Regulation of mRNA Production by the Adenoviral E1B 55-kDa and E4 Orf6 Proteins

  • S. J. Flint
  • R. A. Gonzalez
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 272)

Abstract

The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the ElB 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.

Keywords

Zinc Leukemia Cysteine Proline Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson CW, Baum PR, Gesteland RF (1973) Processing of adenovirus 2-induced proteins. J Virol 12: 241–252PubMedGoogle Scholar
  2. Aspegren A, Rabino C, Bridge E (1998) Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition. Exp Cell Res 245: 203–213PubMedCrossRefGoogle Scholar
  3. Babich A, Feldman CT, Nevins JR, Darnell JE, Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport and specific translational discrimination. Mol Cell Biol 3: 1212–1221PubMedGoogle Scholar
  4. Babiss LE, Ginsberg HS, Darnell JE (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5: 2552–2558PubMedGoogle Scholar
  5. Bachi A, Braun IC, Rodrigues JP, Pante N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Gorlich D, Carmo-Fonseca M, Izaurralde E (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6: 136–158PubMedCrossRefGoogle Scholar
  6. Barker DD, Berk AJ (1987) Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156: 107–121PubMedCrossRefGoogle Scholar
  7. Beltz GA, Flint SJ (1979) Inhibition of HeLa cell protein synthesis during adenovirus infection: restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131: 353–373PubMedCrossRefGoogle Scholar
  8. Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing and alternative splicing on nascent transcripts. Genes Dev 2: 754–765PubMedCrossRefGoogle Scholar
  9. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, NG L, Nye JA, Sampson-Johannes A, Fattaey A, Mccormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376PubMedCrossRefGoogle Scholar
  10. Blair-Zajdel ME, Blair GE (1988) The intracellular distribution of the transformation-associated protein p53 in adenovirus-transformed rodent cells. Oncogene 2: 579–584PubMedGoogle Scholar
  11. Boivin D, Morrison MR, Marcellus RC, Querido E, Branton PE (1999) Analysis of synthesis, stability, phosphorylation, and interacting polypeptides of the 34kilodalton product of open reading frame 6 of the early region 4 protein of human adenovirus type 5. J Virol 73: 1245–1253PubMedGoogle Scholar
  12. Boyer JL, Ketner G (2000) Genetic analysis of a potential zinc-binding domain of the adenovirus E4 34 k protein. J Biol Chem 275: 14969–14978PubMedCrossRefGoogle Scholar
  13. Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ (1999) Mammalian Srb/Mediator complex is targeted by adenovirus El A protein. Nature 399: 276–279PubMedCrossRefGoogle Scholar
  14. Braithwaite A, Nelson C, Skulimowski A, Mcgovern J, Pigott D, Jenkins J (1990) Transactivation of the p53 oncogene by Ela gene products. Virology 177: 595–605PubMedCrossRefGoogle Scholar
  15. Braun IC, Rohrbach E, Schmitt C, Izaurralde E (1999) TAP binds to the constitutive transport element ( CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. EMBO J 18: 1953–1965Google Scholar
  16. Bridge E (2000) Letter to the Editor. J Virol 74: 1200–1201CrossRefGoogle Scholar
  17. Bridge E, Hemstrom C, PetterssonU (1991) Differential regulation of adenovirus late transcriptional units by the products of early region. Virology 183: 260–266.PubMedCrossRefGoogle Scholar
  18. Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63: 631–638PubMedGoogle Scholar
  19. Bridge E, Ketner G (1990) Interaction of adenoviral E4 and Elb products in late gene expression. Virology 174: 345–343PubMedCrossRefGoogle Scholar
  20. Bridge E, Medghalchi S, Ubol S, Leesong M, Ketner G (1993) Adenovirus earlyregion 4 and viral DNA-synthesis. Virology 193:794–801Google Scholar
  21. Bridge E, Pettersson U (1996) Nuclear organization of adenovirus RNA biogenesis. Exp Cell Res 229: 233–239PubMedCrossRefGoogle Scholar
  22. Bridge E, Riedel KU, Johansson BM, Pettersson U (1996) Spliced exons of adenovirus late RNAs colocalize with snRNP in a specific nuclear domain. J Cell Biol 135: 303–314PubMedCrossRefGoogle Scholar
  23. Bridge E, Xia DX, Carmo-Fonesca M, Cardinali B, Lamond AI, Pettersson U (1995) Dynamic organization of splicing factors in adenovirus-infected cells. J Virol 69: 281–290PubMedGoogle Scholar
  24. Brown LM, Gonzalez RA, Novotny J, Flint SJ (2001) The structure of the adenovirus E4 Orf 6 protein predicted by fold recognition and comparative protein modeling. Proteins 44: 97–109PubMedCrossRefGoogle Scholar
  25. Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjärvi G, Carmo-Fonseca M, Dejean A (1995) Targeting of adenovirus El A and E4–ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131: 45–56PubMedCrossRefGoogle Scholar
  26. Castiglia CL, Flint Si (1983) Effects of adenovirus infection on rRNA synthesis and maturation in HeLa cells. Mol Cell Biol 3: 662–671PubMedGoogle Scholar
  27. Cathomen T, Weitzman MD (2000) A functional complex of adenovirus proteins E1B-55 kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J Virol 74: 11407–11412.PubMedCrossRefGoogle Scholar
  28. Cutt JR, Shenk T, Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61: 543–552PubMedGoogle Scholar
  29. de La Pena P, Zasloff M (1987) Enhancement of mRNA transport by promoter elements. Cell 50: 613–619PubMedCrossRefGoogle Scholar
  30. Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by EIB. Genes Dev 7: 546–54PubMedCrossRefGoogle Scholar
  31. Denome RM, Werner EA, Patterson RJ (1989) RNA metabolism in nuclei: adenovirus and heat shock alter intranuclear RNA compartmentalization. Nucl Acids Res 17: 2081–2098PubMedCrossRefGoogle Scholar
  32. Dix BR, Edwards SJ, Braithwaite AW (2001) Does the antitumor adenovirus ONYX-015/d11520 selectively target cells defective in the p53 pathway? J Virol 75: 5443–5447PubMedCrossRefGoogle Scholar
  33. Dix I, Leppard KN (1993) Regulated splicing of adenovirus type 5 E4 transcripts and regulated cytoplasmic accumulation of E4 mRNA. J Virol 67: 3226–31PubMedGoogle Scholar
  34. Dobbelstein M (2000) The nuclear export signal within the adenovirus E4orf6 protein contributes to several steps in the viral life cycle. J Virol 74: 1200–1201CrossRefGoogle Scholar
  35. Dobbelstein M, Roth J, Kimberly WT, Levine AJ, Shenk T (1997) Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J 16: 4276–4284PubMedCrossRefGoogle Scholar
  36. Dobner T, Horikoshi N, Rubenwolf S, Shenk T (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272: 1470–1473PubMedCrossRefGoogle Scholar
  37. Dobner T, Kzhyshkowska J (2001) Nuclear export of adenovirus RNA. Curr Top Microbiol Immunol 259: 25–34PubMedCrossRefGoogle Scholar
  38. Dosch T, Horn F, Schneider G, Kratzer F, Dobner T, Hauber J, Stauber RH (2001) The adenovirus type 5 E1B-55 k oncoprotein actively shuttles in virus-infected cells, whereas transport of E4orf6 is mediated by a CRM1-independent mechanism. J Virol 75: 5677–5683.PubMedCrossRefGoogle Scholar
  39. Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10: 196–207PubMedCrossRefGoogle Scholar
  40. Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280: 1880–1884PubMedCrossRefGoogle Scholar
  41. Endter C, Kzhyshkowska J, Stauber R, Dobner T (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci USA 98: 11312–11317PubMedCrossRefGoogle Scholar
  42. Enssle J, Kugler W, Hentze MW, Kulozik AE (1993) Determination of mRNA fate by different RNA polymerase II promoters. Proc Natl Acad Sci USA 90: 10091–10095PubMedCrossRefGoogle Scholar
  43. Fischer A, Huber J, Boulens WC, Mattaj LW, Luhrmann R (1995) The HIV-1 Revactivation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483PubMedCrossRefGoogle Scholar
  44. Flint SJ, Beltz GA, Linzer D (1983) Synthesis and processing of SV40-specific RNA in adenovirus-infected, SV40-transformed human cells. J Mol Biol 167: 335–359PubMedCrossRefGoogle Scholar
  45. Fornerod M, Ohno M,Yoshida M, Mattaj LW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060Google Scholar
  46. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308–311.PubMedCrossRefGoogle Scholar
  47. Gabler S, Schutt H, Groitl P, Wolf H, Shenk T, Dobner T (1998) E1B 55-kilodalton-associated protein: a cellular protein with RNA- binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72: 7960–7971PubMedGoogle Scholar
  48. Gattoni R, Stévinin J, Jacob M (1980) Comparison of the nuclear ribonucleoproteins containing transcripts of adenovirus 2 and HeLa cell DNA. Eur J Biochem 108: 203–210PubMedCrossRefGoogle Scholar
  49. Gonzalez RA, Flint SJ (2002) Effects of mutations in the adenoviral E1B 55 kDa protein coding sequence on viral late mRNA metabolism. J Virol submittedGoogle Scholar
  50. Goodrum FD, Ornelles DA (1997) The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol 71: 548–561PubMedGoogle Scholar
  51. Goodrum FD, Ornelles DA (1998) p53 status does not determine outcome of E1 B 55kilodalton mutant adenovirus lytic infection. J Virol 72: 9479–9490.Google Scholar
  52. Goodrum FD, Ornelles DA (1999) Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 73: 7474–7488PubMedGoogle Scholar
  53. Goodrum FD, Shenk T, Ornelles DA (1996) Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 70: 6323–6335PubMedGoogle Scholar
  54. Grand RJ, Parkhill J, Szestak T, Rookes SM, Roberts S, Gallimore PH (1999) Definition of a major p53 binding site on Ad2E1B58 K protein and a possible nuclear localization signal on the Ad12E1B54 K protein. Oncogene 18: 955–965PubMedCrossRefGoogle Scholar
  55. Grifman M, Chen NN, Gao GP, Cathomen T, Wilson JM, Weitzman MD (1999) Overexpression of cyclin A inhibits augmentation of recombinant adeno-associated virus transduction by the adenovirus E4orf6 protein. J Virol 73: 10010–9PubMedGoogle Scholar
  56. Grimwade D, Solomon E (1997) Characterisation of the PML/RAR alpha rearrangement associated with t(15;17) acute promyelocytic leukaemia. Curr Top Microbiol Immunol 220: 81–112PubMedCrossRefGoogle Scholar
  57. Grüter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1: 649–659PubMedCrossRefGoogle Scholar
  58. Halbert DN, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 56: 250–257PubMedGoogle Scholar
  59. Harada JN, Berk AJ (1999) p53-Independent and -dependent requirements for E1B55 K in adenovirus type 5 replication. J Virol 73: 5333–5344Google Scholar
  60. Hayes BW, Telling GC, Myat MM, Williams JF, Flint SJ (1990) The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species. J Virol 64: 2732–2742PubMedGoogle Scholar
  61. Higashino F, Pipas JM, Shenk T (1998) Adenovirus E4orf6 oncoprotein modulates the function of the p53-related protein, p73. Proc Natl Acad Sci USA 95: 15683–15687PubMedCrossRefGoogle Scholar
  62. Ho YS, Galos R, Williams JF (1982) Isolation of type 5 adenovirus mutants with a cold-sensitive phenotype: Genetic evidence of an adenovirus transformation maintainence function. Virology 122: 109–110Google Scholar
  63. Horridge JJ, Leppard KN (1998) RNA-binding activity of the E1B 55-kilodalton protein from human adenovirus type 5. J Virol: 9374–9379Google Scholar
  64. Huang J, Schneider RJ (1991) Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 65: 271–280PubMedCrossRefGoogle Scholar
  65. Huang M-M, Hearing P (1989) The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev 3: 1699–1710Google Scholar
  66. Huang W, Flint SJ (1998) The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 72: 225–235PubMedGoogle Scholar
  67. Imperiale MJ, Akusjärvi G, Leppard KN (1995) Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol 199: 139–171PubMedCrossRefGoogle Scholar
  68. Ishov AM, Maul GG (1996) The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134: 815–826.PubMedCrossRefGoogle Scholar
  69. Jones NC (1990) Transformation by the human adenoviruses. Semin Cancer Biol 1: 425–435.PubMedGoogle Scholar
  70. Kang Y, Cullen BR (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev 13: 1126–1139PubMedCrossRefGoogle Scholar
  71. Kao CC, Yew PR, Berk AJ (1990) Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55 K proteins. Virology 179: 806–814PubMedCrossRefGoogle Scholar
  72. Katahira J, Strasser K, Podtelejnikov A, Mann M, Jung JU, Hurt E (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. Embo J 18: 2593–2609PubMedCrossRefGoogle Scholar
  73. Ketner G, Bridge E,Virtanen A, Hemstrom C, Pettersson U (1989) Complementation of adenovirus E4 mutants by transient expression of E4 cDNA and deletion plasmids. Nucleic Acids Res 17: 3037–48Google Scholar
  74. Kirn D (2000) Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 19: 6660–6669PubMedCrossRefGoogle Scholar
  75. Konig C, Roth J, Dobbelstein M (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55- kilodalton protein. J Virol 73: 2253–2262PubMedGoogle Scholar
  76. Kratzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J, Stauber RH (2000) The adenovirus type 5 E1B-55 K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19: 850–857PubMedCrossRefGoogle Scholar
  77. Kzhyshkowska J, Schutt H, LIss M, Kremmer E, Stauber R, Wolf H, Dobner T (2001) Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem J 358: 305–314PubMedCrossRefGoogle Scholar
  78. Lei EP, Krebber H, Silver PA (2001) Messenger RNAs are recruited for nuclear export during transcription. Genes Dev 15: 1771–1782PubMedCrossRefGoogle Scholar
  79. Leppard KN, Everett RD (1999) The adenovirus type 5 Elb 55 K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80: 997–1008PubMedGoogle Scholar
  80. Leppard KN, Shenk T (1989) The adenovirus E1B 55 kd protein influences Mrna transport via an intranuclear effect on RNA metabolism. EMBO J 8: 2329–2336PubMedGoogle Scholar
  81. Leppard N (1993) Selective effects on adenovirus late gene expression of deleting the E1B 55K protein. J Gen Virol 74: 575–582PubMedCrossRefGoogle Scholar
  82. Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 ElA and accompanies apoptosis. Genes Dev 7: 535–545PubMedCrossRefGoogle Scholar
  83. Malette P, Yee SP, Branton PE (1983) Studies On the phosphorylation of the 58000 dalton early region 1B protein of human adenovirus type 5. J Gen Virol 64: 1069–1078PubMedCrossRefGoogle Scholar
  84. Martin ME, Berk AJ (1998) Adenovirus E1B 55K represses p53 activation in vitro. J Virol 72: 3146–3154PubMedGoogle Scholar
  85. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306PubMedCrossRefGoogle Scholar
  86. Maul GG (1998) Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20: 660–667PubMedCrossRefGoogle Scholar
  87. Moore M, Horikoshi N, Shenk T (1996) Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA 93: 11295–11301PubMedCrossRefGoogle Scholar
  88. Moore M, Schaack J, Baim SR, Morimoto RI, Shenk T (1987) Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Mol Cell Biol 7: 4505–4512PubMedGoogle Scholar
  89. Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677–690PubMedCrossRefGoogle Scholar
  90. Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (1997) The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc Natl Acad Sci USA 94: 1206–1211PubMedCrossRefGoogle Scholar
  91. Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (2000) Two distinct activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein. J Virol 74: 5168–5181PubMedCrossRefGoogle Scholar
  92. Nicolas AL, Munz PL, Falck-Pedersen E, Young CS (2000) Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cerevisiae HO endonuclease. Virology 266: 211–224PubMedCrossRefGoogle Scholar
  93. Nordqvist K, Akusjärvi G (1990) Adenovirus early region 4 stimulates mRNA accumulation via 5’ introns. Proc Natl Acad Sci USA 87: 9543–9547PubMedCrossRefGoogle Scholar
  94. Nordqvist K, Ohman K, Akusjärvi G (1994) Human adenovirus encodes two proteins which have opposite effects on accumulation of alternatively spliced mRNAs. Mol Cell Biol 14: 437–445PubMedGoogle Scholar
  95. Ohman K, Nordqvist K, Akusjärvi G (1993) Two adenovirus proteins with redundant activities in virus growth facilitates tripartite leader mRNA accumulation. Virology 194: 50–58PubMedCrossRefGoogle Scholar
  96. Orlando JS, Ornelles DA (1999) An arginine-faced amphipathic alpha helix is required for adenovirus type 5 e4orf6 protein function. J Virol 73: 4600–4610PubMedGoogle Scholar
  97. Ornelles D, Shenk T (1991) Location of the adenovirus early region 1B 55 kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34 kilodalton protein. J Virol 65: 424–439PubMedGoogle Scholar
  98. Pan T, Coleman JE (1990 a) The DNA binding domain of GAL4 forms a binuclear metal ion complex. Biochemistry 29: 2023–2029Google Scholar
  99. Pan T, Coleman JE (1990b) GAL4 transcription factor is not a “zinc finger” but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci USA 87: 2077–2081PubMedCrossRefGoogle Scholar
  100. Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus E1B-55kd transforming polypeptide modulates transport or cytoplasmic stablization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476PubMedGoogle Scholar
  101. Pombo A, Ferreira J, Bridge E, Carmo-Fonseca M (1994) Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J 13: 5075–5085PubMedGoogle Scholar
  102. Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145: 237–254PubMedCrossRefGoogle Scholar
  103. Puvion-Dutilleul F, Bachellerie JP, Visa N, Puvion E (1994) Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection. J Cell Sci 107: 1457–1468PubMedGoogle Scholar
  104. Puvion-Dutilleul F, Chelbi-Alix MK, Koken M, Quignon F, Puvion E, De The H (1995) Adenovirus infection induces rearrangements in the intranuclear distribution of the nuclear body-associated PML protein. Exp Cell Res 218: 9–16Google Scholar
  105. Puvion-Dutilleul F, Puvion E (1990) Analysis by in situ hybridization and auto-radiography of sites of replication and storage of single-and double-stranded adenovirus type 5 DNA in lytically infected HeLa cells. J Struct Biol 103: 280–289PubMedCrossRefGoogle Scholar
  106. Puvion-Dutilleul F, PuvionE (1991) Sites of transcription of adenovirus type 5 genomes in relation to early viral DNA replication in infected HeLa cells. A high resolution in situ hybridization and autoradiographical study. Biol Cell 71: 135–147Google Scholar
  107. Puvion-Dutilleul F, Roussev R, Puvion E (1992) Distribution of viral RNA molecules during the adenovirus type 5 infectious cycle in HeLa cells. J Struct Biol 108: 209–220PubMedCrossRefGoogle Scholar
  108. Querido E, Chu-Pham-Dang H, Branton PE (2000) Identification and elimination of an aberrant splice product from cDNAs encoding the human adenovirus type 5 e4orf6 protein. Virology 275: 263–266PubMedCrossRefGoogle Scholar
  109. Querido E, Marcellus RC, Lai A, Charbonneau R, Teodoro JG, Ketner G, Branton PE (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71: 3788–3798PubMedGoogle Scholar
  110. Querido E, Morisson MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE (2001) Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55 K complex. J Virol 75: 699–709PubMedCrossRefGoogle Scholar
  111. Rabino C, Aspegren A, Corbin-Lickfett K, Bridge E (2000) Adenovirus late gene expression does not require a Rev-like nuclear RNA export pathway. J Virol 74: 6684–6688PubMedCrossRefGoogle Scholar
  112. Rebelo L, Almeida F, Ramos C, Bohmann K, Lamond AI, Carmo-Fonesca M (1996) The dynamics of coiled bodies in the nucleus of adenovirus-infected cells. Mol Biol Cell 7: 1137–1151PubMedGoogle Scholar
  113. Reich NC, Sarnow P, Duprey E, Levine AJ (1983) Monoclonal antibodies which recognise native and denatured forms of the adenovirus DNA-binding protein. Virology 128: 480–484PubMedCrossRefGoogle Scholar
  114. Roth J,Konig C,Wienzek S,Weigel S,Ristea S,Dobbelstein M (1998) Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins. J Virol 72: 8510–8516Google Scholar
  115. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, Zur Hausen H (1998) Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 72: 9470–9478PubMedGoogle Scholar
  116. Rowe DT, Branton PE, Graham FL (1984) The kinetics of synthesis of early viral proteins in KB cells infected with wild-type and transformation-defective host-range mutants of human adenovirus type 5. J Gen Virol 65: 585–597PubMedCrossRefGoogle Scholar
  117. Rubenwolf S, Schutt H, Nevels M, Wolf H, Dobner T (1997) Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex. J Virol 71: 1115–1123PubMedGoogle Scholar
  118. Sandler AB, Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63: 624–630PubMedGoogle Scholar
  119. Sarnow P, Hearing P, Anderson CW, DN Halbert, Shenk T, Levine AJ (1984) Adenovirus early region 1B 58,000 dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 49: 692–700PubMedGoogle Scholar
  120. Sarnow P, Sullivan CA, Levine AJ (1982) A monoclonal antibody detecting the Ad5 E1B-58 K tumor antigen in adenovirus-infected and transformed cells. Virology 120: 387–394CrossRefGoogle Scholar
  121. Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single early family of 3’ co-terminal mRNAs and five late families. Cell 22: 905–916PubMedCrossRefGoogle Scholar
  122. Shen Y, Kitzes G, Nye JA, Fattaey A, Hermiston T (2001) Analyses of single-aminoacid substitution mutants of adenovirus type 5 E1B-55 K protein. J Virol 75: 4297–4307PubMedCrossRefGoogle Scholar
  123. Shenk T (1996) Adenoviridae and their replication. In: Fields Virology B Fields, P Howley and D Knipe (ed) Raven Press, New York, NY pp 2111–2148Google Scholar
  124. Smiley JK,Young MA, Flint SI (1990) Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein. J Virol 64: 4558–4564Google Scholar
  125. Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16: 349–357PubMedCrossRefGoogle Scholar
  126. Sternsdorf T, Grotzinger T, Jensen K, Will H (1997) Nuclear dots: actors On many stages. Immunobiology 198: 307–331PubMedCrossRefGoogle Scholar
  127. Stutz F, Rosbash M (1998) Nuclear RNA export. Genes Dev 12: 3303–3319PubMedCrossRefGoogle Scholar
  128. Sugawara K, Gilead Z, Wold WSM, Green M (1977) Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J Virol 22: 527–539PubMedGoogle Scholar
  129. Teodoro JG, Branton PE (1997) Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71: 3620–3627PubMedGoogle Scholar
  130. Teodoro JG, Halliday T, Whalen SG, Takayesu D, Graham FL, Branton PE (1994) Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J Virol 68: 776–786PubMedGoogle Scholar
  131. Tribouley C, Lutz P, Staub A, Kedinger C (1994) The product of the adenovirus intermediate gene IVa2 is a transcription activator of the major late promoter. J Virol 68: 4450–4457PubMedGoogle Scholar
  132. Turnell AS, Grand RJ, Gallimore PH (1999) The replicative capacities of large E1Bnull group A and group C adenoviruses are independent of host cell p53 status. J Virol 73: 2074–2083PubMedGoogle Scholar
  133. van Eekelen CA, Mariman EC, Reinders RJ, van Venrooij WJ (1981) Adenoviral heterogeneous nuclear RNA is associated with host cell proteins. Eur J Biochem 119: 461–467PubMedCrossRefGoogle Scholar
  134. Voelkerding K, Klessig DF (1986) Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J Virol 60: 353–362PubMedGoogle Scholar
  135. Weiden MD, Ginsberg HS (1994) Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91: 153–157PubMedCrossRefGoogle Scholar
  136. Weigel S, Dobbelstein M (2000) The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 74: 764–772PubMedCrossRefGoogle Scholar
  137. Weinberg DH, Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57: 833–838PubMedGoogle Scholar
  138. Weis K (1998) Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci 23: 185–189PubMedCrossRefGoogle Scholar
  139. Williams J, Karger BD, Ho YS, Castiglia CL, Mann T, Flint SJ (1986) The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4: 275–284Google Scholar
  140. Yang U-C, Huang W, Flint SJ (1996) mRNA export correlates with activation of tran- scription in human subgroup C adenovirus-infected cells. J Virol 70: 4071–4080Google Scholar
  141. Yew PR, Kao CC, Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55 k polypeptide by suppressor-linker-insertional mutagenesis. Virology 179: 795–805PubMedCrossRefGoogle Scholar
  142. Yew PR, Liu X, Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8: 190–202PubMedCrossRefGoogle Scholar
  143. Yoder SS, Berget SM (1986) Role of adenovirus type 2 early region 4 in the earlyto-late switch during productive infection. J Virol 60: 779–781PubMedGoogle Scholar
  144. Zantema A, Fransen JA, Davis-Olivier A, Ramaekers FC, Vooijs GP, Deleys B, van der Es AJ (1985) Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142: 44–58PubMedCrossRefGoogle Scholar
  145. Zenklusen D, Stutz F (2001) Nuclear export of mRNA. FEBS Lett 498: 150 – 156PubMedCrossRefGoogle Scholar
  146. Zhang Y, Feigenblum D, Schneider RJ (1994) A late adenovirus factor induces e1F–4B dephosphorylation and inhibition of cellular protein synthesis. J Virol 68: 7040–7050PubMedGoogle Scholar
  147. Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407: 401–405PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. J. Flint
    • 1
  • R. A. Gonzalez
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations