Advertisement

The Multifunctional Role of E1A in the Transcriptional Regulation of CREB/CBP-Dependent Target Genes

  • D. Brockmann
  • H. Esche
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 272)

Abstract

Oncoproteins encoded by the early region lA (E1A) of adenoviruses (Ads) have been shown to be powerful tools to study gene regulatory mechanisms. As ElA proteins lack a sequence-specific DNA-binding activity, they modulate viral and cellular gene expression by interacting directly with a diverse array of cellular factors, among them sequence-specific transcription factors, proteins of the general transcription machinery, co-activators and chromatin-modifying enzymes. By making use of these factors, E1A affects major cellular events such as cell cycle control, differentiation, apoptosis, and oncogenic transformation. In this review we will focus on the interaction of E1A with cellular components involved in the cAMP/PKA signal transduction pathway and we will discuss the consequences of these interactions in respect to the activation of CREB/CBP-dependent target genes.

Keywords

Multifunctional Role Cellular Transcription Factor Retinoblastoma Gene Product Adenoviral Protein General Transcription Machinery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham S, Lobo S,Yaciuk P, Wang HG, Moran E (1993) p300, and p300-associated proteins, are components of TATA-binding protein ( TBP) complexes. Oncogene 8: 1639–1647Google Scholar
  2. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C (1998) A dominant negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18: 967–977PubMedGoogle Scholar
  3. Ait-Si-Ali S, Ramirez S, Barre F-X, Dkhisse F, Magnaghi-Jaulin L, Girault JA, Robin P, Knibiehler M, Pritchard LL, Ducommun B, Trouche D, Harel-Bellan A (1998) Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396: 184–186PubMedCrossRefGoogle Scholar
  4. Arany Z, Sellers WR, Livingston D, Eckner R (1994) E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77: 799–800PubMedCrossRefGoogle Scholar
  5. Arany Z, Newsome D, Oldread E, Livingstone DM, Eckner R (1995) A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374: 81–84PubMedCrossRefGoogle Scholar
  6. Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS (1996) The SV40 large T antigen and Adenovirus EIA oncoproteins interact with distinct isoforms of the transcriptional co-activator p300. EMBO J 15: 2236–2248PubMedGoogle Scholar
  7. Bagchi S, Weinmann R, Raychaudhuri P (1991) The retinoblastoma protein CO-purifies with E2F-1, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65: 1063–1072PubMedCrossRefGoogle Scholar
  8. Bandara LR, Lathangue NB (1991) Adenovirus E1A prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497PubMedCrossRefGoogle Scholar
  9. Bandara LR, Adamczewski JP, Hunt T, Lathangue NB (1991) Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 352: 249–251PubMedCrossRefGoogle Scholar
  10. Banerjee AC, Recupero AJ, Mal A, Piotrkowski AM, Wang D-M, Harter M (1994) The Adenovirus EIA 289R and 243R proteins inhibit the phosphorylation of p300. Oncogene 9: 1733–1737PubMedGoogle Scholar
  11. Annister AJ and Kouzarides (1995) CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J 14: 4758–4762Google Scholar
  12. Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643PubMedCrossRefGoogle Scholar
  13. Bayley ST, Mymryk JS (1994) Adenovirus E1A proteins and transformation. Int J Oncol 5: 425 444Google Scholar
  14. Beebe SJ (1994) The cAMP-dependent protein kinases and cAMP signal transduction. Sem Cancer Biol 5: 285–294Google Scholar
  15. Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944PubMedCrossRefGoogle Scholar
  16. Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ (1999) Mammalian Srb/ Mediator complex is targeted by adenovirus E1A protein. Nature 399: 276–279PubMedCrossRefGoogle Scholar
