Skip to main content

The Structure and Function of the Adenovirus Major Late Promoter

  • Chapter
Adenoviruses: Model and Vectors in Virus-Host Interactions

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

The adenovirus major late promoter (MLP) has played a preeminent role in the analysis of transcription initiation in mammalian cells, and is an outstanding example of the ways in which the study of adenovirus has led to fundamental insights into general cellular processes. The aim of this chapter is to give a comprehensive review of the structure and function of this model mammalian promoter. After a brief description of late transcription in the adenovirus replication cycle, the experimental evidence for the current consensus on the genetic structure of the MLP, including a consideration of non-primate adenovirus MLPs, will be reviewed. Next, the functions of the MLP in the viral life cycle will be examined, and some of the problems that remain to be resolved will be addressed. The review ends with some ideas on how the knowledge of the structure and function of the MLP can be used in designing virus vectors for specific experimental purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami G, Babiss LE (1992) Evidence that USF can interact with only a single general transcription complex at one time. Mol Cell Biol 12:1630–1638

    PubMed  CAS  Google Scholar 

  • Bensimhon M, Gabarro-Arpa J, Ehrlich R, Reiss C (1983) Physical characteristics in eucaryotic promoters. Nucleic Acids Res 11:4521–4540

    Article  PubMed  CAS  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74:3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ (1986) Adenovirus promoters and E1A transactivation. Ann Rev Genetics 20: 45–79

    Article  CAS  Google Scholar 

  • Berkner KL (1988) Development of adenovirus vectors for the expression of heterologous genes. BioTechniques 6:616–629

    Article  PubMed  CAS  Google Scholar 

  • Beyer AL, Bouton AH, Hodge LD, Miller OL, Jr (1981) Visualization of the major late R strand transcription unit of adenovirus serotype 2. J Mol Biol 147:269–285

    Article  PubMed  CAS  Google Scholar 

  • Bi WM, Wu L, Coustry F, De Crombrugghe B, Maity SN (1997) DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Biol Chem 272:26562–26572

    Article  PubMed  CAS  Google Scholar 

  • Binger MH, Flint SJ (1984) Accumulation of early and intermediate mRNA species during subgroup C adenovirus productive infections. Virology 136:387–403

    Article  PubMed  CAS  Google Scholar 

  • Broker TR (1984) Animal virus RNA processing. In: Apirion D (ed) Processing of RNA. CRC Press, Boca Raton, pp 181–212

    Google Scholar 

  • Brunet LJ, Babiss LE, Young CSh, Mills DR (1987) Mutations in the adenovirus major late promoter: effects upon viability and transcription during infection. Mol Cell Biol 7:1091–1100

    PubMed  CAS  Google Scholar 

  • Bucher P (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212:563–578

    Article  PubMed  CAS  Google Scholar 

  • Carter Th, Ginsberg HS (1976) Viral transcription in KB cells infected by temperature-sensitive “early” mutants of adenovirus type 5. J Virol 18:156–166

    PubMed  CAS  Google Scholar 

  • Carthew RW, Chodosh LA, Sharp PA (1985) An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43:439–448

    Article  PubMed  CAS  Google Scholar 

  • Chang L-S, Shenk T (1990) The adenovirus DNA-binding protein stimulates the rate of transcription directed by adenovirus and adeno-associated virus promoters. J Virol 64:2103–2109

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Vayda ME, Flint SJ (1986) Adenoviral protein VII packages intracellular viral DNA throughout the early phase of infection. EMBO J 5:1633–1644

    PubMed  CAS  Google Scholar 

  • Chen H, Flint SJ (1992) Mutational analysis of the adenovirus 2 IVa2 initiator and downstream elements. J Biol Chem 267: 25457–25465

    PubMed  CAS  Google Scholar 

  • Chen H, Vinnakota R, Flint SJ (1994) Intragenic activating and repressing elements control transcription from the adenovirus IVa2 initiator. Mol Cell Biol 14:676–685

    PubMed  CAS  Google Scholar 

  • Chiocca S, Kurzbauer R, Schaffner G, Baker A, Mautner V, Gotten M (1996) The complete DNA sequence and genomic organization of the avian adenovirus CELO. J Virol 70:2939–2949

    PubMed  CAS  Google Scholar 

  • Chodosh LA, Baldwin AS, Carthew RW, Sharp PA (1988a) Human CCAATbinding proteins have heterologous subunits. Cell 53:11–24

    Article  PubMed  CAS  Google Scholar 

  • Chodosh LA, Olesen J, Hahn S, Baldwin AS, Guarente L, Sharp PA (1988b) A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53:25–35

    Article  PubMed  CAS  Google Scholar 

  • Chow L, Gelinas R, Broker T, Roberts R (1977) An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell 12:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134:265–303

    Article  PubMed  CAS  Google Scholar 

  • Coen DM, Weinheimer SP, Mcknight SL (1986) A genetic approach to promoter recognition during trans induction of viral gene expression. Science 234:53–59

    Article  PubMed  CAS  Google Scholar 

  • Concino M, Goldman RA, Caruthers MH, Weinmann R (1984a) Point mutations of the adenovirus major late promoter with different transcriptional efficiencies in vitro. J Biol Chem 258:8493–8496

    Google Scholar 

  • Concino MF, Lee RF, Merryweather JP, Weinmann R (1984b) The adenovirus major late promoter TATA box and initiation site are both necessary for transcription in vitro. Nucleic Acids Res 12:7423–7433

    Article  PubMed  CAS  Google Scholar 

  • Connelly S, Manley JL (1989a) RNA polymerase II transcription termination is mediated specifically by protein binding to a CCAAT box sequence. Mol Cell Biol 9:5254–5259

    CAS  Google Scholar 

  • Connelly S, Manley JL (1989b) A CCAAT box sequence in the adenovirus major late promoter functions as part of an RNA polymerase II termination signal. Cell 57:561–571

    Article  PubMed  CAS  Google Scholar 

  • Davison AJ, Wright KM, Harrach B (2000) DNA sequence of frog adenovirus. J Gen Virol 81:2431–2439

    PubMed  CAS  Google Scholar 

  • Dery CV, Toth M, Brown M, Horvath J, Allaire S, Weber JM (1985) The structure of adenovirus chromatin in infected cells. J Gen Virol 66:2671–2684

    Article  PubMed  CAS  Google Scholar 

  • Du H, Roy AL, Roeder RG (1993) Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J 12:501–511

    PubMed  CAS  Google Scholar 

  • Emami KH, Jain A, Smale ST (1997) Mechanism of synergy between TATA and initiator: synergistic binding of TFIID following a putative TFIIA-induced isomerization. Genes Dev 11:3007–3019

    Article  PubMed  CAS  Google Scholar 

  • Evans R, Weber J, Ziff E, Darnell JE (1979) Premature termination during adenovirus transcription. Nature 278:367–370

    Article  PubMed  CAS  Google Scholar 

  • Fessler SP, Young CS (1998) Control of adenovirus early gene expression during the late phase of infection. J Virol 72:4049–4056

    PubMed  CAS  Google Scholar 

  • Fessler SP, Young CSH (1999) The role of the L4 33 K gene in adenovirus infection. Virology 263:507–516

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ, Sharp PA (1976) Adenovirus transcription V. Quantitation of viral RNA sequences in adenovirus 2-infected and transformed cells. J Mol Biol 106:749–771

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel S, Thompson JA, Jacob WF, Cohen R, Safer B (1990) Identification and characterization of an adenovirus 2 major late promoter CAP sequence DNA-binding protein. J Biol Chem 265:10309–10319

    PubMed  CAS  Google Scholar 

  • Gluzman Y, Reichl H, Solicx D (1982) Helper-free adenovirus type 5 vectors. In: Gluzman Y (ed) Eukaryotic viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 187–192

    Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gregor PD, Sawadogo M, Roeder RG (1990) The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 4:1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Griffith JD, Makhov A, Zawel L, Reinberg D (1995) Visualization of TBP oligomers binding and bending the HIV-1 and adeno promoters. J Mol Biol 246: 576–584

    PubMed  CAS  Google Scholar 

  • Gustin KE, Lutz P, Imperiale MJ (1996) Interaction of the adenovirus L1 52/55kilodalton protein with the IVa2 gene product during infection. J Virol 70: 6463–6467

    PubMed  CAS  Google Scholar 

  • Gustin KE, Imperiale MJ (1998) Encapsidation of viral DNA requires the adenovirus Ll 52/55-kilodalton protein. J Virol 72:7860–7870

    PubMed  CAS  Google Scholar 

  • Hasson TB, Soloway PD, Ornelles DA, Doerfler W, Shenk T (1989) Adenovirus L1 52- and 55-kilodalton proteins are required for assembly of virions. J Virol 63: 3612–3621

    PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1986) The adenovirus type 5 E1A enhancer contains two functionally distinct domains: one is specific for E1A and the other modulates all early units in cis. Cell 45: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Hen R, Sassone-Corsi P, Corden J, Gaub MP, Chambon P (1982) Sequences upstream from the TATA box are required in vivo and in vitro for efficient transcription from the adenovirus serotype 2 major late promoter. Proc Natl Acad Sci USA 79: 7132–7136

    Article  PubMed  CAS  Google Scholar 

  • Hess M, Blöcker H, Brandt P (1997) The complete nucleotide sequence of the egg drop syndrome virus: An intermediate between mastadenoviruses and aviadenoviruses. Virology 238:145–156

    Article  PubMed  CAS  Google Scholar 

  • Hu S-L, Manley JL (1981) DNA sequence required for initiation of transcription in vitro from the major late promoter of adenovirus 2. Proc Natl Acad Sci USA 78: 820–824

    Article  PubMed  CAS  Google Scholar 

  • Huang D-H, Horikoshi M, Roeder RG (1988) Activation of the adenovirus EIIa late promoter by a single-point mutation which enhances binding of transcription factor IID. J Biol Chem 263:12596–12601

    PubMed  CAS  Google Scholar 

  • Ismail PM, Lu T, Sawadogo M (1999) Loss of USF transcriptional activity in breast cancer cell lines. Oncogene 18:5582–5591

    Article  PubMed  CAS  Google Scholar 

  • Jansen-Durr P, Boeuf P, Kedinger C (1988) Replication-induced stimulation of the major late promoter of adenovirus is correlated to the binding of a factor to sequences in the first intron. Nucleic Acids Res 16:3771–3786

    Article  PubMed  CAS  Google Scholar 

  • Jansen-Durr P, Mondésert G, Kedinger C (1989) Replication-dependent activation of the adenovirus major late promoter is mediated by the increased binding of a transcription factor to sequences in the first intron. J Virol 63:5124–5132

    PubMed  CAS  Google Scholar 

  • Javahery R, Khachi A, Lo K, Zenzie-Gregory B, Smale St (1994) DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol 14:116–127

    PubMed  CAS  Google Scholar 

  • Kasai Y, Chen H, Flint SJ (1992) Anatomy of an unusual RNA polymerase II promoter containing a downstream TATA element. Mol Cell Biol 12:2884–2897

    PubMed  CAS  Google Scholar 

  • Kaufmann J, Smale St (1994) Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev 8:821–829

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann J, Verrijzer CP, Shao J, Smale St (1996) CIF, an essential cofactor for TFIID-dependent initiator function. Genes Dev 10:873–886

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann J, Ahrens K, Koop R, Smale St, Müller R (1998) CIF150, a human cofactor for transcription factor IID-dependent initiator function. Mol Cell Biol 18: 233–239

    PubMed  CAS  Google Scholar 

  • Khatri A, Both GW (1998) Identification of transcripts and promoter regions of ovine adenovirus OAV287. Virology 245:128–141

    Article  PubMed  CAS  Google Scholar 

  • Kim JL, Nixlov DB, Burley SK (1993) Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365:520–527

    Article  PubMed  CAS  Google Scholar 

  • Kitchingman GR, Westphal H (1980) The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol 137:23–48

    Article  PubMed  CAS  Google Scholar 

  • Klessig DF (1984) Adenovirus-simian virus 40 interactions. In: Ginsberg HS (ed) The adenoviruses. Plenum Press, New York, pp 399–449

    Chapter  Google Scholar 

  • Krumm A, Meulia T, Brunvand M, Groudine M (1992) The block to transcriptional elongation within the human c-mycgene is determined in the promoter-proximal region. Genes Dev 6:2201–2213

    Article  PubMed  CAS  Google Scholar 

  • Krumm A, Meulia T, Groudine M (1993) Common mechanisms for the control of eukaryotic transcriptional elongation. Bio Essays 15:659–665

    CAS  Google Scholar 

  • Lagrange T, Kim TK, Orphanides G, Ebright YW, Ebright RH, Reinberg D (1996) High-resolution mapping of nucleoprotein complexes by site-specific protein-DNA photocrosslinking: Organization of the human TBP-TFIIA-TFIIB-DNA quaternary complex. Proc Natl Acad Sci USA 93:10620–10625

    Article  PubMed  CAS  Google Scholar 

  • Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12:34–44

    Article  PubMed  CAS  Google Scholar 

  • Lee RF, Concino MF, Weinmann R (1988) Genetic profile of the transcriptional signals from the adenovirus major late promoter. Virology 165:51–56

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Hahn S (1995) Model for binding of transcription factor TFIIB to the TBP-DNA complex. Nature 376:609–612

    Article  PubMed  CAS  Google Scholar 

  • Leong K, Lee W, Berk AJ (1990) High-level transcription from the adenovirus major late promoter requires downstream binding sites for late-phase-specific factors. J Virol 64:51–60

    PubMed  CAS  Google Scholar 

  • Li X-C, Huang WL, Flint SJ (1992) The downstream regulatory sequence of the adeno- virus type 2 major late promoter is functionally redundant. J Virol 66:5685–5690

    PubMed  CAS  Google Scholar 

  • Lin HJL, Flint SJ (2000) Identification of a cellular repressor of transcription of the adenoviral late IVa2 gene that is unaltered in activity in infected cells. Virology 277: 397–410

    Article  PubMed  CAS  Google Scholar 

  • Lo K, Smale ST (1996) Generality of a functional initiator consensus sequence. Gene 182:13–22

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Shenk T (1986) In vivo identification of sequence elements required for normal function of the adenovirus major late transcriptional control region. Nucleic Acids Res 14:6327–6335

    PubMed  CAS  Google Scholar 

  • Lu H, Reach MD, Minaya E, Young CSh (1997) The initiator element of the adenovirus major late promoter has an important role in transcription initiation in vivo. J Virol 71:102–109

    PubMed  CAS  Google Scholar 

  • Lucas JJ, Ginsberg HS (1971) Synthesis of virus-specific RNA in KB cells infected with type 2 adenovirus. J Virol 8:203–213

    PubMed  CAS  Google Scholar 

  • Lutz P, Kedinger C (1996) Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter. J Virol 70:1396–1405

    PubMed  CAS  Google Scholar 

  • Maity SN, De Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178

    Article  PubMed  CAS  Google Scholar 

  • Manley JL, Fire A, Cano A, Sharp PA, Gefter ML (1980) DNA-dependent transcription of adenovirus genes in a soluble whole cell extract. Proc Natl Acad Sci USA 77:3855–3859

    Article  PubMed  CAS  Google Scholar 

  • Mansour JL, Grodzicker T, Tjian R (1986) Downstream sequences affect transcription initiation from the adenovirus major late promoter. Mol Cell Biol 6:2684–2694

    PubMed  CAS  Google Scholar 

  • Mcgrory WJ, Bautista DS, Graham FL (1988) A simple technique for the rescue of early region 1 mutations into infectious human adenovirus type 5. Virology 163: 614–617

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto NG, Moncollin V, Egly JM, Chambon P (1985) Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO J 4:3563–3570

    PubMed  CAS  Google Scholar 

  • Mondésert G, Tribouley C, Kedinger C (1992) Identification of a novel downstream binding protein implicated in late-phase-specific activation of the adenovirus major late promoter. Nucleic Acids Res 20:3881–3889

    Article  PubMed  Google Scholar 

  • Mondésert G, Kedinger C (1991) Cooperation between upstream and downstream elements of the adenovirus major late promoter for maximal late phase-specific transcription. Nucleic Acids Res 19:3221–3228

    Article  PubMed  Google Scholar 

  • Natarajan V, Madden MJ, Salzman NP (1985) Positive and negative control sequences within the distal domain of the adenovirus IVa2 promoter overlap with the major late promoter. J Virol 55:10–15

    PubMed  CAS  Google Scholar 

  • Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus Ela gene product. Cell 26:213–220

    Article  PubMed  CAS  Google Scholar 

  • Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK (1995) Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377:119–128

    Article  PubMed  CAS  Google Scholar 

  • Ojkic D, Nagy É (2000) The complete nucleotide sequence of fowl adenovirus type 8. J Gen Virol 81:1833–1837

    PubMed  CAS  Google Scholar 

  • Parks CL, Shenk T (1997) Activation of the adenovirus major late promoter by transcription factors MAZ and Spl. J Virol 71:9600–9607

    PubMed  CAS  Google Scholar 

  • Patikoglou GA, Kim JL, Sun LP, Yang Sh, Kodadek T, Burley SK (1999) TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev 13:3217–3230

    Article  PubMed  CAS  Google Scholar 

  • Payet V, Arnauld C, Picault JP, Jestin A, Langlois P (1998) Transcriptional organization of the avian adenovirus CELO. J Virol 72:9278–9285

    PubMed  CAS  Google Scholar 

  • Persson H, Mathisen B, Philipson L, Pettersson U (1979) A maturation protein in adenovirus morphogenesis. Virology 93:198–208

    Article  PubMed  CAS  Google Scholar 

  • Pettersson U (1984) Structural and nonstructural adenovirus proteins. In: Ginsberg HS (ed) The adenoviruses. Plenum Press, New York and London, pp 205–270

    Chapter  Google Scholar 

  • Pitcovski J, Mualem M, Re-Ikoren Z, Krispel S, Shmueli E, Peretz Y, Gutter B, Gallili GE, Michael A, Goldberg D (1998) The complete DNA sequence and genome organization of the avian adenovirus, hemorrhagic enteritis virus. Virology 249:307–315

    Article  PubMed  CAS  Google Scholar 

  • Qian XL, Strahs D, Schlick T (2001) Dynamic simulations of 13 TATA variants refine kinetic hypotheses of sequence/activity relationships. J Mol Biol 308:681–703

    Article  PubMed  CAS  Google Scholar 

  • Qyang YB, Luo X, Lu T, Ismail PM, Krylov D, Vinson C, Sawadogo M (1999) Celltype-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol 19:1508–1517

    PubMed  CAS  Google Scholar 

  • Reach M, Babiss LE, Young CSh (1990) The upstream factor binding site is not essential for activation of transcription from the adenovirus major late promoter. J Virol 64:5851–5860

    PubMed  CAS  Google Scholar 

  • Reach M, Xu L-X, Young CSh (1991) Transcription from the adenovirus major late promoter uses redundant activating elements. EMBO J 10:3439–3446

    PubMed  CAS  Google Scholar 

  • Roy AL, Meisterernst M, Pognonec P, Roeder RG (1991) Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature 354:245–248

    Article  PubMed  CAS  Google Scholar 

  • Roy AL, Malik S, Meisterernst M, Roeder RG (1993) An alternative pathway for transcription initiation involving TFII-I. Nature 365:355–359

    Article  PubMed  CAS  Google Scholar 

  • Roy AL, Du H, Gregor PD, Novina CD, Martinez E, Roeder RG (1997) Cloning of an Inr-and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J 16:7091–7104

    Article  PubMed  CAS  Google Scholar 

  • Sawadogo M, Roeder RG (1985) Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box. Cell 43:165–175

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1984) Adenovirus transcription. In: Ginsberg HS (ed) The adenoviruses. Plenum Press, New York, pp 173–204

    Chapter  Google Scholar 

  • Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single early family of 3’ coterminal mRNAs and five late families. Cell 20:905–916

    Article  Google Scholar 

  • Shenk TE (2001) Adenoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology. 4th edn Lippincott Williams and Wilkins, Philadelphia, pp 2265–2300

    Google Scholar 

  • Sirito M, Lin Q, Maity T, Sawadogo M (1994) Ubiquitous expression of the 43-and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res 22:427–433

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Baltimore D (1989) The “initiator” as a transcription control element. Cell 57:103–113

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Jain A, Kaufmann J, Emami KH, Lo K, Garraway IP (1998) The initiator element: A paradigm for core promoter heterogeneity within metazoan protein-coding genes. Cold Spring Harbor Symp Quant Biol 63:21–31

    Article  PubMed  CAS  Google Scholar 

  • Song B, Hu S-L, Darai G, Spindler KR, Young CSH (1996) Conservation of DNA sequence in the predicted major late promoter regions of selected mastadenoviruses. Virology 220:390–401

    Article  PubMed  CAS  Google Scholar 

  • Song B, Young CSh (1997) Functional characterization of the major late promoter of mouse adenovirus type 1. Virology 235:109–117

    Article  PubMed  CAS  Google Scholar 

  • Song B, Young CSh (1998) Functional analysis of the CAAT box in the major late promoter of the subgroup C human adenoviruses. J Virol 72:3213–3220

    PubMed  CAS  Google Scholar 

  • Strubin M, Struhl K (1992) Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68:721–730

