Skip to main content

Geometric-Based Statistical Channel Modeling for Beam-Pattern-Scanning Antenna Arrays

  • Chapter
Adaptive Antenna Arrays

Part of the book series: Signals and communication technology ((SCT))

  • 855 Accesses

Abstract

Applying carefully-selected time-varying phases (delays) to array elements of an adaptive antenna, an antenna beam-pattern-scanning (BPS) is created in a controlled manner. This creates a time varying channel with a controllable coherence time. With an adaptive antenna at the base station (BS) and a single omnidirectional antenna at the mobile, the controllable coherence time is used by the mobile to exploit time diversity and enhance performance.

In this paper, assuming a BPS antenna array at the BS, the channel is properly modeled and the coherence time is evaluated. A channel impulse response is assumed and its parameters are statistically modeled via a so-called geometric-based stochastic channel model (GSCM). We consider circular and elliptical coverage areas, and the channel is simulated in an urban (high scattering) environment. We demonstrate the relationship between coherence time and the antenna array control parameters and show that up to 7-fold-diversity can be created via small degrees of beam pattern scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Norklit and J. B. Andersen, “Mobile radio environments and adaptive arrays,” pro-ceedings 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Com-munications, PIMRC’94, Vol. 2, pp. 725–728, 1994

    Google Scholar 

  2. O. Norldit, P. C. F. Eggers and J. B. Andersen, “Jitter diversity in multipath environments,” proceedings of Vehicular Technology Conference, VTC ’85, Vol. 2, pp. 853–857, 1995

    Google Scholar 

  3. S. A. Zekavat, C. R. Nassar and S. Shattil, “Combined directionality and transmit diver-sity via smart antenna spatial sweeping,” proceedings 38th Annual Allerton Conference on Communication, Control, and Computing, University of Illinois in Urbana-Cham-paign, pp. 203–211, Urbana-Champaign, IL, USA, Oct. 2000

    Google Scholar 

  4. S. A. Zekavat, C. R. Nassar and S. Shattil,“Smart antenna spatial sweeping for combined directionality and transmit diversity,” Journal of Communications and Networks (JCN), Special Issue on Adaptive Antennas for Wireless Communications, Vol. 2, No. 4, pp. 325–330, Dec. 2000

    Google Scholar 

  5. P. A. Bello, “Characteristics of randomly time-variant linear channels,” IEEE Transac-tions on Communication Systems, Vol. CS-11, pp. 360–393, 1963

    Google Scholar 

  6. T. Zwick, C. Fischer, D. Didascalou and W. Wiesbeck,“A stochastic spatial model based on wave-propagation modeling,” IEEE Journal on Selected Areas Communications, Vol. 18, No. 1, pp. 6–15, Jan. 2000

    Article  Google Scholar 

  7. H. Hashemi, “The indoor radio propagation channel,” IEEE Proceedings, Vol. 81, No. 7, pp. 943–968, July 1993

    Article  Google Scholar 

  8. H. Suzuki, “A statistical model for urban radio propagation,” IEEE Transactions on Communications, Vol. COM-25. pp. 673–680, July, 1977

    Article  Google Scholar 

  9. J. W. C. Jakes, ed., Microwave mobile communications, New York, NY, John Wiley & Sons, 1974

    Google Scholar 

  10. R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport and J. H. Reed, “Overview of spa-tial channel models for antenna array communication systems,” IEEE Personal Com-munications, Vol. 5, No. 1, pp. 10–22, Feb. 1998

    Article  Google Scholar 

  11. A. E Molisch, A. Kucher, J. Laurila, K. Hugl and E. Bonek, “Efficient implementation of a geometry-based directional model for mobile radio channels;” proceedings of IEEE Vehicular Technology Conference, VTC ’89, pp. 1449–1453, 1999

    Google Scholar 

  12. R. B. Ertel, “Angle and time of arrival statistics for circular and elliptical scattering models,” IEEE Journal on Selected Areas Communications, Vol. 17, No. 11, pp. 1829–1840, 1999

    Article  Google Scholar 

  13. P. Petrus, J. H. Reed and T. S. Rappaport,“Geometrically based statistical channel model for macro cellular mobile environments;” proceedings IEEE Globecom ’86, pp. 1197–1201, 1996

    Google Scholar 

  14. J. C. Liberti and T. S. Rappaport, “A geometric based model for line-of-sight multipath radio channels;” proceedings IEEE Vehicular Technology Conference, VTC ’86, pp. 844–848, 1996

    Google Scholar 

  15. Y. Oda, K. Tsunekawa and M Hata, “Geometrically based directional channel model for urban mobile communication systems;” proceedings of 2000 IEEE-APS Conference on Antennas and Propagation for Wireless Communications pp. 87–90, 2000

    Google Scholar 

  16. S. A. Zekavat and C. R. Nassar, “Smart antenna arrays with oscillating beam patterns: characterization of transmit diversity using semi-elliptic-coverage geometric-based stochastic channel modeling;” IEEE Transactions on Communications, Vol. 50, No. 10, pp. 1549–1556, Oct. 2002

    Article  Google Scholar 

  17. S.A. Zekavat and C. R. Nassar, “Semi-elliptic-coverage geometric-based stochastic channel modeling for smart antenna arrays with oscillating beam patterns;” proceedings of IEEE Globcom ’01, pp. 3237–3241, San Antonio, Nov 25–26, 2001

    Google Scholar 

  18. S. A. Zekavat, C. R. Nassar, “Fading channel characterization for oscillating-beam-pattern smart antennas using geometric-based stochastic channel modeling, with circular coverage scenario;” proceedings of IEEE Vehicular Technology Conference, VTC fall 2001, pp. 1452–1456, Atlantic City, Oct. 7–11, 2001

    Google Scholar 

  19. S. A. Zekavat, C. R. Nassar, “Geometric-based stochastic channel modeling for adaptive antennas with oscillating beam patterns;” proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC ’01, pp. 130–134, San Diego, Sep. 2001

    Google Scholar 

  20. S. A. Zekavat, C. R. Nassar, “Diversity gains in wireless systems with oscillating beam smart antennas: An evaluation via geometric-based stochastic channel models, with point scatterers;” proceedings of SPIE’s International Symposium on the Convergence of Information Technologies and Communication, ITCOM ‘01, pp.118–124 Denver, Aug. 20–24, 2001

    Google Scholar 

  21. S. A. Zekavat, C. R. Nassar, “Adaptive antennas power-azimuth spectrum using a geometric-based channel model with a semi-elliptic scenario;” proceedings of Antenna Measurement and Technologies Associated, AMTA ’01, pp. 346–348, Denver, Oct. 2001

    Google Scholar 

  22. S. A. Zekavat, C. R. Nassar, “Power-azimuth-spectrum modeling for antenna array systems: A geometric-based approach;” to be appeared in IEEE Transactions on Antennas and Propagation

    Google Scholar 

  23. “Oscillating beam adaptive antennas and multi-carrier systems: Achieving transmit diversity, frequency diversity and directionality;” IEEE Transactions on Vehicular Technology Vol. 51, No. 5, pp. 1030–1039, Sept. 2002. Vehicular Technology

    Article  Google Scholar 

  24. S. A. Zekavat, C. R. Nassar and S. Shattil, “Merging oscillating-beam smart antenna arrays and wideband multi-carrier CDMA: Exploiting transmit diversity, frequency diversity and directionality;” proceedings IEEE 3Gwireless ’02, San Francisco, 2002

    Google Scholar 

  25. S. A. Zekavat, C. R. Nassar and S. Shattil, “Merging carrier interferometery DS-CDMA and oscillating-beam smart antenna arrays: Exploiting transmit diversity, frequency diversity and directionality;” proceedings IEEE ICC ’02, New York, 2002

    Google Scholar 

  26. S.A. Zekavat, C. R. Nassar and S. Shattil, “Transmit diversity, frequency diversity and di-rectionality via oscillating beam adaptive antennas and multi-carrier systems,” procee-dings IEEE Spring VTC ’02 2002

    Google Scholar 

  27. S. A. Zekavat, C. R. Nassar and S. Shattil,“The merger of a single oscillating-beam smart antenna and MC-CDMA: Transmit diversity, frequency diversity and directionality,” proceedings IEEE Emerging Technologies Symposium on Broad Band Communications For Internet Era, pp. 107–112, Dallas, Sep. 2001

    Google Scholar 

  28. S. A. Zekavat and C. R. Nassar,“Achieving high capacity wireless by merging multi-car-rier CDMA systems and oscillating-beam smart antenna arrays,” to be appeared in IEEE Transactions on Vehicular Technology

    Google Scholar 

  29. S. A. Zekavat and C. R. Nassar,“High capacity wireless via MC-CDMA/oscillating-beam smart antenna array systems,” proceedings IEEE International Symposium on Wireless Personal Multimedia Communications, WPMC ’02, Hawaii, 2002

    Google Scholar 

  30. S. A. Zekavat and C. R. Nassar,“Transmit diversity via oscillating beam pattern adaptive antennas: An evaluation using geometric-based stochastic circular-scenario channel modeling,” to be appeared in IEEE Transactions on Wireless Communications

    Google Scholar 

  31. T. S. Rappaport, Wireless communications: Principles and practice, Prentice Hall, Upper Saddle River, NJ, 1996

    Google Scholar 

  32. A. Papulis, Probability, random variables, and stochastic processes, 3rd Edition, McGraw Hill, New York, NY, 1991

    Google Scholar 

  33. B. B. Mohebbi, A. H. Aghvami and W. G. Chambers, “Broad-band propagation channel analysis for DS and hybrid CDMA system design,” proceedings of Sth IEEE Internatio-nal Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC ’84, Vol. 2, pp. 700–704, 1994

    Google Scholar 

  34. D. C. Cox,“Correlation bandwidth and delay spread multipath propagation statistics for 910-MHz urban mobile radio channels,” IEEE Transactions on Communications, Vol. COM-23, No. 11, pp. 1271–1280, Nov. 1975

    Article  Google Scholar 

  35. P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting, Springer Ver-lag, New York, NY, 1996

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zekavat, S.A., Nassar, C.R. (2004). Geometric-Based Statistical Channel Modeling for Beam-Pattern-Scanning Antenna Arrays. In: Chandran, S. (eds) Adaptive Antenna Arrays. Signals and communication technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05592-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05592-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05775-5

  • Online ISBN: 978-3-662-05592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics