020–2030PubMedGoogle Scholar
  56. Reid JL, Bannister AJ, Zegerman P, Martinez-Balbas MA, Kouzarides T (1998) E1A directly binds and regulates the P CAF acetyltransferase. EMBO J 17: 4469–4477Google Scholar
  57. Sang NL, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG, De Luca A (2001) RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J Biol Chem 276: 27026–27033PubMedCrossRefGoogle Scholar
  58. Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 1066710671Google Scholar
  59. Schaeper U, Subramanian T, Lim L, Pwd TM, Chinnadurai G (1998) Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem 273: 8549–8552Google Scholar
  60. Schuierer M, Hilger-Eversheim K, Dobner T, Bosserhoff AK, Moser M, Turner J, Crossley, M., and Buettner, R (2001) Induction of AP-2alpha expression by adenoviral infection involves inactivation of the AP-2rep transcriptional corepressor CtBP1. J Biol Chem 276: 27944–27949.Google Scholar
  61. Sewalt RG, Gunster MJ, van der Vlag J, Satijn DP, Otte AP (1999) C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 19: 777–787PubMedGoogle Scholar
  62. Sollerbrant K, Chinnadurai G, Svensson C (1996) The CtBP binding domain in the adenovirus El A protein controls CR1-dependent transactivation. Nucleic Acids Res 24: 2578–2584Google Scholar
  63. Sundqvist A, Sollerbrant K, Svensson C (1998) The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex. FEBS Lett 429: 183–188PubMedCrossRefGoogle Scholar
  64. Sundqvist A, Bajak E, Kurup SD, Sollerbrant K, Svensson C (2001) Functional knockout of the corepressor CtBP by the second exon of adenovirus Ela relieves repression of transcription. Exp Cell Res 268: 284–293Google Scholar
  65. Svensson EC, Huggins GS, Dardik FB, Polk CE, Leiden JM (2000) A Functionally Conserved N-terminal Domain of the Friend of GATA 2 (FOG-2) Protein Represses GATA4-Dependent Transcription. J Biol Chem 275: 13721–13726CrossRefGoogle Scholar
  66. Subramanian T, Malstrom SE, Chinnadurai G (1991) Requirement of the C-terminal region of adenovirus Ela for cell transformation in cooperation with Elb. Oncogene 6: 1171–1173PubMedGoogle Scholar
  67. Subramanian T, LaRegina M, Chinnadurai G (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of Ela protein. Oncogene 4: 415–520PubMedGoogle Scholar
  68. Touitou R, Hickabottom M, Parker G, Crook T, Allday MJ (2001) Physical and Functional Interactions between the Corepressor CtBP and the Epstein-Barr Virus Nuclear Antigen EBNA3C. J Virol 75: 7749–7755PubMedCrossRefGoogle Scholar
  69. Turner J, Crossley M (1998) Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 17: 5129–5140Google Scholar
  70. Urbanelli D, Sawada Y, Raskova J, Jones NC, Shenk T, Raska K (1989) C-terminal domain of the adenovirus E1A oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation immunity. Virology 173: 607–614PubMedCrossRefGoogle Scholar
  71. Vo N, Fjeld C, Goodman RH (2001) Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP. Mol Cell Biol 21: 6181–6188Google Scholar
  72. Wen Y, Nguyen D, Li Y, Lai ZC (2000) The N-terminal BTB POZ domain and C-terminal sequences are essential for Tramtrack69 to specify cell fate in the developing Drosophila eye. Genetics 156: 195–203PubMedGoogle Scholar
  73. Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KN, Mironov A, Luini A, Corda D (1999) CtBP BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402: 429–433Google Scholar
  74. Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, Salada G, Berry S, Lawrence Q, Dayananth P, Ha P, Tavtigian SV, Teng DH, Bartel PL (1998) Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17: 2279–2285PubMedCrossRefGoogle Scholar
  75. Yang X.-J, Ogrysko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300 CBP-associated factor that competes with adenoviral oncoprotein E1A. Nature 382: 319324Google Scholar
  76. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R (1998) The C-terminal (BRCT). domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273: 25388–25392Google Scholar
  77. Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T, Ruley HE (1986) Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol 6: 887–899PubMedGoogle Scholar
  78. Zhang CL, McKinsey TA, Lu JR Olson EN (2001a). Association of COOH-terminalbinding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 276: 35–39Google Scholar
  79. Zhang H, Levine M (1999) Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci USA 96: 535540Google Scholar
  80. Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897PubMedGoogle Scholar
  81. Zhang Q, Yao H, Vo N, Goodman RH (2000) Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc Natl Acad Sci USA 97: 14323–14328Google Scholar
  82. Zhang Z, Smith MM, Mymryk JS (2001b) Interaction of the E1A oncoprotein with Yaklp, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 12: 699–710PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. Chinnadurai
    • 1
  1. 1.Institute for Molecular VirologySaint Louis University School of MedicineSt. LouisUSA

Personalised recommendations