Skip to main content

Adenovirus DNA Replication: Protein Priming, Jumping Back and the Role of the DNA Binding Protein DBP

  • Chapter
Adenoviruses: Model and Vectors in Virus-Host Interactions

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

The adenovirus (Ad) genome is a linear double-stranded (ds) molecule containing about 36 kilobase pairs. At each end of the genome an approximately 100 base pair (bp) inverted terminal repeat (ITR) is found, the exact length depending on the serotype. To the 5’-end of each ITR, a 55-kDa terminal protein (TP) is covalently coupled. The Ad DNA replication system was one of the first replication systems that could be reconstituted in vitro (Challberg and Kelly 1979). The system requires three virally encoded proteins: precursor TP (pTP), DNA polymerase (Pol) and the DNA binding protein (DBP). In addition, three stimulating human cellular proteins have been identified. These are the transcription factors NFI (Nagata et al. 1982) and Oct-1 (Pruijn et al. 1986) and the type I topoisomerase NFII (Nagata et al. 1983). Ad DNA replication uses a protein primer for replication initiation. The transition from initiation to elongation is marked by a jumping back mechanism (King and van der Vliet 1994), followed by elongation. In order to elongate DBP is required. In this review we discuss the roles of DBP during initiation and elongation and we relate biochemical data on the jumping back mechanism used by Ad Pol to the recently solved crystal structure of a Pol α-like replication complex (Franklin et al. 2001). We comment on the conditions and possible functions of jumping back and propose a model to describe the jumping back mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • van Amerongen H, van Grondelle R and van der Vliet PC (1987) Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption. Biochemistry 26: 4646–4652

    Article  PubMed  Google Scholar 

  • Blasco MA, Mendez J, Lazaro JM, Blanco L and Salas M (1995) Primer terminus stabilization at the phi 29 DNA polymerase active site. Mutational analysis of conserved motif KxY. J Biol Chem 270: 2735–2740

    Google Scholar 

  • Brenkman AB, Heideman MR, Truniger V, Salas M and der Vliet PC (2001) The ( I/Y)xGG motif of adenovirus dna polymerase affects template DNA binding and the transition from initiation to elongation. J Biol Chem 276: 29846–29853

    Google Scholar 

  • van Breukelen B, Kanellopoulos PN, Tucker PA and DER Vliet PC (2000) The formation of a flexible DNA-binding protein chain is required for efficient DNA unwinding and adenovirus DNA chain elongation. J Biol Chem 275: 40897–40903

    Article  PubMed  Google Scholar 

  • Caldentey J, Blanco L, Bamford DH and Salas M (1993) In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucleic Acids Res 21: 3725–3730

    Google Scholar 

  • Challberg MD and Kelly TJJ (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Cleat PH and Hay RT (1989) Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. EMBO J 8: 1841–1848

    PubMed  CAS  Google Scholar 

  • Cleghon V and Klessig DF (1992) Characterization of the nucleic acid binding region of adenovirus DNA binding protein by partial proteolysis and photochemical cross-linking. J Biol Chem 267: 17872–17881

    PubMed  CAS  Google Scholar 

  • de Jong RN and van der Vliet PC (1999) Mechanism of DNA replication in eukaryotic cells: cellular host factors stimulating adenovirus DNA replication. Gene 236: 1–12

    Article  PubMed  Google Scholar 

  • de Vega M, Blanco L and Salas M (1999) Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase. J Mol Biol 292: 39–51

    Article  PubMed  Google Scholar 

  • Dekker J, Kanellopoulos PN, Loonstra AK, van Oosterhout JA, Leonard K, Tucker PA and van der Vliet PC (1997) Multimerization of the adenovirus DNA-binding protein is the driving force for ATP-independent DNA unwinding during strand displacement synthesis. EMBO J 16: 1455–1463

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Kanellopoulos PN, van Oosterhout JA, Stier G, Tucker PA and van der Vliet PC (1998) ATP-independent DNA unwinding by the adenovirus single-stranded DNA binding protein requires a flexible DNA binding loop. J Mol Biol 277: 825–838

    Article  PubMed  CAS  Google Scholar 

  • Doublie S, Tabor S, Long AM, Richardson CC and Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T, Lichy JH, Ikeda JE and Hurwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci USA 78: 6779–6783

    Article  PubMed  CAS  Google Scholar 

  • Esteban JA, Salas M and Blanco L (1993) Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268: 2719–2726

    Google Scholar 

  • Field J, Gronostajski RM and Hurwitz J (1984) Properties of the adenovirus DNA polymerase. J Biol Chem 259: 9487–9495

    PubMed  CAS  Google Scholar 

  • Franklin MC, Wang J and Steitz TA (2001) Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105: 657–667

    Article  PubMed  CAS  Google Scholar 

  • Georgaki A, Strack B, Podust V and Hubscher U (1992) DNA unwinding activity of replication protein A. FEBS Lett 308: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Rudy J and Brinkley P (1989) Infectious circular DNA of human adenovirus type 5: regeneration of viral DNA termini from molecules lacking terminal sequences. EMBO J 8: 2077–2085

    PubMed  CAS  Google Scholar 

  • Hay RT, Freeman A, Leith I, Monaghan A and Webster A (1995) Molecular interactions during adenovirus DNA replication. Curr Top Microbiol Immunol 199: 31–48

    Article  PubMed  CAS  Google Scholar 

  • Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R and Angerer B (1999) Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci USA 96: 3600–3605

    Article  PubMed  CAS  Google Scholar 

  • Illana B, Blanco L and Salas M (1996) Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication. J Mol Biol 264: 453–464

    Article  PubMed  CAS  Google Scholar 

  • Ito J and Braithwaite DK (1991) Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res 19: 4045–4057

    Article  PubMed  CAS  Google Scholar 

  • Joung I and Engler JA (1992) Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol 66: 5788–5796

    PubMed  CAS  Google Scholar 

  • Kanellopoulos PN, Tsernoglou D, van der Vliet PC and Tucker PA (1996) Alternative arrangements of the protein chain are possible for the adenovirus single-stranded DNA binding protein. J Mol Biol 257: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Kanellopoulos PN, van der Zandt H, Tsernoglou D, van der Vliet PC and Tucker PA (1995) Crystallization and preliminary X-ray crystallographic studies on the adenovirus ssDNA binding protein in complex with ssDNA. J Struct Biol 115: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Kenny MK and Hurwitz J (1988) Initiation of adenovirus DNA replication. II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 263: 9809–9817

    PubMed  CAS  Google Scholar 

  • King AJ and van der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13: 5786–5792

    PubMed  CAS  Google Scholar 

  • King AJ, Teertstra WR, Blanco L, Salas M and van der Vliet PC (1997a) Processive proofreading by the adenovirus DNA polymerase. Association with the priming protein reduces exonucleolytic degradation. Nucleic Acids Res 25: 1745–1752

    Google Scholar 

  • King AJ, Teertstra WR and van der Vliet PC (1997b) Dissociation of the protein primer and DNA polymerase after initiation of adenovirus DNA replication. J Biol Chem 272: 24617–24623

    Article  PubMed  CAS  Google Scholar 

  • Kitamura N, Adler CJ, Rothberg PG, Martinko J, Nathenson SG and Wimmer E (1980) The genome-linked protein of picornaviruses. VII. Genetic mapping of polio-virus VPg by protein and RNA sequence studies. Cell 21: 295–302

    Google Scholar 

  • Lichy JH, Horwitz MS and Hurwitz J (1981) Formation of a covalent complex between the 80,000-dalton adenovirus terminal protein and 5’-dCMP in vitro. Proc Natl Acad Sci USA 78: 2678–2682

    Article  PubMed  CAS  Google Scholar 

  • Lindenbaum JO, Field J and Hurwitz J (1986) The adenovirus DNA binding protein and adenovirus DNA polymerase interact to catalyze elongation of primed DNA templates. J Biol Chem 261: 10218–10227

    PubMed  CAS  Google Scholar 

  • Liu H, Naismith JH and Hay RT (2000) Identification of conserved residues contri- buting to the activities of adenovirus DNA polymerase. J Virol 74: 11681–11689

    Article  PubMed  CAS  Google Scholar 

  • Martin AC, Blanco L, Garcia P, Salas M and Mendez J (1996) In vitro proteinprimed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3’ nucleotide of the linear template: a stepwise sliding-back mechanism. J Mol Biol 260: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Mendez J, Blanco L, Esteban JA, Bernad A and Salas M (1992) Initiation of phi 29 DNA replication occurs at the second 3’ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc Natl Acad Sci USA 89: 9579–9583

    Article  PubMed  CAS  Google Scholar 

  • Monaghan A, Webster A and Hay RT (1994) Adenovirus DNA binding protein: helix destabilising properties. Nucleic Acids Res 22: 742–748

    Article  PubMed  CAS  Google Scholar 

  • Mul YM and van der Vliet PC (1992) Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J 11: 751–760

    PubMed  CAS  Google Scholar 

  • Mul YM and van der Vliet PC (1993) The adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NFI or Oct-1. Nucleic Acids Res 21: 641–647

    Article  PubMed  CAS  Google Scholar 

  • Munn MM and Alberts BM (1991) DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction. J Biol Chem 266: 20034–20044

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH and Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA and Hurwitz J (1983) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80: 4266–4270

    Article  PubMed  CAS  Google Scholar 

  • Parker EJ, Botting CH, Webster A and Hay RT (1998) Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. Nucleic Acids Res 26: 1240–1247

    Article  PubMed  CAS  Google Scholar 

  • Paul AV, van Boom JH, Filippov D and Wimmer E (1998) Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393: 280 - 284

    Article  PubMed  CAS  Google Scholar 

  • Paul AV, Rieder E, Kim DW, van Boom JH and Wimmer E (2000) Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74: 10359–10370

    Article  PubMed  CAS  Google Scholar 

  • Pronk R and van der Vliet PC (1993) The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res 21: 2293–2300

    Article  PubMed  CAS  Google Scholar 

  • Pruijn GJ, van Driel W and van der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322: 656–659

    Article  PubMed  CAS  Google Scholar 

  • Rieder E, Paul AV, Kim DW, van Boom JH and Wimmer E (2000) Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to VPg uridylylation. J Virol 74: 10371–10380

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AC, Park HW, Mao C and Beese LS (2000) Crystal structure of a poi alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 299: 447–462

    Article  PubMed  CAS  Google Scholar 

  • Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60: 39–71

    Article  PubMed  CAS  Google Scholar 

  • Salas M, Miller JT, Leis J and Depamphilis ML (1996) Mechanisms of priming DNA synthesis. In: DePamphilis ML (eds) DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, 131–176

    Google Scholar 

  • Shamoo Y and Steitz TA (1999) Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99: 155–166

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274: 17395–17398

    Article  PubMed  CAS  Google Scholar 

  • Stuiver MH and van der Vliet PC (1990) Adenovirus DNA-binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol 64: 379–386

    PubMed  CAS  Google Scholar 

  • Stuiver MH, Bergsma WG, Arnberg AC, van Amerongen H, van Grondelle R and van der Vliet PC (1992) Structural alterations of double-stranded DNA in complex with the adenovirus DNA-binding protein. Implications for its function in DNA replication. J Mol Biol 225: 999–1011

    Google Scholar 

  • Swaminathan S and Thimmapaya B (1995) Regulation of adenovirus E2 transcription unit. Curr Top Microbiol Immunol 199 (Pt 3): 177–194

    Article  PubMed  CAS  Google Scholar 

  • Temperley SM and Hay RT (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768

    PubMed  CAS  Google Scholar 

  • Temperley SM, Burrow CR, Kelly TJ and Hay RT (1991) Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol 65: 5037–5044

    PubMed  CAS  Google Scholar 

  • Tucker PA, Tsernoglou D, Tucker AD, Coenjaerts FE, Leenders H and van der Vliet PC (1994) Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. EMBO J 13: 2994–3002

    PubMed  CAS  Google Scholar 

  • van der Vliet PC (1995) Adenovirus DNA replication. Curr Top Microbiol Immunol 199: 1–30

    Article  PubMed  Google Scholar 

  • Ward P, Dean FB, O’donnell ME and Berns KI (1998) Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication. J Virol 72: 420–427

    PubMed  CAS  Google Scholar 

  • Zhao Y, Jeruzalmi D, Moarefi I, Leighton L, Lasken R and Kuriyan J (1999) Crystal structure of an archaebacterial DNA polymerase. Structure Fold Des 7: 1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Zijderveld DC, Stuiver MH and van der Vliet PC (1993) The adenovirus DNA binding protein enhances intermolecular DNA renaturation but inhibits intramolecular DNA renaturation. Nucleic Acids Res 21: 2591–2598

    Article  PubMed  CAS  Google Scholar 

  • Zijderveld DC and van der Vliet PC (1994) Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol 68: 1158–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Jong, R.N., van der Vliet, P.C., Brenkman, A.B. (2003). Adenovirus DNA Replication: Protein Priming, Jumping Back and the Role of the DNA Binding Protein DBP. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics