Measurement, Modeling and Performance of the MIMO Channel

  • Mary Ann Ingram
Part of the Signals and communication technology book series (SCT)


Environmental properties, array geometries and antenna patterns impact the modeling and performance of the multiple-input-multiple-output (MIMO) wireless channel. This paper investigates the phenomenon, model-ing, and impact on the Shannon capacity of angular clustering of multipath and of the line-of-sight (LOS) component of a short-range MIMO link. Clus-tering of multipath angles of arrival has been observed in both indoor and outdoor environments and reduces the capacity of the MIMO link. The LOS component of a short-range MIMO link is shown to have non-unity rank and to dominate the capacity of measured channels. To fully exploit this MIMO channel feature, antennas must be spaced sufficiently far apart. The final topic of the paper is the use of antenna selection and beam selection to provide an SNR advantage to a MIMO link, in conditions either with or without inter-ference.


Channel Matrix Antenna Element MIMO Channel Antenna Selection Array Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 1991Google Scholar
  2. 2.
    G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas;’ Wireless Personal Communications, pp. 311–335, 1998Google Scholar
  3. 3.
    G. G Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication;’ IEEE Trans. Comm., Vol. 46, pp. 357–366, Mar. 1998CrossRefGoogle Scholar
  4. 4.
    Asplund, Molisch, Steinbauer and Mehta,“Clustering of scatterers in mobile radio channels - evaluation and modeling in the COST259 directional channel model”Google Scholar
  5. 5.
    E. Bonek and M. Steinbauer,“Double-directional channel measurements;’ Proc. Eleventh International Conf. on Antennas and Propagation, 2001, Vol. 1, pp. 17–20, April 2001Google Scholar
  6. 6.
    S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building communication system design;’ IEEE Trans. on Vehicular Technology, vol. 43, pp. 879–891, Nov. 1994CrossRefGoogle Scholar
  7. 7.
    J. Salz and J. H. Winters, “Effect of fading correlation on adaptive arrays in digital mobile radio;’ IEEE Trans. Vehicular Technology, vol. 43, pp. 1049–1057, Nov. 1994CrossRefGoogle Scholar
  8. 8.
    D. Shiu, G. J., Foschini, M. J. Gans and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Communications, vol. 48, pp. 502–513, Mar. 2000Google Scholar
  9. 9.
    A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation;’ IEEE J. Select. Areas Commun., Vol. 5, pp. 128–137, Feb. 1987CrossRefGoogle Scholar
  10. 10.
    Q. H. Spencer, B. D. Jeffs, M. A. Jensen and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel;’ IEEE J. Select. Areas Commun., Vol. 18, pp. 347–359, Mar. 2000CrossRefGoogle Scholar
  11. 11.
    A. F. Molisch, H. Asplund, R. Heddergott, M. Steinbauer and T. Zwick, “The COST259 directional channel model - i. philosophy and general aspects,” IEEE J. Selected Areas Comm., p. submitted, 2001Google Scholar
  12. 12.
    Oda, Tsunekawa and Hata, “Geometrically based directional channel model for urban mobile communication systems”Google Scholar
  13. 13.
    G. German, Q. Spencer, L. Swindlehurst and R. Valenzuela, “Wireless indoor channel modeling: statistical agreement of ray tracing simulations and channel sounding mea-surements,” 2001Google Scholar
  14. 14.
    C.-C. Chong, C.-M. Tan, D. I. Laurenson, S. McLaughlin, M. A. Beach and A. R. Nix, “A new statistical wideband spatio-temporal channel model for 5-GHz Band WLAN Systems,” IEEE J. Select. Areas Commun. Vol. 21, Feb. 2003Google Scholar
  15. 15.
    K. Pahlavan and A. H. Levesque, Wireless Information Networks, John Wiley & Sons, Inc., 1995Google Scholar
  16. 16.
    M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to obtain increased estimation ac-curacy with a reduced computational burden,” IEEE Trans. Signal Processing, vol. 43, pp. 1232–1242. May 1995.CrossRefGoogle Scholar
  17. 17.
    M. Haardt and J. A. Nossek, “Simultaneous Schur decomposition of several nonsym-metric matrices to achieve automatic pairing in multi-dimensional harmonic retrieval problems.” IEEE Trans. Signal Processing, vol. 46, pp. 161–169. Jan. 1998CrossRefGoogle Scholar
  18. 18.
    M. C. Lawton, J. P. McGeehan, “The application of a deterministic ray launching algo-rithm for the prediction of radio channel characteristics in small-cell environment,” IEEE Trans. Vehicular Technology, vol. 43, pp. 955–969, Nov. 1994CrossRefGoogle Scholar
  19. 19.
    J.-S., Jiang, M.A. Ingram,“Path models and MIMO capacity for measured indoor chan-nels at 5.8 GHz,” Proc. ANTEM (The Conference on Computational Electromagnetics and Antenna Technology), Montréal, Quebec, Canada, July 3061- August 2nd, 2002Google Scholar
  20. 20.
    K.-H. Li, M. A. Ingram and A. V. Nguyen, “Impact of clustering in statistical indoor propagation models on link capacity,” IEEE Trans. Commun., Vol. 50, pp. 521–523, Apr. 2002CrossRefGoogle Scholar
  21. 21.
    J. C. Liberti and T. S. Rappaport,“A geometrically based model for line-of-sight multi-path radio channels,” Proc. 1996 IEEE Veh. Technol. Conf.,Vol. 2, pp. 844–848, Atlanta, GA, April 1996Google Scholar
  22. 22.
    W. R. Braun and U. Dersch,“A physical mobile radio channel model,” IEEE Trans. Veh. Technol., Vol. 40, pp. 472–482, May 1991CrossRefGoogle Scholar
  23. 23.
    M. Lu, T. Lo and J. Litva, “A physical spatio-temporal model of multipath propagation channels,” in Proc. 1997 IEEE Veh. Tech. Conf., Vol. 2, pp. 810–813, Phoenix, AZ, May 1997Google Scholar
  24. 24.
    M. Nilsson, B. Völcker and B. Ottersten,“A cluster approach to spatio-temportal channel estimation,” 2000Google Scholar
  25. 25.
    J.-H. Jo, M.A. Ingram and N. Jayant, “Angle clustering in indoor space-time channels based on ray-tracing,”Proceedings of the 54th IEEE Fall Vehicular Technology Conference (Fall VTC 2001), Vol. 4, pp. 2067–2071, Atlantic City, NJ, October 7–11, 2001Google Scholar
  26. 26.
    P. F. Driessen, G. J. Foschini,“On the capacity formula for multiple input-multiple output wireless channels: A geometric interpretation,” IEEE Trans. Communications, vol. 47, pp. 173–176, Feb. 1999CrossRefGoogle Scholar
  27. 27.
    A. Hutter, F. Platbrood and J. Ayadi, “Analysis of MIMO capacity gains for indoor prop-agation channel with LOS component,”IEEE Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 2002Google Scholar
  28. 28.
    P. Kyritsi,“MIMO capacity in free space and above perfect ground: theory and experi-mental results,” IEEE Symposium on Personal, Indoor and Mobile Radio Communica-tions, Vo1.1, pp. 182–186, Sep. 2002Google Scholar
  29. 29.
    J.-S. Jiang and M. A. Ingram, “Distributed source model for short-range MIMO,” Proc. IEEE Fall Vehicular Technology Conference 2003 (Fall VTC 2003),Orlando, FL, Oct 5–9, 2003Google Scholar
  30. 30.
    R. J. Mailloux, Phase Array Antenna Handbook, Artech House, Inc., 1994Google Scholar
  31. 31.
    A. Ghrayeb and T. M. Duman, “Performance analysis of MIMO systems with antenna selection over quasi-static fading channels;’ IEEE Trans. Veh. Tech., Vol. 52, No. 2, pp. 281–288, March 2003Google Scholar
  32. 32.
    A. F. Molisch, M. Z. Win and J. H. Winters,“Capacity of MIMO systems with antenna selection;’ Proc. IEEE International Conference on Communications, vol. 2, pp. 570–574, 2001Google Scholar
  33. 33.
    R. S. Blum and J. H. Winters, “On optimum MIMO with antenna selection;’ IEEE Communications Letters, vol. 6, pp. 322–324, 2002Google Scholar
  34. 34.
    R. S. Blum and J. H.Winters,“On optimum MIMO with antenna selection;’ in Proc. ICC 2002, New York, pp. 386–390Google Scholar
  35. 35.
    J.-S. Jiang, M. A. Ingram, “Comparison of beam selection and antenna selection techniques in indoor MIMO systems at 5.8 GHz;’ Proc. 2003 IEEE Radio and Wireless Conference (RAWCON),Boston MA, August 11–13, 2003Google Scholar
  36. 36.
    D. W. Bliss, K.W. Forsythe, A. O. Hero and A. F. Yegulalp, “Environmental issues for MIMO capacity;’ IEEE Trans. on Signal Processing, pp. 2128–2142, Sep. 2002Google Scholar
  37. 37.
    J.-S. Jiang and M. A. Ingram, “Enhancing measured MIMO capacity by adapting the locations of the antenna elements”, Proc. The 13` h IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’02), Lisbon, Portugal, September 15–18, 2002Google Scholar
  38. 38.
    L. Dong and M. A. Ingram,“Beam selection algorithm based on PTR metric and its synchronization performance;’ Proc. 2003 IEEE Radio and Wireless Conference (RAWCON),Boston MA, August 11–13, 2003Google Scholar
  39. 39.
    K. U-yen, J. S. Kenney, T. Assavapokee,“An optimization technique for low-loss nXm microwave switch matrices;’ Proc. 2003 IEEE Radio and Wireless Conference (RAWCON),Boston MA, August 11–13, 2003Google Scholar
  40. 40.
    E Caldwell, J. S. Kenney, M. A. Ingram,“Design and Implementation of a Switched-Beam Smart Antenna for an 802.11b Wireless Access Point;’ Proc. 2002 IEEE Radio and Wireless Conference (RAWCON),Boston MA, August 11–14, 2002Google Scholar
  41. 41.
    Personal communication with Prof. J. S. KenneyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mary Ann Ingram
    • 1
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations