Structural Studies on Adenoviruses

  • C. San Martín
  • R. M. Burnett
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 272)


The adenovirus genome encodes more than 40 proteins, of which 11 combine with the viral DNA to form an icosahedral capsid of ~ 150 MDa molecular weight and ~ 900 Å in diameter. This chapter reviews the information that structural biology techniques have provided about the adenovirus proteins and capsid. The structures of two capsid proteins (hexon and fiber) and two non-structural polypeptides (DNA-binding protein and protease) have been solved by X-ray crystallography. Fiber and its knob have been the focus of the latest structural studies, due to their role in host recognition and conseqnently in virus targeting for human gene therapy.The current model for hte large capsid comes from a combination of electron microscopy and crystallogrphy. The resultand imgaes have revealed a surprising similarity between adenovirus and a bacterial virus, Which suggests their common evolutionary origin.


Adenovirus Type Human Adenovirus Major Coat Protein Penton Base Minor Capsid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AGW, Rayment I, Rossmann MG, Suck D, Tsukihara T (1980) Structure of southern bean mosaic virus at 2.8 A resolution. Nature 286: 33–39PubMedCrossRefGoogle Scholar
  2. Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337: 709–716PubMedCrossRefGoogle Scholar
  3. Akalu A, Liebermann H, Bauer U, Granzow H, Seidel W (1999) The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. J Virol 73: 6182–6187PubMedGoogle Scholar
  4. Anderson CW (1990) The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177: 259–272PubMedCrossRefGoogle Scholar
  5. Arnberg N, Edlund K, Kidd AH, Wadell G (2000) Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74: 42–48PubMedCrossRefGoogle Scholar
  6. Athappilly FK, Murali R, RUx JJ, CAI Z, Burnett RM (1994) The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. J Mol Biol 242: 430–455PubMedCrossRefGoogle Scholar
  7. babiuk LA, tikoo SK (2000) Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J Biotechnol 83: 105–113PubMedCrossRefGoogle Scholar
  8. Bai M, Harfe B, Freimuth P (1993) Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol 67: 5198–5205PubMedGoogle Scholar
  9. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294: 93–96PubMedCrossRefGoogle Scholar
  10. Bamford DH, Caldentey J, Bamford Jkh (1995) Bacteriophage PRD1: a broad host range dsDNA tectivirus with an internal membrane. Adv Virus Res 45: 281–319PubMedCrossRefGoogle Scholar
  11. Bamford Dh, Burnett Rm, Stuart DI (2002a) Evolution of viral structure. Theoretical Population Biology 61: 461–470PubMedCrossRefGoogle Scholar
  12. Bamford JKH, Bamford DH (2000) A new mutant class, made by targeted muta-genesis, of phage PRD1 reveals that protein P5 connects the receptor binding protein to the vertex. J Virol 74: 7781–7786PubMedCrossRefGoogle Scholar
  13. Bamford JKH, Cockburn JJB, Diprose J, Grimes JM, Sutton G, Stuart DI, Bamford DH (2002b) Diffraction quality crystals of PRD1, a 66-MDa dsDNA virus with an internal membrane. J Struct Biol 139: 103–112PubMedCrossRefGoogle Scholar
  14. Baniecki ML, Mcgrath WJ, Mcwhirter SM, LI C, Toledo DL, Pellicena P, Barnard DL, Thorn KS, Mangel WF (2001) Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc. Biochemistry 40: 12349–12356PubMedCrossRefGoogle Scholar
  15. Baniecki ML, Mcgrath WJ, Dauter Z, Mangel WF (2002) Adenovirus proteinase: crystallization and preliminary X-ray diffraction studies to atomic resolution. Acta Crystallogr D58: 1462–1464Google Scholar
  16. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104: 441–451PubMedCrossRefGoogle Scholar
  17. Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25: 624–631PubMedCrossRefGoogle Scholar
  18. Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG (1998) The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci USA 95: 4140–4145PubMedCrossRefGoogle Scholar
  19. Belnap DM, Steven AC (2000) `Déjà vu all over again’: the similar structures of bacteriophage PRD1 and adenovirus. Trends Microbio18:91–93Google Scholar
  20. Benkö M, Harrach B, Russell WC (2000) Adenoviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) Virus Taxonomy. Academic Press, San Diego, pp 227–238Google Scholar
  21. Benson SD, Bamford JKH, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98: 825–833PubMedCrossRefGoogle Scholar
  22. Benson SD, Bamford JKH, Bamford DH, Burnett RM (2002) The X-ray crystal structure of P3, the major coat protein of the lipid-containing bacteriophage PRD 1, at 1.65 A resolution. Acta Crystallogr D58: 39–59Google Scholar
  23. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horw IT MS, Crowell RL, Finberg RW (1997) Isolation of a Common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323PubMedCrossRefGoogle Scholar
  24. Bewley MC, Springer K, Zhang Y-B, Freimuth P, Flanagan JM (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286: 1579–1583Google Scholar
  25. Boulanger PA, Torpier G, Biserte G (1970) Investigation on intranuclear para- crystalline inclusions induced by adenovirus 5 in KB cells. J Gen Virol 6: 329–332PubMedCrossRefGoogle Scholar
  26. Brown DT, Westphal M, Burlingham BT, Winterhoff U, DOERFLER W (1975)Google Scholar
  27. Structure and composition of the adenovirus type 2 core. J Virol 16:366–387Google Scholar
  28. Burnett RM (1985) The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture. J Mol Biol 185: 125–143PubMedCrossRefGoogle Scholar
  29. Burnett RM (1997) The structure of adenovirus. In: Chiu W, Burnett RM, Garcea RL (eds) Structural biology of viruses. Oxford University Press, New York, pp 209–238Google Scholar
  30. Butcher SJ, Bamford DH, Fuller SD (1995) DNA packaging orders the membrane of bacteriophage PRD1. EMBO J 14: 6078–6086Google Scholar
  31. Caldentey J, Tuma R, Bamford DH (2000) Assembly of bacteriophage PRD1 spike complex: role of the multidomain protein P5. Biochemistry 39: 10566–10573PubMedCrossRefGoogle Scholar
  32. Caldentey J, Blanco L, Bamford DH, Salas M (1993) In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucleic Acids Res 21: 3725–3730Google Scholar
  33. Caspar Dld, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27: 1–24CrossRefGoogle Scholar
  34. Cerritelli ME, Cheng N, Rosenberg AH, Mcpherson CE, Boom FP, Steven AC (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91: 271–280PubMedCrossRefGoogle Scholar
  35. Chappell JD, Prota AE, Dermody TS, Stehle T (2002) Crystal structure of reovirus attachment protein al reveals evolutionary relationship to adenovirus fiber. EMBO J 21: 1–11CrossRefGoogle Scholar
  36. Chatterjee PK, Flint SJ (1987) Adenovirus type 2 endopeptidase: an unusual phos- phoprotein enzyme matured by autocatalysis. Proc Natl Acad Sci USA 84: 714–718PubMedCrossRefGoogle Scholar
  37. Chatterjee PK, Vayda ME, Flint SJ (1986) Identification of proteins and protein domains that contact DNA within adenovirus nucleoprotein cores by ultraviolet light crosslinking of oligonucleotides 32P-labelled in vivo. J Mol Biol 188: 23–37PubMedCrossRefGoogle Scholar
  38. Chelvanayagam G, Heringa J, Argos P (1992) Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. J Mol Biol 228: 220–242PubMedCrossRefGoogle Scholar
  39. Chiu CY, Mathias P, Nemerow GR, Stewart PL (1999) Structure of adenovirus complexed with its internalization receptor, a ß,/3 5 integrin. J Virol 73: 6759–6768PubMedGoogle Scholar
  40. Chid CY, Wu E, Brown SL, VON Seggern DJ, Nemerow GR, Stewart PL (2001)Google Scholar
  41. Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol 75:5375–5380Google Scholar
  42. Choi H-K, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G (1991) Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354: 37–43PubMedCrossRefGoogle Scholar
  43. Chroboczek J, Ruigrok RW, Cusack S (1995) Adenovirus fiber. Curr Top Microbiol Immunol 199: 163–200PubMedCrossRefGoogle Scholar
  44. Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98: 15191–15196PubMedCrossRefGoogle Scholar
  45. Colby WW, Shenk T (1981) Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39: 977–980PubMedGoogle Scholar
  46. Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE, Steven AC (2001) Virus maturation involving large subunit rotations and local refolding. Science 292: 744–748PubMedCrossRefGoogle Scholar
  47. Dekker J, Kanellopoulos PN, Van Oosterhout Jawm, Stier G, Tucker PA, Van Der Vliet PC (1998) ATP-independent DNA unwinding by the adenovirus single-stranded DNA binding protein requires a flexible DNA binding loop. J Mol Biol 277: 825–838PubMedCrossRefGoogle Scholar
  48. Dekker J, Kanellopoulos PN, Loonstra AK, VAN Oosterhout Jawm, Leonard K, Tucker PA, VAN Der Vliet PC (1997) Multimerization of the adenovirus DNA-binding protein is the driving force for ATP-independent DNA unwinding during strand displacement synthesis. EMBO J 16: 1455–1463CrossRefGoogle Scholar
  49. Devaux C, Timmins PA, Berthet-Colominas C (1983) Structural studies of adenovirus type 2 by neutron and X-ray scattering. J Mol Biol 167: 119–132PubMedCrossRefGoogle Scholar
  50. Ding J, Mcgrath WJ, Sweet RM, Mangel WF (1996) Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J 15: 1778–1783Google Scholar
  51. Dmitriev IP, Kashentseva EA, Curiel DT (2002) Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 76: 6893–6899PubMedCrossRefGoogle Scholar
  52. Durmort C, Stehlin C, Schoehn G, Mitraki A, Drouet E, Cusack S, Burmeister WP (2001) Structure of the fiber head of Ad3, a non-CAR-binding serotype of adenovirus. Virology 285: 302–312PubMedCrossRefGoogle Scholar
  53. Earnshaw WC, HARRISON SC (1977) DNA arrangement in isometric phage heads. Nature 268: 598–602PubMedCrossRefGoogle Scholar
  54. Earnshaw WC, KING J, HARRISON SC, EISERLING FA (1978) The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell 14: 559–568PubMedCrossRefGoogle Scholar
  55. Everitt E, Lutter L, Philipson L (1975) Structural proteins of adenoviruses. XII. Location and neighbor relationship among proteins of adenovirion type 2 as revealed by enzymatic iodination, immunoprecipitation and chemical cross-linking. Virology 67: 197–208PubMedCrossRefGoogle Scholar
  56. Favier A-L, Schoehn G, Jaquinod M, Harsi C, Chroboczek J (2002) Structural studies of human enteric adenovirus type 41. Virology 293: 75–85PubMedCrossRefGoogle Scholar
  57. Fender P, Ruigrok Rwh, Gout E, Buffet S, Chroboczek J (1997) Adenovirus dodecahedron, a new vector for human gene transfer. Nature Biotechnol 15: 52–56CrossRefGoogle Scholar
  58. Furcinitti PS, Van Oostrum J, Burnett RM (1989) Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 8: 3563–3570Google Scholar
  59. Ghosh-Choudhury G, Haj-Ahmad Y, Graham FL (1987) Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 6: 1733–1739Google Scholar
  60. Grahn AM, Caldentey J, Bamford JKH, Bamford DH (1999) Stable packaging of phage PRD 1 DNA requires adsorption protein P2, which binds to the IncP plasmidencoded conjugative transfer complex. J Bacteriol 181: 6689–6696PubMedGoogle Scholar
  61. Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease in virus entry into cells. EMBO J 15: 1766–1777Google Scholar
  62. Green NM, Wrigley NG, Russell WC, Martin SR, Mclachlan AD (1983) Evidence for a repeating cross-/3 sheet structure in the adenovirus fibre. EMBO J 2: 1357–1365Google Scholar
  63. Grimes JM, Jakana J, Ghosh M, Basak AK, Roy P, Chiu W, Stuart DI, Prasad Bvv (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5: 885–893PubMedCrossRefGoogle Scholar
  64. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, ZiéNtara S, Mertens PPC, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395: 470–478PubMedCrossRefGoogle Scholar
  65. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276: 368–373PubMedCrossRefGoogle Scholar
  66. Hendrix RW (1999) Evolution: the long evolutionary reach of viruses. Curr Biol 9: R914–917PubMedCrossRefGoogle Scholar
  67. Henry CJ, Slifkin M, Merkow LP, Pardo M (1971) The ultrastructure and nature of adenovirus type 2-induced paracrystalline formations. Virology 44: 215–218PubMedCrossRefGoogle Scholar
  68. Henry LJ, XIA D, Wilke ME, Deisenhofer J, Gerard RD (1994) Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 68: 5239–5246PubMedGoogle Scholar
  69. Hess M, Cuzange A, Ruigrok RWH, Chroboczek J, Jacrot B (1995) The avian adenovirus penton: two fibres and one base. J Mol Biol 252: 379–385PubMedCrossRefGoogle Scholar
  70. Horne RW, Brenner S, Waterson AP, Wildy P (1959) The icosahedral form of an adenovirus. J Mol Biol 1: 84–86CrossRefGoogle Scholar
  71. Hosokawa K, Sung MT (1976) Isolation and characterization of an extremely basic protein from adenovirus type 5. J Virol 17: 924–934PubMedGoogle Scholar
  72. Imler J-L (1995) Adenovirus vectors as recombinant viral vaccines. Vaccine 13: 11431151Google Scholar
  73. Jackson T, Sharma A, Ghazaleh RA, Blakemore WE, Ellard FM, Simmons DL, Newman JWI, Stuart DI, King Amq (1997) Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin a v ß 3 in vitro. J Virol 71: 8357–8361PubMedGoogle Scholar
  74. Kanellopoulos PN, Van Der Zandt H, Tsernoglou D, Van Der Vliet PC, Tucker PA (1995) Crystallization and preliminary X-ray crystallographic studies on the adenovirus ssDNA binding protein in complex with ssDNA. J Struct Biol 115: 113–116PubMedCrossRefGoogle Scholar
  75. Kanellopoulos PN, Tsernoglou D, Van Der Vliet PC, Tucker PA (1996) Alternative arrangements of the protein chain are possible for the adenovirus single-stranded DNA binding protein. J Mol Biol 257: 1–8PubMedCrossRefGoogle Scholar
  76. Kidd AH, Chroboczek J, Cusack S, Ruigrok RWH (1993) Adenovirus type 40 virions contain two distinct fibers. Virology 192: 73–84PubMedCrossRefGoogle Scholar
  77. Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci USA 98: 13671–13674.PubMedCrossRefGoogle Scholar
  78. King AJ, Van Der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13: 5786–5792Google Scholar
  79. Klein H, Maltzman W, Levine Al (1979) Structure-function relationships of the adenovirus DNA-binding protein. J Biol Chem 254: 11051–11060PubMedGoogle Scholar
  80. Kraulis PJ (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950CrossRefGoogle Scholar
  81. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002)Google Scholar
  82. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725Google Scholar
  83. Laver WG, Wrigley NG, Pereira HG (1969) Removal of pentons from particles of adenovirus type 2. Virology 39: 599–605PubMedCrossRefGoogle Scholar
  84. LI P, Bellett AJD, Parish CR (1984) Structural organization and polypeptide composition of the avian adenovirus core. J Virol 52: 638–649PubMedGoogle Scholar
  85. Linne T, Philipson L (1980) Further characterization of the phosphate moiety of the adenovirus type 2 DNA-binding protein. Eur J Biochem 103: 259–270PubMedCrossRefGoogle Scholar
  86. Louis N, Fender P, BARGE A, Kitts P, CHROBOCZEK J (1994) Cell-binding domain of adenovirus serotype 2 fiber. J Virol 68: 4104–4106PubMedGoogle Scholar
  87. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1164CrossRefGoogle Scholar
  88. Lutz P, Rosa-Calatrava M, Kedinger C (1997) The product of the adenovirus intermediate gene IX is a transcriptional activator. J Virol 71: 5102–5109PubMedGoogle Scholar
  89. Maizel JV, Jr, White DO, Scharff MD (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36: 115–125Google Scholar
  90. Mancini EJ, Clarke M, Gowen BE, Rutten T, Fuller SD (2000) Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol Cell 5: 255–266Google Scholar
  91. Mangel WF, Mcgrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275PubMedCrossRefGoogle Scholar
  92. Mangel WF, Toledo DL, Brown MT, Martin JH, Mcgrath WJ (1996) Characterization of three components of human adenovirus proteinase activity in vitro. J Biol Chem 271: 536–543PubMedCrossRefGoogle Scholar
  93. Mathias P, Wickham T, Moore M, Nemerow G (1994) Multiple adenovirus serotypes use av integrins for infection. J Virol 68: 6811–6814PubMedGoogle Scholar
  94. Matthews DA, Russell WC (1995) Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23 K protease. J Gen Virol 76: 1959–1969PubMedCrossRefGoogle Scholar
  95. Mcgrath WJ, Ding J, Sweet RM, Mangel WF (1996) Preparation and crystallization of a complex between human adenovirus serotype 2 proteinase and its 11-aminoacid cofactor pVIc. J Struct Biol 117: 77–79PubMedCrossRefGoogle Scholar
  96. Mirza MA, Weber J (1982) Structure of adenovirus chromatin. Biochim Biophys Acta 696: 76–86PubMedCrossRefGoogle Scholar
  97. Mitraki A, Barge A, Chroboczek J,Andrieu J-P, GAGNON J, RUIGROK RWH (1999) Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. Eur J Biochem 264: 599–606Google Scholar
  98. Morin N, Delsert C, Klessig DF (1989) Nuclear localization of the adenovirus DNA-binding protein: requirement for two signals and complementation during viral infection. Mol Cell Biol 9: 4372–4380PubMedGoogle Scholar
  99. Nemerow GR, Stewart PL (1999) Role of a, integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 63: 725–734PubMedGoogle Scholar
  100. Newcomb WW, Boring JW, Brown JC (1984) Ion etching of human adenovirus 2: structure of the core. J Virol 51: 52–56PubMedGoogle Scholar
  101. Pereira HG, Wrigley NG (1974) In vitro reconstruction, hexon bonding and handedness of incomplete adenovirus capsid. J Mol Biol 85:617–631Google Scholar
  102. Petterson U (1984) Structural and nonstructural adenovirus proteins. In: Ginsberg HS (ed) The Adenoviruses. Plenum Press, New York, pp 35–125Google Scholar
  103. Polgar L (1974) Mercaptide-imidazolium ion-pair: the reactive nucleophile in papain catalysis. FEBS Lett 47: 15–18PubMedCrossRefGoogle Scholar
  104. Prage L, Pettersson U, Hoglund S, Lonberg-Holm K, Philipson L (1970) Structural proteins of adenoviruses. IV. Sequential degradation of the adenovirus type 2 virion. Virology 42: 341–358PubMedCrossRefGoogle Scholar
  105. Ramachandra M, Padmanabhan R (1999) Adenovirus DNA replication. In: Seth P (ed) Adenoviruses: basic biology to gene therapy. RG Landes, Austin, Tex, USA, pp 59–68Google Scholar
  106. Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 A resolution. Nature 404: 960–967PubMedCrossRefGoogle Scholar
  107. Rekosh DM, Russell WC, Bellet AJ, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295PubMedCrossRefGoogle Scholar
  108. Roelvink PW, Lizonova A, Lee Jgm, LI Y, Bergelson JM, Finberg RW, BROUGH DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72: 7909–7915Google Scholar
  109. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C (2001) Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 75: 7131–7141PubMedCrossRefGoogle Scholar
  110. Rowe WP, Huebner RJ, Gillmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84: 570–573PubMedGoogle Scholar
  111. Ruigrok Rwh, SchüLler S (1993) Liquid crystalline DNA in fowl adenovirus. J Struct Biol 110: 177–179CrossRefGoogle Scholar
  112. Ruigrok Rwh, Barge A, Albiges-Rizo C, Dayan S (1990) Structure of adenovirus fibre. II. Morphology of single fibres. J Mol Biol 215: 589–596Google Scholar
  113. Ruigrok Rwh, Barge A, Mittal SK, Jacrot B (1994) The fibre of bovine adenovirus type 3 is very long but bent. J Gen Virol 75: 2069–2073CrossRefGoogle Scholar
  114. Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81: 2573–2604PubMedGoogle Scholar
  115. Rux JJ, Burnett RM (2000) Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 1: 18–30PubMedCrossRefGoogle Scholar
  116. Rydman PS, Caldentey J, Butcher SI, Fuller SD, Rutten T, Bamford DH (1999)Google Scholar
  117. Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex. J Mol Biol 291:575–587Google Scholar
  118. Rydman PS, Bamford JKH, Bamford DH (2001) A minor capsid protein P30 is essential for bacteriophage PRD1 capsid assembly. J Mol Biol 313: 785–795PubMedCrossRefGoogle Scholar
  119. San Martín C, Huiskonen JT, Bamford JKH, Butcher SJ, Fuller SD, Bamford DH, Burnett RM (2002) Minor proteins, mobile arms, and membrane-capsid interactions in the bacteriophage PRD1 capsid. Nature Struct Biol 9: 756–762CrossRefGoogle Scholar
  120. San MartÍn C, Burnett RM, DE Haas F, Heinkel R, Rutten T, Fuller SD,Butcher SJ, Bamford DH (2001) Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 9: 917–930Google Scholar
  121. Schechter NM, Davies W, Anderson CW (1980) Adenovirus coded deoxyribonucleic acid binding protein. Isolation, physical properties, and effects of proteolytic digestion. Biochemistry 19: 2802–2810Google Scholar
  122. Schoehn G, Fender P, Chroboczek J, Hewat EA (1996) Adenovirus 3 penton dodecahedron exhibits structural changes of the base on fibre binding.EMBO J 15: 6841–6846Google Scholar
  123. Seki T, Dmitriev I, Kashentseva E, Takayama K, ROTS M, Suzuki K, Curiel DT (2002) Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol 76: 1100–1108.PubMedCrossRefGoogle Scholar
  124. Shayakhmetov DM, Lieber A (2000) Dependence of adenovirus infectivity on length of the fiber shaft domain. J Viro! 74: 10274–10286CrossRefGoogle Scholar
  125. Shiver JW, FU T-M, Chen L, Casimiro DR, Davies M-E, Evans RK, Zhang Z-Q, Simon AJ, Trigona WL, Dubey SA, Huang L, Harris VA, Long RS, Liang X, Handt L, Schleif WA, Zhu L, Freed DC, Persaud NV, Guan L, Punt KS, Tang A, Chen M, Wilson KA, Collins KB, Heidecker GJ, Fernandez VR, Perry HC, Joyce JG, Grimm KM, Cook JC, Keller PM, Kresock DS, Mach H, Troutman RD, Isopi LA, Williams DM, XU Z, Bohannon KE, Volkin DB, Montefiori DC, Miura A, Krivulka GR, Lifton MA, Kuroda MJ, Schmitz JE, Letvin NL, Caulfield MJ, Bett AJ, Youil R, Kaslow DC, Emini EA (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiencyvirus immunity. Nature 415: 331–335PubMedCrossRefGoogle Scholar
  126. Shortridge KF, Biddle F (1970) The proteins of adenovirus type 5. Arch Gesamte Virusforsch 29: 1–24PubMedCrossRefGoogle Scholar
  127. Signas C, Akusjärvi G, Pettersson U (1985) Adenovirus 3 fiber polypeptide gene: implications for the structure of the fiber protein. J Virol 53: 672–678.PubMedGoogle Scholar
  128. Smith KO, Gehle WD, Trousdale MD (1965) Architecture of the adenovirus capsid. J Bacteriol 90: 254–261PubMedGoogle Scholar
  129. Stevens RC, Yokoyama S, Wilson IA (2001) Global efforts in structural genomics. Science 294: 89–92PubMedCrossRefGoogle Scholar
  130. Stewart PL, Burnett RM (1993) Adenovirus structure as revealed by X-ray crystallography, electron microscopy, and difference imaging. Jpn J Appl Phys 32: 1342 1347Google Scholar
  131. Stewart PL, Burnett RM (1995) Adenovirus structure by X-ray crystallography and electron microscopy. Curr Top Microbiol Immunol 199: 25–38PubMedCrossRefGoogle Scholar
  132. Stewart PL, Burnett RM, Cyrklaff M, Fuller SD (1991) Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67: 145–154PubMedCrossRefGoogle Scholar
  133. Stewart PL, Fuller SD, Burnett RM (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12: 2589–2599Google Scholar
  134. Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P, Nemerow GR (1997) Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J 16: 1189–1198CrossRefGoogle Scholar
  135. Stouten PFW, Sander C, Ruigrok RWH, Cusack S (1992) New triple-helical model for the shaft of the adenovirus fibre. J Mol Biol 226: 1073–1084PubMedCrossRefGoogle Scholar
  136. Sussenbach JS (1984) The structure of the genome. In: Ginsberg HS (ed) The Adenoviruses. Plenum Press, New York, pp 35–125CrossRefGoogle Scholar
  137. Tate VE, Philipson L (1979) Parental adenovirus DNA accumulates in nucleosomelike structures in infected cells. Nucleic Acids Res 6: 2769–2785PubMedCrossRefGoogle Scholar
  138. Toogood CIA, Crompton J, Hay RT (1992) Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73: 1429–1435PubMedCrossRefGoogle Scholar
  139. Trotman LC, Mosberger N, Fornerod M, Stidwill RP, Greber OF (2001) Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3: 1092–1100.PubMedCrossRefGoogle Scholar
  140. Tsernoglou D, Tucker AD, Van der Vliet PC (1984) Crystallization of a fragment of the adenovirus DNA binding protein. J Mol Biol 172: 237–239PubMedCrossRefGoogle Scholar
  141. Tsernoglou D, Tsugita A, Tucker AD, Van Der Vliet PC (1985) Characterization of the chymotryptic core of the adenovirus DNA-binding protein. FEBS Lett 188: 248–252PubMedCrossRefGoogle Scholar
  142. Tucker PA, Tsernoglou D, Tucker AD, Coenjaerts FEJ, Leenders H, Van Der Vliet PC (1994) Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. EMBO J 13: 2994–3002Google Scholar
  143. Van Der Vliet PC, Keegstra W, Jansz HS (1978) Complex formation between the adenovirus type 5 DNA-binding protein and single-stranded DNA. Eur J Biochem 86: 389–398PubMedCrossRefGoogle Scholar
  144. VAN Oostrum J, Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56: 439–448PubMedGoogle Scholar
  145. VAN Raaij MJ, Louis N, Chroboczek J, Cusack S (1999a) Structure of the human adenovirus serotype 2 fiber head domain at 1.5 A resolution. Virology 262: 333343Google Scholar
  146. VAN Raaij MJ, Mitraki A, Lavigne G, Cusack S (1999b) A triple /3-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401: 935–938PubMedCrossRefGoogle Scholar
  147. Vayda ME, Flint SJ (1987) Isolation and characterization of adenovirus core nucleoprotein subunits. J Virol 61: 3335–3339PubMedGoogle Scholar
  148. Vayda ME, Rogers AE, Flint SJ (1983) The structure of nucleoprotein cores released from adenovirions. Nucleic Acids Res 11: 441–460PubMedCrossRefGoogle Scholar
  149. Verdaguer N, Mateu MG,Andreu D, Giralt E, Domingo E, Fita I (1995) Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J 14: 1690–1696Google Scholar
  150. Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR (1999) A helperindependent adenovirus vector with El, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 73: 1601–1608Google Scholar
  151. Vos HL, Brough DE, Van Der Lee FM, Hoeben RC, Verheijden GFM, Dooijes D, Klessig DF, Sussenbach JS (1989) Characterization of adenovirus type 5 insertion and deletion mutants encoding altered DNA binding proteins. Virology 172: 634–642PubMedCrossRefGoogle Scholar
  152. Ward P, Dean FB, O’donnell ME, Berns KI (1998) Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication. J Virol 72: 420–427PubMedGoogle Scholar
  153. Weber JM (1995) Adenovirus endopeptidase and its role in virus infection. Curr Top Microbiol Immunol 199: 227–235PubMedCrossRefGoogle Scholar
  154. Weber JM (1999) Role of endoprotease in adenovirus infection. In: Seth P (ed) Adeno- viruses: basic biology to gene therapy. RG Landes, Austin, Tex, USA, pp 79–83Google Scholar
  155. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins av133 and avß5 promote adenovirus internalization but not virus attachment. Cell 73: 309–319PubMedCrossRefGoogle Scholar
  156. Wickham TJ, FíLardo EJ, Cheresh DA, Nemerow GR (1994) Integrin avß5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 127: 257–264PubMedCrossRefGoogle Scholar
  157. Wong M-L, Hsu M-T (1989) Linear adenovirus DNA is organized into supercoiled domains in virus particles. Nucleic Acids Res 17: 3535–3550PubMedCrossRefGoogle Scholar
  158. Wu E, Fernandez J, Fleck SK, VON Seggern DJ, Huang S, Nemerow GR (2001) A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37. Virology 279: 78–89PubMedCrossRefGoogle Scholar
  159. XIA D, Henry LJ, Gerard RD, Deisenhofer J (1994) Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2: 1259–1270PubMedCrossRefGoogle Scholar
  160. Xiong J-P, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL,Arnaout MA (2002) Crystal Structure of the Extracellular Segment of Integrin aVß3 in Complex with an Arg-Gly-Asp Ligand. Science 296: 151–155Google Scholar
  161. Zhang Z, Greene B, Thuman-Commike PA, Jakana J, Prevelige PE, Jr, King J, Chid W (2000) Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. J Mol Biol 297: 615–626PubMedCrossRefGoogle Scholar
  162. Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W (1999) Visualization of tegumentcapsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73: 3210–3218PubMedGoogle Scholar
  163. Zhou ZH, Dougherty M, Jakana J, HE J, Rixon FJ, Chiu W (2000) Seeing the herpesvirus capsid at 8.5 A. Science 288: 877–880PubMedCrossRefGoogle Scholar
  164. Zhou ZH, Baker ML, Jiang W, Dougherty M, Jakana J, Dong G, Lu G, Chiu W (2001) Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat Struct Biol 8: 868–873PubMedCrossRefGoogle Scholar
  165. Zijderveld DC, Van Der Vliet PC (1994) Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol 68: 1158–1164PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • C. San Martín
    • 1
  • R. M. Burnett
    • 1
  1. 1.The Wistar InstitutePhiladelphiaUSA

Personalised recommendations