  17. Boyes J, Byfield P, Nakatani Y, Ogryzko Vv (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598PubMedCrossRefGoogle Scholar
  18. Brehm A, Ohbo K, Zwerschke W, Botquin V, Jansen-Dürr P, Schöler HR (1999) Synergism with germ line transcription factor Oct-4: viral oncoproteins share the ability to mimic a stem cell-specific activity. Mol Cell Biol 19: 2635–2643PubMedGoogle Scholar
  19. Brindle P, Linke S, Montminy M (1993) Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 364: 821–824PubMedCrossRefGoogle Scholar
  20. Brockmann D, Tries B, Esche H (1990) Isolation and characterisation of novel adenovirus type 12 E1A mRNAs by cDNA PCR technique. Virology 179: 585–590PubMedCrossRefGoogle Scholar
  21. Brockmann D, Esche H (1995) Regulation of viral and cellular gene expression by E1A proteins encoded by the oncogenic adenovirus type 12. In: Doerfler W, Böhm P (eds) The Molecular repertoire of Adenoviruses III, Biology and pathogenesis. Springer, Berlin Heidelberg, pp 81–112Google Scholar
  22. Brockmann D, Bury C, Kröner G, Kirch H-C, Esche H (1995) Repression of the c-Jun trans-activation function by the adenovirus type 12 E1A 52R protein correlates with the inhibition of phosphorylation of the c-Jun activation domain. J Biol Chem 270: 10754–10763PubMedCrossRefGoogle Scholar
  23. Cardinaux J-R, Notis JC, Zhang Q, Vo N, Craig JC, Fass DM, Brennan RG, Goodman RH (2000) Recruitment of CREB binding protein is sufficient for CREBmediated gene activation. Mol Cell Biol 20: 1546–1552PubMedCrossRefGoogle Scholar
  24. Cassano S, Gallo A, Buccigrossi V, Porcellini A, Cerillo R, Gottesman ME, Avvedimento EV (1996) Membrane localization of cAMP-dependent protein kinase amplifies cAMP signaling to the nucleus in PC12 cells. J Biol Chem 271: 29870–29875PubMedCrossRefGoogle Scholar
  25. Chakravarti D, Ogryzko V, Kao H-Y, Nash A, Chen H, Nakatani Y, Evans RM (1999) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96: 393–403PubMedCrossRefGoogle Scholar
  26. Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: A signal-regulated transcriptional co-activator controlled by nuclear calcium and CaM kinase IV. Science 281: 1505–1509Google Scholar
  27. Chellappan SP, Kraus VB, Kroger R, Munger K, Howley PM (1992) Adenovirus E lA, simian virus 40 tumor antigen and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retionoblastoma gene product. Proc Natl Acad Sci USA 89: 4549–4553Google Scholar
  28. Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (1998) A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 18: 5355–5363PubMedGoogle Scholar
  29. Chrivia Jc, Kwok RPS, Lamb N, Haniwawa M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859CrossRefGoogle Scholar
  30. Culp JS,Webster LC, Friedman DJ, Smith CL, Huang W-J,Wu Fy-H, Rosenberg M, Ricciardi RP (1988) The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation. Proc Natl Acad Sci USA 85: 64506454Google Scholar
  31. Dallas PB, Yaciuk P, Moran E (1997) Characterization of monoclonal antibodies raised against p300: both p300 and CBP are present in intracellular TBP complexes. J Virol 71: 1726–1731PubMedGoogle Scholar
  32. Dell’acqua ML, Scott JD (1997) Protein kinase A anchoring. J Biol Chem 272: 128811 2884Google Scholar
  33. Dorsman JC, Teunisse AFAS, Zantema A, Van Der Eb Aj (1997) The adenovirus 12 E1A proteins can bind directly to proteins of the p300 transcription co-activator family, including the CREB-binding protein CBP and p300. J Gen Virol 78: 423–426PubMedGoogle Scholar
  34. Dyson N, Guida P, Mccall C, Harlow E (1992) Adenovirus E1A makes two distinct contacts with the retinoblastoma protein. J Virol 66: 4606–4611PubMedGoogle Scholar
  35. Eckner R, Ewen ME, Newsome D, Gerdes M, Decaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884PubMedCrossRefGoogle Scholar
  36. Edwards AS, Scott JD (2000) A-kinase anchoring proteins: protein kinase A and beyond. Curr Opin in Cell Biol 12: 217–221.CrossRefGoogle Scholar
  37. Egan C, Jelsma TN, Howe JA, Bayley ST, Ferguson B, Branton PE (1988) Mapping of cellular protein-binding sites on the products of early-region lA of human adenovirus type 5. Mol Cell Biol 8: 3955–3959PubMedGoogle Scholar
  38. Fang SM, Burton ZF (1996) RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J Biol Chem 271: 11 703–11 709Google Scholar
  39. Fattaey AR, Harlow E, Helin K (1993) Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes. Mol Cell Biol 13: 7267–7277PubMedGoogle Scholar
  40. Fax P,Lipinski KS, Esche H, Brockmann D (2000 a) cAMP-independent activation of the Adenovirus type 12 E2 promoter correlates with the recruitment of CREB-1/ ATF-1, E1Al2s, and CBP to the E2-CRE. J Biol Chem 275: 8911–8920Google Scholar
  41. Fax P, Lehmkühler O, Kühn C, Esche H, Brockmann D (2000b) ElAl2$-mediated activation of the adenovirus type 12 E2 promoter depends on the histone acetyltransferase activity of p300/CBP. J Biol Chem 275:40 554–40 560Google Scholar
  42. Fax P, Carlson CR, Collas P, Taskén K, Esche H, Brockmann D (2001) Binding of PKA-RIIÂ to the Adenovirus E1Al2s oncoprotein correlates with its nuclear translocation and an increase in PKA-dependent promoter activity. Virology 285: 30–41PubMedCrossRefGoogle Scholar
  43. Feliciello A, Li Y, Avvedimento EV, Gottesman ME, Rubin CS (1997) A-kinase anchor protein 75 increases the rate and magnitude of cAMP signaling to the nucleus. Curr Biol 7: 1011–1014PubMedCrossRefGoogle Scholar
  44. Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H, Rosenberg M (1985) E1A 13S and 12S mRNA products made in Escherichia coli both function as nuclear-localized transcription activators but do not directly bind DNA. Mol Cell Biol 5: 2653–2661PubMedGoogle Scholar
  45. Flint J, Shenk T (1997) Viral transactivating proteins. Annu Rev Genet 31: 177–212PubMedCrossRefGoogle Scholar
  46. Florin-Christensen M, Missero C, Florin-Christensen J, Tranque P, Ramon Y Cajal S, Dotto GP (1993) Counteracting effects of Ela transformation on cAMP growth inhibition. Exp Cell Res 207: 57–61PubMedCrossRefGoogle Scholar
  47. Fry CJ, Peterson CL (2001) Chromatin remodelling enzymes: who’s on first? Curr Biol 11: 185–197CrossRefGoogle Scholar
  48. Geisberg VJ, Chen JL, Ricciardi R (1995) Subregions of the adenovirus E1A trans-activation domain target multiple components of the TFIID complex. Mol Cell Biol 15: 6283–6290PubMedGoogle Scholar
  49. Giebler HA, Loring JE, Van Orden K, Colgin MA, Garrus JE, Escudero KW, Brauweiler A, Nyborg JK (1997) Anchoring of CREB binding protein to the human T-cell leukemia virus type 1 promoter: a molecular mechanism of Tax trans-activation. Mol Cell Biol 17: 5156–64PubMedGoogle Scholar
  50. Ginty DD, Glowacka D, Bader DS, Hidaka H, Wagner JD (1991) Induction of immediate early genes by Ca’ influx requires cAMP-dependent protein kinase in PC12 cells. J Biol Chem 266: 17454–17458PubMedGoogle Scholar
  51. Giordano A, Avantaggiati ML (1999) p300 and CBP: partners for life and death. J Cell Physiol 181: 218–230Google Scholar
  52. Glenn GM, Ricciardi RP (1987) An adenovirus type 5 ElA protein with a single amino acid substitution blocks wild-type E1A transactivation. Mol Cell Biol 7: 1004–1001PubMedGoogle Scholar
  53. Goldman PS, van Tran K, Goodman RH (1997) The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog Horm Res 52: 103–119PubMedGoogle Scholar
  54. Gonzales GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene tran scription by phosphorylation of CREB at Serine 133. Cell 59: 675–680CrossRefGoogle Scholar
  55. Gonzalez GA, Menzel P, Leonard J, Fischer WH, Montminy MR (1991) Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol Cell Biol 11: 1306–1312PubMedGoogle Scholar
  56. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553–1577PubMedGoogle Scholar
  57. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352PubMedCrossRefGoogle Scholar
  58. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606PubMedCrossRefGoogle Scholar
  59. Hagiwara M, Brindle P, Harotunian A, Armstrong R, Rivier J, Vale W, Tsien R, Montminy MR (1993) Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol 13: 4852–4859PubMedGoogle Scholar
  60. Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu H-Y, Wang JYJ, Nakatani Y, Kedes L (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein EIA. Cell 96: 405–413PubMedCrossRefGoogle Scholar
  61. Hamel PA, Gill RM, Phillips RA, Gallie BL (1992) Regions controlling hyperphosphorylation and conformation of the retinoblastoma gene product are independent of domains required for transcriptional repression. Oncogene 7: 693–701PubMedGoogle Scholar
  62. Harrod R, Tang Y, Nicot C, Lu HS, Vassilev A, Nakatani Y, Giam C-Z (1998) An exposed KID-like domain in human T-cell lymphotropic virus type 1 Tax is re- sponsible for the recruitment of coactivators CBP/p300. Mol Cell Biol 18: 5052–5061PubMedGoogle Scholar
  63. Hiebert SW, LIPP M, Nevins JR (1989) E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 86: 35943598Google Scholar
  64. Hiebert SW, Blake M,Azizkhan J, Nevins JR (1991) Role of E2F transcription factor in E1A-mediated trans-activation of cellular genes. J Virol 65: 3547–3552Google Scholar
  65. Horikoshi N, Maguire K, Kralli A, Maldonado E, Reinberg D, Weinmann R (1991) Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor IID. Proc Natl Acad Sci USA 88: 5124–5128PubMedCrossRefGoogle Scholar
  66. Hu S, Chrivia J, Ghosh A (1999) Regulation of CBP-mediated transcription by neuronal calcium signalling. Neuron 22: 799–808PubMedCrossRefGoogle Scholar
  67. Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS (1997) Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem 272: 8057–8064PubMedCrossRefGoogle Scholar
  68. Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7: 689–692PubMedCrossRefGoogle Scholar
  69. Inostroza JA, Mermelstein FH, Ha I, Lane WS, Reinberg D (1992) Drl, a TATA binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70: 477–489PubMedCrossRefGoogle Scholar
  70. Jones N, Shenk T (1979) An adenovirus type 5 early gene function regulates expression of other early genes. Proc Natl Acad Sci USA 76: 3665–3669PubMedCrossRefGoogle Scholar
  71. Kannabiran C, Morris GF, Mathews MB (1999) Dual action of the adenovirus E1A 243R oncoprotein on the human proliferating cell nuclear antigen promoter: repression of transcriptional activation by p53. Oncogene 18: 7825–7833PubMedCrossRefGoogle Scholar
  72. Karuppayil SM, Moran E, Das G (1998) Differential regulation of p53-dependent and -independent proliferating cell nuclear antigen gene transcription by 12 S E1A oncoprotein requires CBP. J Biol Chem 273: 17303–17306PubMedCrossRefGoogle Scholar
  73. Kawasaki H, Eckner R, Yao TP, Taira K, Chid R, Livingston DM, Yokoyma KK (1998) Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393: 284–289PubMedCrossRefGoogle Scholar
  74. Kee B, Arias J and Montminy M (1996) Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J Biol Chem 271: 2373–2375PubMedCrossRefGoogle Scholar
  75. Kimelmann D, Miller SJ, Porter D, Roberts BE (1985) E1A regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53: 399–409Google Scholar
  76. Kitabayashi I, Eckner R, Arany Z, Chid R, Gachelin G, Livingston DMGoogle Scholar
  77. Yokoyama KK (1995) Phosphorylation of the Adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during differentiation of F9 cells. EMBO J 14: 3496–3509PubMedGoogle Scholar
  78. Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, Mcinerney EM, Mullen T-M, Glass CK, Rosenfeld MG (1998) ranscription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279: 703–707Google Scholar
  79. Kraus VB, Inostroza JA,Yeung K, Reinberg D, Nevins JR (1994) Interaction of the Drl inhibitory factor with the TATA binding protein is disrupted by adenovirus E1A. Proc Natl Acad Sci USA 91: 6279–628PubMedCrossRefGoogle Scholar
  80. Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM, Yao TP (2000) Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14: 272–277PubMedGoogle Scholar
  81. Kurokawa R, Kalafus D, Ogliastro M-H, Kioussi C, Xu L, Torchia J, Rosenfeld MG, GLASS CK (1998) Differential use of CREB binding protein-coactivator complexes. Science 279: 700–703Google Scholar
  82. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370: 223–226PubMedCrossRefGoogle Scholar
  83. Kwok RP, Laurance ME, Lundblad JR, Goldman PS, Shin H, Connor LM, Marriott SJ, Goodman RH (1996) Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380: 642–646PubMedCrossRefGoogle Scholar
  84. Labrie C, Morris GF, Mathews M (1993) A complex promoter element mediates transactivation of the human proliferating cell nuclear antigen promoter by the 243-residue adenovirus E1A oncoprotein. Mol Cell Biol 13: 1697–1707PubMedGoogle Scholar
  85. Labrie C, Lee BH, Mathews MB (1995) Transcription factors RFX1/EF-C and ATF-1 associate with the adenovirus E1A-responsive element of the human proliferating cell nuclear antigen promoter. Nucleic Acids Res 23: 3732–3741PubMedCrossRefGoogle Scholar
  86. Lee Kaw, Fink JS, Goodman RH and Green MR (1989) Distinguishable promoter elements are involved in transcriptional activation by E1A and cyclic AMP. Mol Cell Biol 9: 4390–4397Google Scholar
  87. Lee WS, Kao CC, Bryant GO, LIu X, Berk AJ (1991) Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67: 365–376PubMedCrossRefGoogle Scholar
  88. Lee JS, See RH, Galvin KM, Wang J, Shi Y (1995) Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Res 23: 925–931PubMedCrossRefGoogle Scholar
  89. Lee B, Mathews MB (1997) Transcriptional coactivator cAMP response element binding protein mediates induction of the human proliferating cell nuclear antigen promoter by the adenovirus E1A oncoprotein. Proc Natl Acad Sci USA 94: 4481–4486PubMedCrossRefGoogle Scholar
  90. Lee BH, Liu M, Mathews MB (1998) Regulation of the human proliferating cell nuclear antigen promoter by the adenovirus E1A-associated protein p107. J Virol 72: 1138–1145PubMedGoogle Scholar
  91. Lei L, Ren D, Burton ZF (1999) The RAP74 subunit of human transcription factor IIF has similar roles in initiation and elongation. Mol Cell Biol 19: 8372–8382PubMedGoogle Scholar
  92. Lester LB, Langeberg LK, Scott JD (1997) Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci USA 94: 14942–14947PubMedCrossRefGoogle Scholar
  93. Lewis JB, Mathews MB (1980) Control of adenovirus gene expression: a class of immediate early products. Cell 21: 303–313PubMedCrossRefGoogle Scholar
  94. Lewis BA, Tullis G, Seto E, Horikoshi N,Weinmann R, Shenk T (1995) Adenovirus E1A proteins interact with the cellular YY1 transcription factor. J Virol 69: 1628–1636Google Scholar
  95. Li Y, Graham C, Lacy S, Duncan AM, Whyte P (1993) The adenovirus E1A associated 130 kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclin A and E. Genes Dev 7: 2366–2377CrossRefGoogle Scholar
  96. Lillie JW, Green MR (1989) Transcription activation by the adenovirus Ela protein. Nature 338: 39–44PubMedCrossRefGoogle Scholar
  97. Lin R-Y, Moss SB, Rubin CS (1995) Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells. J Biol Chem 270: 27804–27811PubMedCrossRefGoogle Scholar
  98. Lipinski KS, Esche H, Brockmann D (1998) Amino acids 1–29 of the adenovirus serotypes 12 and 2 E1A proteins interact with rap30 ( TFIIF) and TBP in vitro. Virus Res 54: 99–106Google Scholar
  99. Lipinski KS, Fax P, Wilker B, Hennemann H, Brockmann D, Esche H (1999) Differences in the interactions of oncogenic adenovirus 12 early region lA and nononcogenic adenovirus 2 early region lA with the cellular coactivators p300 and CBP. Virology 255: 94–105PubMedCrossRefGoogle Scholar
  100. Liu F, Green MR (1990) A specific member of the ATF transcription factor family can mediate transcription activation by the Adenovirus E1A protein. Cell 61: 1217–1224PubMedCrossRefGoogle Scholar
  101. Liu F, Green MR (1994) Promoter targeting by Adenovirus E1A through interaction with different cellular DNA-binding domains. Nature 368: 520–525PubMedCrossRefGoogle Scholar
  102. Liu M, Lee BH, Mathews MB (1999) Involvement of RFX1 protein in the regulation of the human proliferating cell nuclear antigen promoter. J Biol Chem 274: 15433–15439PubMedCrossRefGoogle Scholar
  103. Loeken MR (1993) Effects of mutation of the CREB binding site of the somatostatin promoter on cyclic AMP responsiveness in CV-1 cells. Gene Expr 3: 253–264PubMedGoogle Scholar
  104. Lundblad JR, Kwok RPS, Laurance ME, Harter ML and Goodman RH (1995) Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374: 85–88PubMedCrossRefGoogle Scholar
  105. Martin KJ, Lillie JW, Green MR (1990) Evidence for interaction of different eukary- otic transcriptional activators with distinct cellular targets. Nature 346: 147–152PubMedCrossRefGoogle Scholar
  106. Mazzarelli JM, Aktins GB, Geisberg JV, Ricciardi RP (1995) The viral oncopro teins Ad5 Ela, HPV16 E7 and SV40 Tag bind a common region of the TBP-associated factor-110.Oncogene 11: 1859–1864Google Scholar
  107. Mazzarelli JM, Mengus G, Davidson I, Ricciardi RP (1997) The transactivation domain of adenovirus E1A interacts with the C terminus of human TAF(II)135. J Virol 71: 7978–7983PubMedGoogle Scholar
  108. Mermelstein F,Yeung K, Cao J, Inostroza JA, Erdjument-Bromage H, Eagelson K, Landsman D, Levitt P, Tempst P, Reinberg D (1996) Requirement of a core-pressor for Drl-mediated repression of transcription. Genes Dev 10: 1033–1048CrossRefGoogle Scholar
  109. Moran E, Mathews MB (1987) Multiple functional domains in the adenovirus E1A gene. Cell 48: 177–187PubMedCrossRefGoogle Scholar
  110. Morris GF, Mathews MB (1991) The adenovirus E1A transforming protein activates the proliferating cell nuclear antigen promoter via an activating transcription factor site. J Virol 12: 6397–6406Google Scholar
  111. Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D (1998) Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol Cell 4: 457–467CrossRefGoogle Scholar
  112. Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, MONTMINY M (1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90: 1107–1112PubMedCrossRefGoogle Scholar
  113. Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26: 213–220PubMedCrossRefGoogle Scholar
  114. O’connor MJ, Zimmermann H, Nielsen S, Bernard H-U, Kouzarides T (1999) Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J Virol 73: 3574–3581PubMedGoogle Scholar
  115. Ogryzko VV, Schilz RL, Russanova V, Howard BH, Nakatani Y (1996) The tran scriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959PubMedCrossRefGoogle Scholar
  116. Parker D, Ferreri K, Nakajima T, Lamorte VJ, Evans R, SC, Hoeger C, Montminy M (1996) Phosphorylation of CREB at Ser133 induces complex formation with CBP via a direct mechanism. Mol Cell Biol 16: 694–703PubMedGoogle Scholar
  117. Pei R, Berk AJ (1989) Multiple transcription factor binding sites mediate adenovirus E1A transactivation. J Virol 63: 3499–3506PubMedGoogle Scholar
  118. Pereira DS, Jelinek T, Graham FL (1994) The Adenovirus E1A-associated p300 protein is differentially phosphorylated in Ad12 E1A- compared to Ad5 E1A-transformed cells. Int J Oncol 5: 1197–1205PubMedGoogle Scholar
  119. Perricaudet M, Lemoullec JM, Tiolais P, Pettersson U (1980) Structure Of tWO adeno-virus type 12 transforming polypeptides and their evolutionary implications. Nature 288: 174–176PubMedCrossRefGoogle Scholar
  120. Puri P, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard B, Kedes L, Wang JŸ, Graessmann A, Nakatani Y, Levrero M (1997) Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1: 35–45PubMedCrossRefGoogle Scholar
  121. Quinn PG (1993) Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J Biol Chem 268: 16999–17009PubMedGoogle Scholar
  122. Radhakrishnan I, PÉRez-Alvarado GC, Parker D, Dyson HJ, Montminy MRGoogle Scholar
  123. Wright PE (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:coactivator interaction. Cell 91: 741–752PubMedCrossRefGoogle Scholar
  124. Reid JL, Bannister AJ, Zegerman P, Martinez-Balbas MA, Kouzarides T (1998) E1A directly binds and regulates the P/CAF acetyltransferase. EMBO J 17: 44694477Google Scholar
  125. Rochette-Egly C, Fromental C, Chambon P (1990) General repression of enhancer activity by the adenovirus 2 E1A proteins. Genes Dev 4: 137–150PubMedCrossRefGoogle Scholar
  126. Sassone-Corsi P (1988) Cyclic AMP induction of early Adenovirus promoters involves sequences required for E1A transactivation. Proc Natl Acad Sci USA 85: 7192–7196PubMedCrossRefGoogle Scholar
  127. Sawada Y, Fujinaga K (1980) Mapping of adenovirus 12 mRNAs transcribed from the transforming region. J Virol 36: 639–651PubMedGoogle Scholar
  128. Schöler HR, Ciesiolka T, Gruss P (1991) A nexus between Oct-4 and E1A: implications for gene regulation on embryonic stem cells. Cell 66: 291–304PubMedCrossRefGoogle Scholar
  129. Shaywitz AJ, Greenberg ME (1999) CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68: 821–861Google Scholar
  130. Shenk T (1996) Adenoviridae and their replication. In: Fields B, Howley P, Knipe D (eds) Virology. Raven Press, New York, pp 2111–2148Google Scholar
  131. Sidle A, Palaty C, Dirks P, Wiggan O, Kiess M, Gill RM, Wong AK, Hamel PA (1996) Activity of the retinoblastoma family proteins, pRB, p107, and p130, during cellular proliferation and differentiation. Crit Rev Biochem Mol Biol 31: 237–271PubMedCrossRefGoogle Scholar
  132. Srivastava RK, Lee YN, Noguchi K, Park YG, Ellis MJC, Jeong J-S, Kim SN, Cho-Chung YS (1998) The RIIâ regulatory subunit of protein kinase A binds to cAMP response element: An alternative cAMP signalling pathway. Proc Natl Acad Sci USA 95: 6687–6692Google Scholar
  133. Stephens C, Harlow E (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J 6: 2027–2035PubMedGoogle Scholar
  134. Sundqvist A, Sollerbrant K, Svensson C (1998) The C-terminal region of Adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex. FEBS Lett 429: 183–188PubMedCrossRefGoogle Scholar
  135. Suomalainen M, Nakano MY, Boucke K, Keller S, Greber OF (2001) Adenovirusactivated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J 20: 1310–1319PubMedCrossRefGoogle Scholar
  136. Swaminathan S, Thimmapaya B (1995) Regulation of Adenovirus E2 transcription unit. In: Doerfler W, Böhm P (eds) The Molecular repertoire of Adenoviruses III, Biology and pathogenesis. Springer, Berlin Heidelberg, pp 177–194Google Scholar
  137. Swope DL, Mueller CL, Chrivia IC (1996) CREB-binding protein activates transcription through multiple domains. J Biol Chem 271: 28138–28145PubMedCrossRefGoogle Scholar
  138. TAN S, Aso T, Conaway RC AND Conaway JW (1994) Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J Biol Chem 269:25 684–25 691Google Scholar
  139. Taskén K, Skalhegg BS, Taskén KA, Solberg R, Knutsen HK, Levy FO, Sandberg M, Orstavik S, Larsen T, Johansen AK, Vang T, Schrader HP, Reinton NT, Torgersen KM, Hansson V, Jahnsen T (1997) Structure, function, and regulation of human cAMP-dependent protein kinases. In: Corbin J, Francis S (eds) Signal Transduction in Health and Disease, Advances in Second Messenger and Phosphoprotein Research. Lippincott-Raven Publishers, Philadelphia, pp 191204Google Scholar
  140. Thomas MJ, Seto E (1999) Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236: 197–208PubMedCrossRefGoogle Scholar
  141. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, GLASS CK, ROSENFELD G (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677–684PubMedCrossRefGoogle Scholar
  142. Tortora G, Cho-Chung YS (1990) Type II regulatory subunit of protein kinase restores cAMP-dependent transcription in a cAMP-unresponsive cell line. J Biol Chem 265: 18 067–18 070Google Scholar
  143. Trendelenburg G, Hummel M, Riecken EO, Hanski C (1996) Molecular characterization of AKAP149, a novel kinase anchor protein with a KH domain. Biochim Biophys Res Commun 225: 313–319CrossRefGoogle Scholar
  144. Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk SJ, Gallimore PH (2000) Regulation of the 26 S proteasome by adenovirus E1A. EMBO 19: 47594773Google Scholar
  145. Ulfendahl PJ, Linder S, Kreivi JP, Nordqvist K, Sevensson C, Hultberg H, Akusjarvi G (1987) A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBO J 6: 2037–2044PubMedGoogle Scholar
  146. Waltzer L, Bienz M (1998) Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395: 521–525PubMedCrossRefGoogle Scholar
  147. Wang H-GH, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E (1993 a) Identification of specific adenovirus ElA N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476–488Google Scholar
  148. Wang H-GH,Yaciuk P, Ricciardi RP, Green M,Yokoyama K, Moran E (1993b) The E1A products of oncogenic adenovirus serotype 12 include amino-terminally modified forms able to bind the retinoblastoma protein but not p300. J Virol 67: 4804–4813PubMedGoogle Scholar
  149. Webster LC, Ricciardi RP (1991) Trans-dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor. Mol Cell Biol 11: 4287–4296PubMedGoogle Scholar
  150. Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463–473PubMedCrossRefGoogle Scholar
  151. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334: 124–129PubMedCrossRefGoogle Scholar
  152. Yaciuk P, Moran E (1991) Analysis with specific polyclonal antiserum indicates that the ElA-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol Cell Biol 11: 5389–5397PubMedGoogle Scholar
  153. Yang XL, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBPassociated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324PubMedCrossRefGoogle Scholar
  154. Yao TP, Ku G, Zhou N, Scully R, Livingston DM (1996) The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 93: 10 626–10 631Google Scholar
  155. Yao TP, OH SP, Fuchs M, Zhou ND, Chng LE, Newsome D, Bronson T, LI E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372PubMedCrossRefGoogle Scholar
  156. Yee SP and Branton PE (1985) Detection of cellular proteins associated with human adenovirus type 5 early region lA polypeptides. Virology 147: 142–153PubMedCrossRefGoogle Scholar
  157. Zhang JJ,Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr (1996) Two contact regions between Statl and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA 93: 15092–15096PubMedCrossRefGoogle Scholar
  158. Zhang Q, Yao H,Vo N, Goodman RH (2000) Acetylation of Adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc Natl Acad Sci USA 97: 14323–14328CrossRefGoogle Scholar
  159. Zu YL, Takamatsu Y, Zhao MJ, Maekawa T, Handa H, Ishii S (1992) Transcriptional regulation by a point mutant of adenovirus-2 E1A product lacking DNA binding activity. J Biol Chem 267: 20161–20187Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. Brockmann
    • 1
  • H. Esche
    • 1
  1. 1.Institute of Molecular Biology (Cancer Research)University of Essen Medical SchoolEssenGermany

Personalised recommendations