    Article  PubMed  CAS  Google Scholar 

  • Tansey WP, Herr W (1997) Selective use of TBP and TFIIB revealed by a TATA-TBPTFIIB array with altered specificity. Science 275:829–831

    Article  PubMed  CAS  Google Scholar 

  • Tate VE, Philipson L (1979) Parental adenovirus DNA accumulates in nucleosomelike structures in infected cells. Nucleic Acids Res 6:2769–2785

    Article  PubMed  CAS  Google Scholar 

  • Thomas GP, Mathews MB (1980) DNA replication and the early to late transition in adenovirus infection. Cell 22:523–533

    Article  PubMed  CAS  Google Scholar 

  • Toth M, Doerfler W, Shenk T (1992) Adenovirus DNA replication facilitates binding of the MLTF/USF transcription factor to the viral major late promoter within infected cells. Nucleic Acids Res 20:5143–5148

    Article  PubMed  CAS  Google Scholar 

  • Tribouley C, Lutz P, Staub A, Kedinger C (1994) The product of the adenovirus intermediate gene IVa2 is a transcriptional activator of the major late promoter. J Virol 68:4450–4457

    PubMed  CAS  Google Scholar 

  • Vrati S, Brookes DE, Boyle DB, Both GW (1996) Nucleotide sequence of ovine adenovirus tripartite leader sequence and homologues of the IVa2, DNA polymerase and terminal proteins. Gene 177:35–41

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Weil PA, Luse DS, Segall J, Roeder RG (1979) Selective and accurate initiation of transcription at the adenovirus major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18:469–484

    Article  PubMed  CAS  Google Scholar 

  • Wiley SR, Kraus RJ, Zuo F, Murray EE, Loritz K, Mertz JE (1993) SV40 earlyto-late switch involves titration of cellular transcriptional repressors. Genes Dev 7: 2206–2219

    Article  PubMed  CAS  Google Scholar 

  • Winter N, Dhalluin J-C (1991) Regulation of the biosynthesis of subgroup C adenovirus protein IVa2. J Virol 65:5250–5259

    PubMed  CAS  Google Scholar 

  • Wobbe CR, Struhl K (1990) Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol 10: 3859–3867

    PubMed  CAS  Google Scholar 

  • Wolgemuth DJ, Hsu M-T (1981) Visualization of nascent RNA transcripts and simultaneous transcription and replication in viral nucleoprotein complexes from adenovirus 2-infected HeLa cells. J Mol Biol 147:247–268

    Article  PubMed  CAS  Google Scholar 

  • Wong SW, Wahl AF, Yuan P-M, Arai N, Pearson BE, Arai K-I, Korn D, Hunkapiller MW, Wang TS-F (1988) Human DNA polymerase a gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J 7:37–47

    PubMed  CAS  Google Scholar 

  • Yagubi A, Ojkic D, Bautista DS, Ha-Jahmad Y (1998) Sequencing analysis of the region encoding the DNA polymerase of bovine adenovirus serotypes 2 and 3. Intervirology 41: 69–79

    Article  PubMed  CAS  Google Scholar 

  • Yu Y-T, Manley JL (1984) Generation and functional analysis for base-substitution mutants of the adenovirus major late promoter. Nucleic Acids Res 12:9309–9321

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Imperiale MJ (2000) Interaction of the adenovirus IVa2 protein with viral packaging sequences. J Virol 74:2687–2693

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Low JA, Christensen JB, Imperiale MJ (2001) Role for the adenovirus IVa2 protein in packaging of viral DNA. J Virol 75:10466–10454

    Google Scholar 

  • Ziff EB, Evans RM (1978) Coincidence of the promoter and capped 5’ terminus of RNA from the adenovirus major late promoter. Cell 15:1463–1475

    Article  PubMed  CAS  Google Scholar 

  • Zock C, Doerfler W (1990) A mitigator sequence in the downstream region of the major late promoter of adenovirus type 12 DNA. EMBO J 9:1615–1623

    PubMed  CAS  Google Scholar 

  • Zocx C, Iselt A, Doerfler W (1993) A unique mitigator sequence determines the species specificity of the major late promoter in adenovirus type 12 DNA. J Virol 67:682–693

    Google Scholar 

  • Zuo FR, Mertz JE (1995) Simian virus 40 late gene expression is regulated by members of the steroid/thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 92:8586–8590

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Young, C.S.H. (2003). The Structure and Function of the Adenovirus Major Late Promoter. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics