Skip to main content

The Spatial Dimension in Wireless Multicarrier Communications

  • Chapter
  • 852 Accesses

Part of the book series: Signals and communication technology ((SCT))

Abstract

The spatial dimension in wireless communications has become a major issue since mobile cellular communications emerged as an economical success at the end of the twentieth century. Available bandwidth is a rare and costly resource, thus exploiting the physical dimension space by means of adaptive antennas is considered to be a primal technology for the required enhancement of spectral efficiency in future wireless communications services.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Foschini and M. J. Gans,“On Limits of Wireless Communications in a Fading Envi-ronment when Using Multiple Antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311–335, 1998

    Article  Google Scholar 

  2. D.-S. Shiu, G. J. Foschini, M. J. Gans and J. M. Kahn,‘Fading Correlations, and its Effect on the Capacity of Multielement Antenna Systems:’ IEEE Transactions on Communica-tions, vol. 48, no. 3, pp. 502–513, 2000

    Article  Google Scholar 

  3. A. Goldsmith, S. A. Jafar, N. Jindal and S. Vishwanath,“Capacity Limits of MIMO Chan-nels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684–702, 2003

    Article  Google Scholar 

  4. A. M. Tehrani, A. Hassibi, J. Cioffi and S. Boyd, “An Implementation of Discrete Multi-Tone over Slowly Time-varying Multiple-Input/Multiple-Output Channels,”IEEE Glob-al Telecommunications Conference (Globecom), pp. 2806–2811, 1998

    Google Scholar 

  5. G. D. Forney, ‘Coset Codes—Part I: Introduction and Geometrical Classification:’ IEEE Transactions on Information Theory, vol. 34,pp. 1123–1151, 1988

    Article  MathSciNet  Google Scholar 

  6. P. Bansal and A. Brzezinski, Adaptive Loading in MIMO/OFDM Systems, Available at www.stanford.edu/-brzezin/359/359.pdf 2001

    Google Scholar 

  7. K. K. Wong, R. K. Lai, R. S. K. Cheng, K. B. Letaief and R. D. Murch,“Adaptive Spatial-Sub - carrier Trellis Coded MQAM and Power Optimization for OFDM Transmission,” IEEE Vehicular Technology Conference (VTC), Tokyo, Japan, 2000

    Google Scholar 

  8. G. G. Raleigh and J. M. Cioffi, “Spatio-Temporal Coding for Wireless Communication,” IEEE Transactions on Communications, vol. 46, pp. 357–366, 1998

    Article  Google Scholar 

  9. G. G. Raleigh and V. K. Jones, “Multivariate Modulation and Coding for Wireless Com-munication,” IEEE Journal on Selected Areas in Communications, vol. 17, pp. 357–366, 1999.

    Article  Google Scholar 

  10. B. Lu and X. Wang,“Space-Time Code Design in OFDM Systems,”IEEE Global Telecom-munications Conference (Globecom), pp. 1000–1004, San Francisco, 2000

    Google Scholar 

  11. D. Agrawal, V. Tarolch, A. Naguib and N. Seshadri, “Space-Time Coded OFDM for High Data-Rate Wireless Communication Over Wideband Channels,” IEEE Vehicular Tech-nology Conference (VTC), 1998

    Google Scholar 

  12. V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Trans-actions on Information Theory, vol. 44, pp. 744–765, 1998

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Bölcskei and A. J. Paulraj, “Space-Frequency Coded Broadband OFDM Systems,” Wireless Communications and Networking Conference, pp. 1–6, Chicago, 2000

    Google Scholar 

  14. H. Bölcskei, M. Borgmann and A. J. Paulraj, ‘Space-Frequency Coded MIMO-OFDM with Multiplexing-Diversity Tradeoff;’ International Conference on Communications (/CC), Anchorage, Alaska, 2003

    Google Scholar 

  15. J. Boutros and E. Viterbo,“Signal Space Diversity: A Power-and Bandwidth-Efficient Di-versity Technique for the Rayleigh Fading Channel,” IEEE Transactions on Information Theory, vol. 44, pp. 1453–1467, 1998

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Liu, Y. Xin and G. B. Giannakis, ‘Space-Time-Frequency Coded OFDM Over Frequency-Selective Fading Channels;’ IEEE Transactions on Signal Processing, vol. 50, pp. 2465–2476, 2002

    Google Scholar 

  17. R. S. Blum, Y. Li, J. H. Winters and Q. Yang, ‘Improved Space-Time Coding for MIMOOFDM Wireless Communications;’ IEEE Transactions on Communications, vol. 49, pp. 1873–1878, 2001

    Google Scholar 

  18. H. W. Wolniansky, G. J. Foschini and R. A. Valenzuela,‘V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel;’ URSI International Symposium on Signals, Systems, and Electronics, pp. 295–300, New York, 2003

    Google Scholar 

  19. R. J. Piechocki, P. N. Fletcher, A. R. Nix, C. N. Canagarajah and J. P. McGeehan, ‘Performance evaluation of BLAST-OFDM enhanced Hiperlan/2 using simulated and measured channel data;’ Electronics Letters, vol. 37, pp. 1137–1139, 2001

    Google Scholar 

  20. Y. Xin and G. B. Giannakis, “High-Rate Space-Time Layered OFDM,” IEEE Communications Letters, vol. 6, pp. 187–189, 2002

    Google Scholar 

  21. S. A. Jafar, S. Vishwanath and A. Goldsmith, ‘Channel Capacity and Beamforming for Multiple Transmit and Receive Antennas with Covariance Feedback;’ International Conference on Communications (ICC), 2001

    Google Scholar 

  22. V. Tarokh, H. Jafarkhani and A. R. Calderbank, ‘Space-Time Block Codes from Orthogonal Designs;’ IEEE Transactions on Information Theory, vol. 45, pp. 1456–1467, 1999.

    MathSciNet  MATH  Google Scholar 

  23. P. Tejera and W. Utschick,‘Extended Orthogonal STBC for OFDM with Partial Channel Knowledge at the Transmitter;’ International Conference on Communications (ICC), Paris, France, 2004

    Google Scholar 

  24. S. Zhou and G. B. Giannakis, ‘Optimal Transmitter Eigen-Beamforming and Space-Time Block Coding based on Channel Mean Feedback;’ IEEE Transactions on Signal Processing, vol. 50, pp. 2599–2613, 2002

    Google Scholar 

  25. E. Jorswieck and H. Boche, ‘Optimal transmission with imperfect channel state information at the transmit antenna array;’ To appear in Wireless Personal Communications, 2003

    Google Scholar 

  26. M.T. Ivrlac, W. Utschick and J.A. Nossek, “Spatial fading correlations in wireless MIMO communication systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 819–828, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Utschick, W., Tejera, P. (2004). The Spatial Dimension in Wireless Multicarrier Communications. In: Chandran, S. (eds) Adaptive Antenna Arrays. Signals and communication technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05592-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05592-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05775-5

  • Online ISBN: 978-3-662-05592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics