Skip to main content

The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin Family Involved in Cell Adhesion

  • Chapter
Adenoviruses: Model and Vectors in Virus-Host Interactions

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 273))

Abstract

The physiological and cell biological aspects of the CoxsackieAdenovirus Receptor (CAR) is discussed in this review. The receptor obviously recognizes the group C adenoviruses in vivo, but also fibers from other groups except group B in vitro. The latter viruses seem to utilize a different receptor. The receptor accumulates at, or close to, the tight junction in polarized epithelial cells and probably functions as a cell-cell adhesion molecule. The cytoplasmic tail of the receptor is not required for virus attachment and uptake. Although there is a correlation between CAR and uptake of adenoviruses in several human tumor cells, evidence of an absolute requirement for integrins has not been forthcoming. The implication of these findings for adenovirus gene therapy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alemany R. Balague C, Curiel DT (2000) Replicative adenoviruses for cancer therapy. Nat Biotechnol 18: 723–7

    Google Scholar 

  2. Andersson B, Tomko RP, Edwards K, Mirza M, Darban H, Oncu D, Sonhammer E, Sollerbrant K, Philipson L (2000) Putative regulatory domains in the human and mouse CVADR genes. Gene Funct Dis 2: 11–15

    Google Scholar 

  3. Amberg N, Edlund K, Kidd H, Wade11, G (2000a) Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74: 42–8

    Google Scholar 

  4. Arnberg N, Kidd AH, Edlund K, Olfat F, Wadell G (2000b) Initial interactions of subgenus D adenoviruses with A549 cellular receptors: sialic acid versus alpha(v) integrins. J Virol 74: 7691–3

    Article  PubMed  CAS  Google Scholar 

  5. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H (2000) Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 92: 1002–8

    Article  PubMed  CAS  Google Scholar 

  6. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–3

    Article  PubMed  CAS  Google Scholar 

  7. Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW (1998) The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 72: 415–9

    PubMed  CAS  Google Scholar 

  8. Bergelson JM, Modlin JF, Wieland-Alter W, Cunningham JA, Crowell RL, Finberg RW (1997) Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J Infect Dis 175: 697–700

    Article  PubMed  CAS  Google Scholar 

  9. Bergelson JM, Mohanty JG, Crowell RL, St John N. F, Lublin DM, Finberg RW (1995) Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol 69: 1903–6

    PubMed  CAS  Google Scholar 

  10. Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM(1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286: 1579–83

    Google Scholar 

  11. Bowles KR, Gibson J, Wu J, Shaffer LG, Towbin JA, Bowles NE (1999) Genomic organization and chromosomal localization of the human Coxsackievirus B-adenovirus receptor gene. Hum Genet 105: 354–9

    Article  PubMed  CAS  Google Scholar 

  12. Carson SD, Hobbs JT, Tracy SM, Chapman NM (1999) Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J Virol 73: 7077–9

    PubMed  CAS  Google Scholar 

  13. Chen Z, Ahonen M, Hamalainen H, Bergelson JM, Kahari VM, Lahesma, R (2002) High-efficiency gene transfer to primary T lymphocytes by recombinant adenovirus vectors. J Immunol Methods 260: 79–89

    Article  PubMed  CAS  Google Scholar 

  14. Chretien I, Marcuz A, Courtet M, Katevuo K, Vainio O, Heath JK, White SJ, Du Pasquier L (1998) CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 28: 4094–104

    Article  PubMed  CAS  Google Scholar 

  15. Cohen CJ, Gaetz J, Ohman T, Bergelson JM (2001) Multiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting. J Biol Chem 276: 25392–8

    Article  PubMed  CAS  Google Scholar 

  16. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98: 15191–6

    Article  PubMed  CAS  Google Scholar 

  17. Connor RJ, Engler H, Machemer T, Philopena JM, Horn MT, Sutjipto S, Maneval DC, Youngster S, Chan TM, Bausch J, McAuliffe JP, Hindsgaul O,Nagabhushan TL (2001) Identification of polyamides that enhance adenovirus-mediated gene expression in the urothelium. Gene Ther 8: 41–8

    CAS  Google Scholar 

  18. Cripe TP, Dunphy EJ, Holub AD, Saini A, Vasi NH, Mahller YY, Collins MH, Snyder JD, Krasnykh V, Curiel DT, Wickham TJ, DeGregori J, Bergelson JM, Currier MA

    Google Scholar 

  19. The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin 107

    Google Scholar 

  20. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res 61:2953–60

    Google Scholar 

  21. Crowell RL, Lonberg.-Holm. K (1986) Virus attachment and entry into cells. 216 pages, American Society for Microbiology, Washington DC

    Google Scholar 

  22. Curiel DT (2000) The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res 6: 3395–9

    PubMed  CAS  Google Scholar 

  23. Dalldorf G, Sickles GM (1948) An unidentified, filtrable agent isolated from the faeces of children with paralysis. Science 108: 61–62

    Article  PubMed  CAS  Google Scholar 

  24. Davison E, Kirby I, Elliott T, Santis G (1999) The human HLA-A*0201 allele, expressed in hamster cells, is not a high-affinity receptor for adenovirus type 5 fiber. J Virol 73: 4513–7

    PubMed  CAS  Google Scholar 

  25. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT (2000) Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 74: 6875–84

    Article  PubMed  CAS  Google Scholar 

  26. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, Curiel DT (1998) An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 72: 9706–13

    PubMed  CAS  Google Scholar 

  27. Douglas J. T, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V, Curiel DT (1999) A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 17: 470–5

    Article  PubMed  CAS  Google Scholar 

  28. Du Pasquier L, Courtet M, Chretien I (1999) Duplication and MHC linkage of the CTX family of genes in Xenopus and in mammals. Eur J Immunol 29: 1729–39

    Article  PubMed  Google Scholar 

  29. Engler H, Anderson SC, Machemer TR, Philopena JM, Connor RJ, Wen SF, Maneval DC (1999) Ethanol improves adenovirus-mediated gene transfer and expression to the bladder epithelium of rodents. Urology 53: 1049–53

    Article  PubMed  CAS  Google Scholar 

  30. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M, Schoemaker R, Veghel R, Houtsmuller A, Schultheiss HP, Lamers J, Poller W (1999) Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6: 1520–35

    Article  PubMed  CAS  Google Scholar 

  31. Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H, Bergelson JM, Schultheiss HP, Poller W (2000) Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Ther 7: 1954–68

    Article  PubMed  CAS  Google Scholar 

  32. Freimuth P, Springer K, Berar, C, Hainfeld J, Bewley M, Flanagan J (1999) Coxsackie-virus and adenovirus receptor amino-terminal immunoglobulin V- related domain binds adenovirus type 2 and fiber knob from adenovirus type 12. J Virol 73: 1392–8

    PubMed  CAS  Google Scholar 

  33. Fuxe J, Lui L, Malin S, Philipson L, Collins P, Pettersson RF (2003) Expression of the Coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 103: 729–729

    Article  Google Scholar 

  34. Grubb BR, Pickles RJ, Ye H, Yankaskas JR, Vick RN, Engelhardt JF, Wilson JM, Johnson LG, Boucher RC (1994) Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371: 802–6

    Article  PubMed  CAS  Google Scholar 

  35. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, et al (2000) The DNA sequence of human chromosome 21. Nature 405: 311–9

    Article  PubMed  CAS  Google Scholar 

  36. He Y, Chipman PR, Howitt J, Bator CM, Whitt MA, Baker TS, Kuhn RI, Anderson CW, Freimuth P, Rossmann MG (2001) Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Biol 8: 874–8

    Article  PubMed  CAS  Google Scholar 

  37. Heath JK, White SJ, Johnstone CN, Catimel B, Simpson RJ, Moritz RL, Tu GF, Ji H, Whitehead RH, Groenen LC, Scott AM, Ritter G, Cohen L, Welt S, Old LJ, Nice EC, Burgess AW (1997) The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc Natl Acad Sci U S A 94,: 469–74

    Google Scholar 

  38. Heideman DA, Snijders PJ, Craanen ME, Bloemena E, Meijer CJ, Meuwissen SG, van Beusechem VW, Pinedo HM, Curiel DT, Haisma HJ, Gerritsen WR (2001) Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther 8: 342–51

    Google Scholar 

  39. Hemmi S, Geertsen R, Mezzacasa A, Peter I,Dummer R (1998) The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 9: 2363–73

    CAS  Google Scholar 

  40. Hilleman MR Werner JH (1954) Recovery of a new agent from patients with acute respiratory illness. Proc Soc Exp Biol Med 85: 183–188

    PubMed  Google Scholar 

  41. Honda T, Saitoh H, Masuko M, Katagiri-Abe T, Tominaga K, Kozakai I, Kobayashi K, Kumanishi T, Watanabe YG, Odani S, Kuwano R (2000) The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 77: 19–28

    Article  PubMed  CAS  Google Scholar 

  42. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA (1997) Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 16: 2294–306

    Google Scholar 

  43. Hsu KH, Lonberg-Holm K, Alstein B, Crowell RL (1988) A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J Virol 62: 1647–52

    PubMed  CAS  Google Scholar 

  44. Huang MR, Olsson M, Kallin A, Pettersson U, Totterman TH (1997) Efficient adenovirus-mediated gene transduction of normal and leukemic hematopoietic cells. Gene Ther 4: 1093–9

    Article  PubMed  CAS  Google Scholar 

  45. Hutchin ME, Pickles RJ, Yarbrough WG (2000) Efficiency of adenovirus-mediated gene transfer to oropharyngeal epithelial cells correlates with cellular differentiation and human coxsackie and adenovirus receptor expression. Hum Gene Ther 11: 2365–75

    Article  PubMed  CAS  Google Scholar 

  46. Ito M, Kodama M, Masuko M, Yamaura M, Fuse K, Uesugi Y, Hirono S, Okura Y, Kato K, Hotta Y, Honda T, Kuwano R, Aizawa Y(2000) Expression of coxsackievirus and adenovirus receptor in hearts of rats with experimental autoimmune myocarditis. Circ Res 86: 275–80

    Google Scholar 

  47. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96: 25–34

    Article  PubMed  CAS  Google Scholar 

  48. Johnstone CN, Tebbutt NC, Abud HE, White SJ, Stenvers KL, Hall NE, Cody SH, Whitehead RH, Catimel B, Nice EC, Burgess AW, Heath JK (2000) Characterization of mouse A33 antigen, a definitive marker for basolateral surfaces of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 27: G500–10

    Google Scholar 

  49. The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin 109

    Google Scholar 

  50. Katevuo K, Imhof BA, Boyd R, Chidgey A, Bean A, Dunon D, Gobel TW, Vainio O (1999) ChT1, an Ig superfamily molecule required for T cell differentiation. J Immunol 162: 5685–94

    Google Scholar 

  51. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT ( 1998 Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 72: 1844–52

    PubMed  CAS  Google Scholar 

  52. Krasnykh V, Dmitriev I, Navarro JG, Belousova N, Kashentseva E, Xiang J, Douglas JT, Curiel DT (2000) Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res 60: 6784–7

    PubMed  CAS  Google Scholar 

  53. Leon, R. P., Hedlund, T., Meech, S. J., Li, S., Schaack, J., Hunger, S. P., Duke, R. C., and DeGregori, J. (1998). Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci U S A 95, 13159–64

    Article  PubMed  CAS  Google Scholar 

  54. Li E, Brown SL, von Seggern DJ, Brown GB, Nemerow GR (2000) Signaling antibodies complexed with adenovirus circumvent CAR and integrin interactions and improve gene delivery. Gene Ther 7: 1593–9

    Article  PubMed  CAS  Google Scholar 

  55. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP, Wang Z, Hsieh JT (1999) Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 59: 325–30

    PubMed  CAS  Google Scholar 

  56. Lonberg-Holm K, Crowell R, Philipson L (1976) Unrelated animal viruses share receptors. Nature (London) 259: 679–681

    Article  CAS  Google Scholar 

  57. Loskog A, HT, Wester K, de la Torre M, Philipson L, Malmstrom P-U, Totterman TH (2002) Human urinary bladder carcinomas express adenovirus attachment and internalization receptors. Gene Ther, in press.

    Google Scholar 

  58. McDonald D, Stockwin L, Matzow T, Blair Zajdel ME, Blair GE (1999) Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex ( MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Ther 6: 512–9

    Google Scholar 

  59. Mentel R, Dopping G, Wegner U, Seidel W, Liebermann H, Dohner L (1997) Adenovirus-receptor interaction with human lymphocytes. J Med Virol 51: 252–7

    Article  PubMed  CAS  Google Scholar 

  60. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS, Raben D, Curiel DT (1998) Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 58: 5738–48

    PubMed  CAS  Google Scholar 

  61. Mori T, Arakaw, H, Tokin, T, Mineura K, Nakamura Y (1999) Significant increase of adenovirus infectivity in glioma cell lines by extracellular domain of hCAR. On-col Res 11: 513–21

    CAS  Google Scholar 

  62. Muckelbauer JK, Kremer M, Minor I, Diana G, Dutko FJ, Groarke J, Pevear DC, Rossmann MG (1995) The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3: 653–67

    Article  PubMed  CAS  Google Scholar 

  63. Nalbantoglu J, Pari G, Karpati G, Holland PC (1999) Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 10: 1009–19

    Article  PubMed  CAS  Google Scholar 

  64. Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT (2000) The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 60: 5031–6

    PubMed  CAS  Google Scholar 

  65. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT (2001) The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 61: 6592–600

    PubMed  CAS  Google Scholar 

  66. Philipson L, Lonberg-Holm K, Pettersson U (1968) Virus-receptor interaction in an adenovirus system. J Virol 2: 1064–75

    PubMed  CAS  Google Scholar 

  67. Pickles RJ, Fahrner JA, Petrella JM, Boucher RC, Bergelson JM (2000) Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 74: 6050–7

    Article  PubMed  CAS  Google Scholar 

  68. Pickles RJ, McCarty D, Matsui H, Hart PJ, Randell SH, Boucher RC (1998) Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol 72: 6014–23

    PubMed  CAS  Google Scholar 

  69. Rebel VI, Hartnett S, Denham J, Chan M, Finberg R, Sieff CA (2000) Maturation and lineage-specific expression of the coxsackie and adenovirus receptor in hematopoietic cells. Stem Cells 18: 176–82

    Article  PubMed  CAS  Google Scholar 

  70. Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and E J Virol 72: 7909–15

    Google Scholar 

  71. Roelvink PW, Lee GM, Einfeld DA, Kovesdi I, Wickham TJ (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286: 1568–71

    Article  PubMed  CAS  Google Scholar 

  72. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, et al. (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317: 145–53

    Article  PubMed  CAS  Google Scholar 

  73. Shafren DR, Bates RC, Agrez MV, Herd RL, Burns GF, Barry RD (1995) Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol 69: 3873–7

    PubMed  CAS  Google Scholar 

  74. Stevenson SC, Rollence M, Marshall-Neff J, McClelland A (1997) Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J Virol 71: 4782–90

    PubMed  CAS  Google Scholar 

  75. Tallone T, Malin S, Samuelsson A, Wilbertz J, Miyahara M, Okamoto K, Poellinger L, Philipson L, and Pettersson S (2001) A mouse model for adenovirus gene delivery. Proc Natl Acad Sci U S A 98: 7910–5

    Article  PubMed  CAS  Google Scholar 

  76. Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisen J, Philipson L (2000) Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res 255: 47–55

    Article  PubMed  CAS  Google Scholar 

  77. Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94: 3352–6

    Article  PubMed  CAS  Google Scholar 

  78. Trepel M, Grifman M, Weitzman MD, Pasqualini R (2000) Molecular adaptors for vascular-targeted adenoviral gene delivery. Hum Gene Ther 11: 1971–81

    Article  PubMed  CAS  Google Scholar 

  79. van Raaij MJ, Chouin E, van der Zandt H, Bergelson JM, Cusack S (2000) Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure Fold Des 8: 1147–55

    Article  PubMed  Google Scholar 

  80. The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin 111

    Google Scholar 

  81. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274: 10219–26

    Article  PubMed  CAS  Google Scholar 

  82. Walters RW, van’t Hof W, Yi SM, Schroth MK, Zabner J, Crystal RG, Welsh MJ (2001) Apical localization of the coxsackie-adenovirus receptor by glycosyl-phosphatidylinositol modification is sufficient for adenovirus-mediated gene transfer through the apical surface of human airway epithelia. J Virol 75: 7703–11

    Article  PubMed  CAS  Google Scholar 

  83. Wang X, Bergelson JM(1999) Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol 73: 2559–62

    Google Scholar 

  84. Wesseling JG, Bosma PJ, Krasnykh V, Kashentseva EA, Blackwell J., Reynold, PN, Li H, Parameshwar M, Vickers SM, Jaffee EM, Huibregtse K, Curiel DT, Dmitriev I (2001) Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrintargeted adenoviral vectors. Gene Ther 8: 969–76

    Article  PubMed  CAS  Google Scholar 

  85. Wickham TJ (2000) Targeting adenovirus. Gene Ther 7: 110–4

    Article  PubMed  CAS  Google Scholar 

  86. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73: 309–19

    Article  PubMed  CAS  Google Scholar 

  87. Xia D, Henry L J, Gerard RD, Deisenhofer J (1994) Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2: 1259–70

    Article  PubMed  CAS  Google Scholar 

  88. Xu R, Mohanty JG, Crowell RL (1995) Receptor proteins on newborn Balb/c mouse brain cells for coxsackievirus B3 are immunologically distinct from those on HeLa cells. Virus Res 35: 323–40

    Google Scholar 

  89. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback D G (2001) Coxsackievirus-adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Ther 8: 168–75

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Philipson, L., Pettersson, R.F. (2004). The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin Family Involved in Cell Adhesion. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05599-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05599-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05715-1

  • Online ISBN: 978-3-662-05599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics